Электронная библиотека » Владимир Виноградов » » онлайн чтение - страница 6

Текст книги "Стресс и патология"


  • Текст добавлен: 7 февраля 2015, 13:55


Автор книги: Владимир Виноградов


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 21 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Медиатором высокоамплитудного набухания митохондрий кардиомиоцитов при иммобилизационном стрессе может быть Ca2+, который через активацию митохондриальных фосфолипаз [98] способен лабилизировать мембраны органелл, увеличивая их проницаемость для молекул воды. Оценивая полученные результаты (табл. І-3) с позиций этого допущения, следует иметь в виду, что действие стресса на сердце является по существу адренергическим и через систему адренорецепторов приводит к увеличенному вхождению Ca2+ в кардиомиоциты [138]. Последнее играет важную роль в положительном инотропном эффекте катехоламинов и при умеренном стрессе оказывается транзиторным, так как благодаря нормальному функционированию мембранных механизмов ионного транспорта избыток Ca2+ быстро удаляется из саркоплазмы. При истощающем стрессе, сопровождающемся повреждением мембран и катионных насосов, удаление Ca2+ из саркоплазмы может оказаться нарушенным. Чрезмерное накопление Ca2+ в кардиомиоцитах имеет два следствия. Во-первых, он может активировать совокупность процессов, составляющих липидную триаду [98], и таким образом замыкает порочный круг, углубляющий повреждение миокарда. Во-вторых, избыток Ca2 обладает собственным повреждающим действием, которое приводит к разобщению окисления и фосфорилирования в митохондриях, активации митохондриальных фосфолипаз и миофибриллярных протеаз, угнетению процесса расслабления миофибрилл вплоть до развития необратимых контрактур и некробиоза [100]. Нарушение поглощения, депонирования и выброса кальция кардиомиоцитами считается важнейшей причиной развития сердечной недостаточности [164].

Из материалов опытов следует, что процесс приспособления сердца к иммобилизационному стрессу протекает в жестких временных рамках развития общего адаптационного синдрома: фаза напряжения (1—12 ч), фаза резистентности (12–48 ч), фаза истощения (48–72 ч) [15]. Синфазность стероидогенной (рис. I-1) и кардиогенной (табл. І-1, І-2, І-3) составляющих реакции напряжения указывает на их взаимообусловленность. Смысловая адекватность фазовой динамики стресса и гормональноиндуцированной кардиопатии, а также возможность логической экстраполяции характеристик одного процесса на другой подчеркивают фундаментальную патогенетическую общность обоих состояний.

Стабилизирующие эффекты тиамина в отношении окислительного фосфорилирования в митохондриях кардиомиоцитов (табл. І-1) и текучести их мембран (табл. І-3) наблюдаются на пике содержания стрессорных гормонов в крови животных (рис. І-1), т. е. в фазе напряжения (1 ч) и фазе истощения (48 ч) иммобилизационного стресса. Это подтверждает стрессобусловленность отмеченных сдвигов и антистрессорный характер действия витамина В1. В принятых условиях тиамин понижает потолок реагирования организма на чрезвычайные раздражители, переводя основные системы жизнеобеспечения (в том числе гипофизадреналовую и сердечно-сосудистую) с гиперергического на более низкий уровень перекрестной адаптации, отвечающий степени раздражителя. Патофизиологически это проявляется оптимизацией морфофункциональных параметров мембранных структур кардиомиоцитов и увеличением выживаемости животных при длительном иммобилизационном стрессе.

2.2. Инфаркт миокарда

Витаминопрофилактика стрессорного инфаркта миокарда. Исследования последних лет конкретизировали знание патогенеза стрессорных кардиопатий, что позволило Ф. Меерсону сформулировать общий принцип метаболической защиты сердца, в основу которого было заложено подражание естественным антистрессорным и антиишемическим системам организма путем введения in vivo метаболитов этих систем или их синтетических аналогов, т. е. химических агентов, прицельно действующих на отдельные звенья патогенетической цепи стрессорных повