Электронная библиотека » Владимир Виноградов » » онлайн чтение - страница 4

Текст книги "Стресс и патология"


  • Текст добавлен: 7 февраля 2015, 13:55


Автор книги: Владимир Виноградов


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 21 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +
2. Кардиопротекторные эффекты тиамина в эксперименте
2.1. Стрессорные кардиопатии

Стрессорная альтерация миокарда – причина гибели животных при иммобилизационном стрессе по Г. Селье. При моделировании иммобилизационного стресса одни авторы относят фатальный исход экспериментов за счет гиперпродукции стрессреализующих гормонов (катехоламины, кортикостероиды) [141], другие – стресслимитирующих (инсулин) [121].

В наших опытах отмечалась гибель 56 % крыс к 72 ч иммобилизации [27, 30], что не расходится с данными литературы. Практически в 100 % случаев наиболее вероятной причиной гибели животных при иммобилизационном стрессе является постепенно нарастающая стрессорная альтерация сердечной мышцы, приводящая к ее функциональной несостоятельности и развитию недостаточности кровообращения. Об этом свидетельствуют морфологические, а также биохимические признаки (нарушение окислительного фосфорилирования, активация ПОЛ, повышение текучести митохондриальных и микросомальных мембран кардиомиоцитов).

Тиамин, оптимизируя стресс-реакцию организма на действие неспецифических раздражителей, предотвращает гибель животных при иммобилизационном стрессе.

Из рис. I-1 видно, что у контрольных животных в стадии тревоги иммобилизационного стресса (1—12 ч) наблюдается резкий подъем содержания 11-ОКС в крови, который сохраняется на высоком уровне в течение 24 ч нервно-мышечного раздражения с последующим снижением в конце периода резистентности. В фазе истощения (48–72 ч) наблюдается новая волна стероидогенеза.


Рис. I-1. Стероидогенная реакция надпочечников в динамике хронического стресса до (черные столбики) и после (серые столбики) введения тиамина. Контроль – белые столбики. По оси абсцисс – срок наблюдения; по оси ординат – содержание 11-ОКС в крови, мкМ/л.

* Достоверные изменения – p < 0,05


Рис. I-2 демонстрирует динамику уровня ИРИ в крови тех же животных: существенный спад содержания гормона спустя 1 ч иммобилизации (стадия тревоги), затем стабилизация его на относительно низком уровне между 12–24 ч опыта с заметным уменьшением в конце стадии резистентности (24–48 ч) и резкий подъем к 72 ч (стадия истощения).

Длительность стадий иммобилизационного стресса определена в соответствии с данными [140]. Фазовая градация стресса традиционно приводится в терминах Г. Селье, хотя об истощении надпочечников при активации гормоносинтеза в корковом слое адреналовых желез при отсутствии тотальной деструкции кортикоцитов [16] в терминальную стадию раздражения говорить не приходится. Динамика 11-ОКС в течение 72 ч иммобилизационного стресса подтверждается результатами аналогичного эксперимента, проведенного ранее [6], а динамика ИРИ при хроническом истощающем раздражении – данными [121].

Если абстрагироваться от уровня нормы (интактные животные) и за точку отсчета взять стадию резистентности, то можно заметить, что начиная с 24 ч опыта содержание обоих гормонов в крови крыс изменяется однонаправленно. Это указывает на подчиненность инсулинового ритма кортикостероидному и находится в соответствии с известными данными о том, что гормоны коры надпочечников способны лимитировать инсулиногенез [13]. Реципрокное соотношение 11-ОКС и ИРИ в стадии тревоги (1—12 ч) свидетельствует о том, что инсулинотропное влияние кортикостероидов в первую и большую часть второй фазы иммобилизационного стресса, очевидно, нивелируется катехоламинами, которые подавляют секрецию инсулина, связываясь с α-рецепторами β-клеток поджелудочной железы [58]. Таким образом, не исключено, что при длительной иммобилизации животных динамика ИРИ в крови de facto определяется динамикой стресс-гормонов.


Рис. I-2. Содержание ИРИ (пкМ/л) в крови крыс в динамике хронического стресса до (черные столбики) и после (серые столбики) введения тиамина. Контроль – белые столбики. По оси абсцисс – срок наблюдения, по оси ординат – единицы измерения. * Достоверные изменения – p < 0,05


По мнению Л. Панина, при хроническом истощающем стрессе в фазу резистентности «продукция катехоламинов и глюкокортикоидов стремится к максимуму, а продукция инсулина к минимуму. Организм работает на пределе своих адаптационных возможностей и быстро переходит в стадию истощения, где происходит срыв регуляторных механизмов, в результате чего продукция инсулина может резко возрастать, развивается сильнейшая гипогликемия и организм погибает» [121].

Однако К. Судаков [153] считает, что в принятых условиях гибнут, прежде всего, стрессчувствительные животные от стрессорных кардиопатий – острой сердечной недостаточности или инфаркта миокарда. Так, в его опытах из 40 изученных беспородных крыс устойчивыми к иммобилизационному эмоциональному стрессу оказались 26, из них у 6 вообще не обнаружили изменений артериального давления, у 12 наблюдалось первичное его повышение с последующей стабилизацией. 14 крыс этой группы оказались предрасположенными к эмоциональному стрессу и погибли, проявляя различную динамику изменений артериального давления. У них при вскрытии были обнаружены массивные участки инфаркта миокарда [153].

Согласно Г. Селье, при длительной иммобилизации у животных нарушается Na+/K+ баланс в организме (развивается гипокалиемия), что предрасполагает к возникновению под влиянием продолжающейся стрессорной нагрузки неинфарктных некрозов сердечной мышцы, подобных тем, которые вызываются глюкокортикостероидами на фоне десенсибилизации с помощью ортофосфата натрия [141].

Следовательно, сегодня фактически существуют 3 гипотетических сценария гибели животных в терминальной фазе истощающего стресса: 1) срыв адаптации из-за функционального истощения надпочечников [140]; 2) фатальная гипогликемия, обусловленная нарушением (разбалансировкой) гуморальной регуляции, приводящей к гиперпродукции инсулина [121] и 3) несовместимые с жизнью стрессорные кардиопатии, обусловленные гиперактивностью симпато-адреналовой системы [153].

Первое допущение проверяли исследованием морфофункционального состояния кортикоцитов в течение всего периода иммобилизации животных, второе – измерением уровня глюкозы и ИРИ в крови крыс, а третье – электронномикроскопическим изучением альтерации кардиомиоцитов при непрерывном хроническом раздражении и применением тиамина, способного снижать продукцию кортикостероидов и катехоламинов при стрессе [17] и в силу этого являющегося потенциальным кардиопротектором. В последнем случае предполагалось, что если стрессорные кардиопатии на самом деле являются причиной гибели животных, то тиамин, как и любой антистрессор, должен увеличивать процент их выживания.

Результаты проверки показали, что на самом деле 3-суточная иммобилизация для значительной части животных (56 %) заканчивается фатально [16, 17, 27, 30]. При этом уровень 11-ОКС в строгом соответствии со сменой фаз ИС изменяется синусоидально: подъем – плато – снижение, т. е. до 48 ч опыта (начало фазы истощения) все происходит так, как предсказывает традиционная схема ОАС. А вот далее наблюдающийся подъем уровня 11-ОКС в предагональном состоянии (72 ч) ей явно противоречит.

Проведенные параллельно электронномикроскопические исследования ультраструктуры кортикоцитов позволяют понять, за счет чего это происходит. Действительно, как и предполагал Г. Селье, в фазу истощения в коре НП увеличивается количество изношенных секреторных клеток. На электронограммах видно, что в кортикоцитах, прилегающих к запустевшим, спавшимся или забитым продуктами микроклазматоза капиллярам, начинается краевая деструкция внутриклеточных структур, ответственных за различные этапы стероидогенеза: митохондрии разрушаются (рис. I-3), эндоплазматический ретикулум исчезает, цитозоль гомогенизируется (рис. I-4); хотя в дистальных отделах клетки органеллы еще сохраняют интактную ультраструктуру.

Наконец процесс дезинтеграции захватывает нуклеоплазму, ядерный хроматин фрагментируется, происходит кариорексис ядра (рис. I-5) и клетка перестает существовать как самостоятельная функциональная единица. Однако валовый рост деструкции клеточных элементов коры НП в терминальной стадии ИС (72 ч) не превышает 10 %, остальные 90 % кортикоцитов имеют совершенно нормальный вид.


Рис. I-3. Деструкция митохондрий кортикоцитов при 72-часовом иммобилизационном стрессе. × 71 000


Рис. I-4. Дезорганизация цитозоля кортикоцитов при 72-часовом иммобилизационном стрессе. × 71 000


Более того, к началу фазы истощения (48 ч) в клеточном спектре пучково-сетчатой зоны коры НП (рис. I-6) преобладают темные и очень темные кортикоциты с мощным регенераторным потенциалом, создающим громадный и легко мобилизуемый функциональный резерв стероидогенеза. К концу фазы истощения (72 ч) их количество несколько снижается за счет последовательной трансформации очень темных клеток в темные, затем в полутемные и наконец в секретирующие светлые клетки, которые и обеспечивают искомый прирост 11-ОКС в терминальной фазе стресса (рис. I-6).

Следовательно, ни о каком функциональном истощении НП здесь речь идти не может, так же как и том, что этот феномен может быть причиной гибели животных при ИС.


Рис. I-5. Кариорексис ядер кортикоцитов при 72-часовом иммобилизационном стрессе: выход гетерохроматина. × 71 000 Рис.


I-6. Клеточный спектр пучковой зоны коры надпочечника крысы при 72-часовом стрессе: очень темные и просветленные кортикоциты. × 71 000


То же относится и к стресслимитирующей системе, роль которой в принятых условиях выполняет инсулин. В аварийную фазу ИС уже в первые часы уровень ИРИ в крови резко падает (рис. I-2) в результате прекращения инсулиногенеза при блокаде α-рецепторов β-клеток поджелудочной железы катехоламинами [58]. Развивается так называемый «транзиторный диабет напряжения», который в фазу резистентности (24 ч) плавно переходит в типичный стероидный диабет благодаря перераздражению инсулоцитов повышенным уровнем 11-ОКС, что не исключает развитие вторичной инсулярной недостаточности, т. е. истощение гормонобразовательной функции островкового аппарата к 48 ч опыта. Однако никакого истощения здесь тоже нет, поскольку в предагональном состоянии животных (72 ч) наблюдается достоверное повышение уровня ИРИ в крови. Такой всплеск инсулиногенеза Л. Панин считает результатом разбалансировки в системе гормональной регуляции гомеостаза, которая имеет фатальные последствия из-за развивающейся инсулиновой гипогликемии [121]. Измерение уровня глюкозы в крови с помощью ферментных электродов показало, что рост инсулинемии в терминальной стадии ИС (72 ч) сопровождается не гипо-, а гипергликемией. Несмотря на резкое повышение инсулинемии в фазу истощения (от 48 до 72 ч опыта – рост в 4 раза), содержание глюкозы в крови крыс в этот период достоверно не снижается (опыт 48 ч – 6,2 мМ/л (р>0,05); опыт 72 ч – 7,1 мМ/л (р>0,05); контроль – 8,1 мМ/л). Аналогичные данные были получены в эксперименте на крысах с применением летальной дозы ионизирующей радиации [123], где в предагональном состоянии (72 ч опыта) при всплеске инсулинопродукции (увеличение в 3–5 раз) содержание сахара в крови существенно возрастало (более чем в 1,5 раза) по сравнению с начальным периодом развития лучевой болезни (6 ч опыта) и в 1,3 раза по отношению к предыдущему сроку наблюдения (48 ч опыта). Следовательно, гибель половины животных к 72-му часу иммобилизации происходит не от гиперинсулинемии и сопутствующей гипогликемии, а от каких-то других причин.

Что касается гиперсекреции инсулина в терминальную фазу раздражения (рис. I-2), то скорее всего – это не разбалансировка в системе гуморальной регуляции гомеостаза [121], а признак начала функционирования инсулярного аппарата поджелудочной железы, освобождающейся к этому времени от катехоламинового блока. Восстановление же эндогенного (физиологического) механизма инсулиногенеза не может приводить к фатальной гипогликемии в принципе. Факт нормализации биологического ритма секреции инсулина в принятых условиях документируется тиаминовыми эффектами. В частности, на фоне введения тиамина уровень ИРИ в крови животных при иммобилизационном стрессе обнаруживает четкий 48-часовый ритм (рис. I-2), что соответствует данным литературы о 2-суточных осцилляциях содержания глюкозы в крови интактных крыс [117].

Экстраполируя эти результаты на динамику 11-ОКС, можно заметить, что кривая 1 (стресс) на рис. I-1 фактически демонстрирует развитие стероидогенной реакции на фоне «выключенного» инсулиногенеза (катехоламиновый блок β-клеток поджелудочной железы), а кривая 2 (стресс + тиамин) – ту же реакцию, но на фоне активированного гормоносинтеза в инсулоцитах. Как видно, разница существенная и по амплитуде стероидогенной реакции (снижение), и по ее шагу (сдвиг влево).

Тиамин, активируя инсулинсинтетическую функцию поджелудочной железы [13], обеспечивает более раннее выхождение пика ИРИ в крови крыс при истощающем стрессе – сдвиг влево по временной шкале опыта с 72 ч на 48 ч иммобилизации (рис. I-2).

Синхронизация, т. е. удовлетворительное совпадение кривых 2 (стресс + тиамин) на рис. I-1 и I-2, свидетельствует о том, что при активированном инсулиногенезе стрессорный ритм 11-ОКС лимитируется уровнем ИРИ в крови крыс. Одновременно это означает, что антистрессорное действие тиамина, очевидно, опосредовано инсулином, который способен тормозить образование гормонов как в мозговом [355], так и корковом слое [177] надпочечников. Этим же объясняется и факт отсутствия гибели животных, получавших тиамин, при 3-суточной экспозиции иммобилизационного стресса, поскольку инсулин является мощным кардиопротектором [116]. Комбинацию инсулина с глюкозой давно используют в клинике для реабилитации больных с ишемическими повреждениями миокарда [82].

Таким образом, есть веские основания считать, что роль «киллеров» при истощающем стрессе выполняют стресс-гормоны (катехоламины и кортикостероиды), длительная гиперпродукция которых закономерно приводит к функциональной несостоятельности основной системы жизнеобеспечения – сердечно-сосудистой. Инсулину же здесь явно принадлежит хелперная функция поддержания жизнедеятельности. Данная констатация диктует стратегию выживания – применение антистрессорных средств, в том числе тиамина, оптимизирующего процессы гормоносинтеза в кортикальной и хромаффинной тканях надпочечников через механизм их инсулинового контроля.

Ультраструктура кардиомиоцитов. Поскольку при гистологическом исследовании сердец погибших животных, инфарктов или внеинфарктных некрозов миокарда не удалось обнаружить, основное внимание было уделено клеточному составу, морфологическим критериям нативности митохондриального и сократительного аппарата кардиомиоцитов, состоянию их саркоплазматического ретикулума, а также изменениям капиллярного русла во всех фазах развития стрессорной реакции, так как любые изменения функции сопровождаются морфологическими сдвигами [137].

В каждом случае оценивали ультраструктуру преобладающего типа клеток.

Контроль. Электронномикроскопически у интактных крыс в левом желудочке сердца выявляются кардиомиоциты двух типов: разносокращенные электронопрозрачные и равноплотные во всех частях светлые клетки (30 %) и релаксирующие полутемные клетки (70 %) с инвагинированным гиперхромным ядром, содержащим многочисленные впячивания нуклеолеммы и подстилающей широкой полосы маргинального гетерохроматина, слабоосмиофильными саркорплазмой, контрактильным аппаратом и очень темными митохондриями. Первые, которые находятся в явном меньшинстве, очевидно, осуществляют сократительную функцию миокарда в период относительного покоя, а вторые служат их функциональным резервом, легко мобилизуемым при рабочих нагрузках. По сравнению со светлыми клетками количество митохондрий в полутемных кардиомиоцитах заметно больше, а их площадь меньше. Мембраны всех органелл и их кристы практически не деструктированы, митохондриальный матрикс мелкозернист, одинаково темен и плотен. Все это свидетельствует о том, что энергообразовательный аппарат резервных клеток находится в спокойном состоянии и не участвует в сократительном акте (рис. I-7).

Митохондрии располагаются между миофибриллами в виде цепочек, иногда они образуют небольшие скопления. Большинство митохондрий имеют овальную, угловатую или вытянутую форму, двухконтурную наружную мембрану и значительное количество параллельно расположенных крист, пересекающих органеллы в поперечном направлении. Миофибриллы в полутемных клетках имеют типичное строение. На продольном срезе в них отчетливо дифференцируются диски А, I, полоса Н, мезофрагма М, иногда полосы N. Латентное состояние сократительного аппарата документируют отсутствие полос сокращения и одинаковая длина контрактильных элементов.

Границы саркомеров, ограниченные дисками Z, соседних миофибрилл совпадают друг с другом, сообщая кардиомиоцитам равномерную параллельную исчерченность. Канальцы Т-системы и гладкого саркоплазматического ретикулума без особенностей. Просвет капилляров расширен. Почти всегда в нем обнаруживаются эритроциты. Одни капилляры близко примыкают к кардиомиоцитам, другие отделены от них широким перикапиллярным пространством, которое плавно переходит в межклеточную щель. Эндотелий истончен, темен, содержит пиноцитозные пузырьки. Сморщенные гиперхромные ядра эндотелиальных клеток, отграниченные тонким ободком цитоплазмы и клеточной мембраной, выступают в просвет капилляра.

Фаза напряжения (1—12 ч опыта). В аварийную стадию иммобилизационного стресса в клеточном спектре левого желудочка преобладают светлые кардиомиоциты (80 %), резко снижается количество полутемных (18 %) и появляются единичные темные клетки (2 %).

Незначительная часть светлых кардиомиоцитов левого желудочка в эту фазу обнаруживает явную тенденцию к равномерному потемнению (переходные клетки), т. е. имеет признаки пересокращения, крайней формой которого является образование темных клеток. Большинство же светлых клеток находятся в состоянии умеренного сокращения или даже релаксации (рис. I-8). Все они имеют ядра вытянутой или округлой формы с уменьшенным количеством хроматина и просветленной нуклеоплазмой. Маргинация хроматина не выражена. Сохраняется двухконтурность ядерной мембраны. Канальцы Т-системы и саркоплазматического ретикулума несколько расширены.


Рис. I-7. Миокард левого желудочка интактной крысы. Полутемные кардиомиоциты. × 71 000


Рис. I-8. Миокард левого желудочка крысы при иммобилизационном стрессе. Фаза напряжения (1 ч опыта). Светлые кардиомиоциты. × 71 000


Миофибриллы слегка отечны, местами волокнисты. Диски Z хорошо видны. Вставочные диски утолщены, имеют расширенные щели, границы их несколько расплывчаты. Между миофибриллами расположены двухконтурные митохондрии, имеющие овальную или вытянутую форму. Наблюдается повсеместное набухание органелл и самих клеток. Электронная плотность митохондрий, саркоплазмы, нуклеоплазмы и миофибрилл кардиомиоцитов выравнивается. В светлых клетках по сравнению со всеми остальными количество митохондрий найменьшее, площадь их – найбольшая, кристы сильно деструктированы, матрикс просветлен, пятнисто вымыт или вакуолизирован. Все эти особенности позволяют оценить наблюдаемую картину как отражающую состояние гиперфункции митохондриального аппарата.

Просвет большинства капилляров сужен как за счет набухания собственного эндотелия, так и сдавливания их тесно прилегающими гипертрофированными кардиомиоцитами. Перикапиллярные пространства и межклеточные щели как самостоятельные объемные образования между светлыми клетками не выявляются.

Фаза резистентности (24 ч опыта). В эту стадию развития стрессорной реакции кардиомиоциты в левом желудочке примерно поровну (по 40 %) представлены двумя типами клеток: переходными и светлыми. Причем первые от вторых отличаются меньшим отеком саркоплазмы и снижением степени набухания митохондрий, т. е. уплотнением их матрикса (рис. I-9, I-10). Количество митохондрий значительно превышает их число не только в светлых, но и в полутемных клетках. Встречаются очень большие скопления митохондрий. Большинство органелл имеют округлую форму и сохраняют наружную мембрану, двухконтурность которой в некоторых участках теряется. Матрикс митохондрий плотный, мелкогранулярный, в местах отсутствия крист гомогенизирован. Гомогенизация матрикса в различных органеллах колеблется от незначительных участков до всей митохондрии. Кристы несколько извилисты, но, как правило, они сохраняют параллельность и пересекают органеллы, соединяясь с наружной мембраной противоположных сторон. Почти во всех митохондриях часть крист разрушена и эти участки гомогенизированы.

В переходных клетках активируется процесс репродукции митохондрий. Он осуществляется путем деления и почкования органелл. О том, что митохондрии делятся, не сливаются, свидетельствует факт точного пространственного совпадения противолежащих крист соседних органелл. При почковании возникают перетяжки, истончение которых приводит к слиянию наружных мембран, а последующий их разрыв – к появлению дочерних митохондрий. Миофибриллы находятся в состоянии умеренного сокращения без очагов дезорганизации миофиламентов. В миофибриллах нередко увеличен диск I. Извитость вставочных дисков заметно увеличивается. Ядра кардиомиоцитов округлые, содержат повышенное количество хроматина, который концентрируется под нуклеонемой.


Рис. I-9. Миокард левого желудочка крысы при иммобилизационном стрессе. Фаза резистентности (24 ч опыта). Слабо сокращенные переходные кардиомиоциты. × 71 000 Рис.


I-10. То же, что и на рис. I-9. Фаза резистентности (24 ч опыта). Сильно сокращенные переходные кардиомиоциты. × 71 000


Капилляры отделены от сарколеммы кардиомиоцитов широкими прекапиллярными пространствами, переходящими в межклеточные щели различной ширины. Просветы большинства капилляров резко расширены и, как правило, заполнены свободно циркулирующими эритроцитами. Эндотелий капилляров уплощен, клетки – умеренной электронной плотности. Пиноцитоз выражен незначительно. Ядра овальной формы, нуклео-плазма просветлена в центре.

Судя по всему, переходные клетки – это интенсивно работающие кардиомиоциты, которые вместе со светлыми обеспечивают сократительную функцию сердца в фазу резистентности иммобилизационного стресса. Одновременно они накапливают регенераторный потенциал (деление митохондрий) и обнаруживают признаки перехода в другое функциональное состояние (обезвоживание и равномерное увеличение электронной плотности цитоструктур), т. е. трансформации в темные клетки (20 %). На рис. I-9, I-10 отчетливо видна динамика этого процесса. Степень обезвоживания клеток можно оценить по изменению сарколеммы, которая вначале имеет ровный пузыревидный контур, отграничивающий разбухшие кардиомиоциты, а в конце процесса по мере сокращения отечности саркоплазмы и выпячивания в межклеточные щели конгломератов митохондрий сарколемма принимает вид аркад, дублирующих контуры прилегающих органелл.

Конец фазы резистентности – начало фазы истощения (48 ч опыта). Морфологически (по клеточному составу и состоянию сосудистого русла) начало и конец фазы истощения четко различаются. К 48 ч опыта в клеточном спектре левого желудочка сердца явно преобладают темные кардиомиоциты, а к 72 ч – светлые, с множественными явлениями деструкции митохондриального и сократительного аппарата.

Темные клетки (рис. I-11), по сути, это пересокращенные переходные, которые характеризуются максимальной осмиофилией всех субклеточных образований. Сарколемма в темных клетках образует крутые аркады, в которых располагаются митохондрии, а саркоплазма практически не выявляется. В тех участках, где митохондрии прилежат к сарколемме, последняя теряет двухконтурность. Повышенная электронная плотность темных миокардиальных клеток зависит как от структуры органелл, так и от топографии последних.

Темные кардиомиоциты содержат компактные гиперхромные ядра с преобладанием конденсированного хроматина, часто имеющие изрезанные контуры. Количество митохондрий в них значительно больше, чем в светлых клетках, и они располагаются не параллельными с миофибриллами рядами, а в виде скоплений в различных участках клетки. Между миофибриллами можно видеть крупные митохондриальные агломераты, занимающие нередко все поле зрения. Причем органеллы здесь настолько тесно расположены, что другие структуры клетки почти незаметны (рис. I-11). Большое количество митохондрий располагается также в околоядерной зоне, под сарколеммой вблизи капилляров, у межклеточных щелей. Большинство митохондрий находится в конденсированном состоянии, матрикс их плотный, нередко частично гомогенизирован. Разные органеллы содержат различное количество крист. Многие митохондрии увеличены в размерах, но это увеличение не имеет характера набухания: матрикс таких органелл не просветлен, межкристные пространства не расширены, а кристы не только не деформированы и не разрушены, а напротив, их становится больше и они как бы более плотно упакованы в теле митохондрии. Во многих миофибриллах наблюдаются полосы пересокращения и различной величины участки гомогенизации миофиламентов. В субсарколемной зоне иногда возникают небольшие участки расплавления миофибрилл.

Увеличение количества темных клеток в миокарде при 48-часовой нагрузке растяжением животных можно рассматривать как одну из компенсаторных реакций сердца в ответ на повреждающий фактор. Появление в этих условиях темных кардиомиоцитов с резко увеличенным числом митохондрий подтверждает известную точку зрения на темные клетки как источники материальных и энергетических ресурсов, которые возникают в связи с напряженной попеременной деятельностью сократительных элементов и активацией в них процессов внутриклеточной регенерации [137].

Другой важной особенностью, характеризущей данный период стресса, является повышение гетерогенности клеточного пула левого желудочка.


Рис. I-11. Миокард левого желудочка крысы при иммобилизационном стрессе. Конец фазы резистентности – начало фазы истощения (48 ч опыта). Темные кардиомиоциты. × 71 000


Если в фазу напряжения иммобилизационного стресса практически не выявлялись переходные и темные клетки, в фазу резистентности – полутемные, то к началу фазы истощения клеточный спектр кардиомиоцитов представлен всеми типами клеток (темные – 50 %, светлые – 30 %, переходные – 10 %, полутемные – 10 %). Усиленная трансформация одних клеток в другие свидетельствует о повышении скорости оборачиваемости клеточного цикла, что, очевидно, также имеет в принятых условиях приспособительное значение. Процесс «просветления» темных кардиомиоцитов сопровождается постепенным нарастанием количества свободной саркоплазмы и разобщением структурных компонентов. В ядрах происходит превращение гетерохроматина в диффузный хроматин. В саркомерах появляются изотропные диски, а протофибриллы располагаются более рыхло. Становится заметной саркотубулярная система. Так возникают полутемные клетки, которые по мере продвижения по клеточному циклу трансформируются в светлые с ортодоксальными митохондриями и просветленным матриксом. Указанные структурные сдвиги свидетельствуют о вступлении «покоящихся» темных и полутемных кардиомиоцитов в фазу повышенной функциональной активности.

Сократительную функцию миокарда в конце фазы резистентности и начале стадии истощения иммобилизационного стресса (48 ч опыта) обеспечивают главным образом светлые и отчасти переходные клетки. В данный период по сравнению с фазой напряжения (1—12 ч опыта) количество светлых клеток в левом желудочке существенно снижено. Соответственно падающая на них рабочая нагрузка пропорционально увеличивается, что приводит к повышенному износу контрактильного и митохондриального аппарата светлых кардиомиоцитов. Увеличению степени деструкции сократительных элементов левого желудочка способствует ухудшение их кислородного обеспечения в результате спазма интрамуральных артериол, вызванного сокращением гладкомышечного слоя сосудистой стенки (рис. I-12). Волна нарушения микроциркуляции захватывает и капиллярное русло.


Рис. I-12. То же, что и на рис. I-11. Конец фазы резистентности – начало фазы истощения (48 ч опыта). Спазм интрамуральных артериол. × 71 000


Рис. I-13. То же, что и на рис. I-11. Конец фазы резистентности – начало фазы истощения (48 ч опыта). Сдавливание капилляров пересократившимися темными клетками. × 71 000


Повсеместно наблюдаются явления гемостаза, обусловленные сдавливанием капилляров пересократившимися темными клетками (рис. I-13) и гипертрофированными перицитами, которые в сложной связи своих отростков охватывают эндотелиальную трубку в виде своеобразной муфты (рис. I-14). Свой вклад в сужение просвета капилляров в данный срок опыта вносят и сами эндотелиальные клетки, способные к периодическому набуханию под влиянием нервных импульсов. В схеме двигательной иннервации кровеносных капилляров важная роль отводится перицитам, где находятся окончания симпатических нервов, которые воспринимают, трансформируют и далее передают нервный импульс через свои отростки на эндотелиальную клетку по типу электрического синапса [168]. Если принять гипотезу электрического синапса, то из рис. І-15 видно, что последний может возникать и без посредничества перицитов, поскольку нервные терминали непосредственно граничат с эндотелиальными клетками.


Рис. I-14. То же, что и на рис. I-11. Конец фазы резистентности – начало фазы истощения (48 ч опыта). Сдавливание капилляров гипертрофированными перицитами. × 71 000


Рис. I-15. То же, что и на рис. I-11. Конец фазы резистентности – начало фазы истощения (48 ч опыта). Окончания нервных терминалей. × 71 000


Согласно гипотезе, нервный импульс, направленный в сторону эндотелиальной клетки, вызывает деполяризацию ее плазмалеммы, что может способствовать потере или накоплению клеткой жидкости, которая, по всей вероятности, проникает через микропоры в плазмалемме [168]. По мнению автора гипотезы, на электронномикроскопических снимках и при прижизненных наблюдениях можно обнаружить набухшие эндотелиальные клетки, которые полностью закрывают просвет капилляра. Вслед за набуханием эндотелиальной клетки через несколько секунд можно видеть ее спадение. Такая периодичность, ведущая в первом случае к сужению просвета кровеносного капилляра и освобождению просвета для движения крови во втором случае, физиологически оправдана и не может быть осуществлена без участия нервной системы.

Фаза истощения (72 ч опыта). В терминальной стадии иммобилизационного стресса типовая гетерогенность кардиомиоцитов практически исчезает. Как и в самом начале развития стрессорной реакции, в левом желудочке в этот период доминируют светлые клетки (90 %; 10 % составляют полутемные клетки), что, очевидно, является результатом длительной перегрузки ультраструктурных элементов сердца. Однако в отличие от фазы напряжения (1—12 ч опыта), где светлые клетки были в основном однородными и различались только по степени набухания, здесь отмечается их выраженная внутрипуловая гетерогенность, обусловленная различной выраженностью деструкции митохондриального и контрактильного аппарата. В сарколемме таких кардиомиоцитов появляются множественные дефекты. На отдельных участках, особенно в тех, к которым близко прилежат капилляры, сарколемма становится размытой. В большинстве мышечных клеток отмечается отек саркоплазмы, особенно в субсарколемной зоне. Наряду с набухшими, но сохранившими нативную ультраструктуру кардиомиоцитами (30 %) – светлые клетки 1-го типа (рис. I-16) – появляются светлые клетки 2-го типа, в которых почти все митохондрии разрушены (20 %). Миофибриллы в них в основном фрагментированы на уровне дисков I, но имеются и большие участки гомогенизации, разволокнения и разрыва миофиламентов. Многие диски Z смещаются по отношению друг к другу в лежащих рядом миофибриллах (рис. I-17). В светлых клетках 3-го типа (40 %) большинство митохондрий в состоянии либо выраженного, либо умеренного набухания, матрикс их очагово просветлен. Резко уменьшено количество крист, имеющиеся кристы фрагментированы, хаотично расположены, в центре митохондрий они превращаются в гомогенную слабоосмиофильную массу. Наружные мембраны митохондрий теряют двухконтурность либо на всем протяжении, либо на значительных участках. Немало митохондрий полностью гомогенизированных, а также резко набухших, лишенных матрикса и крист.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации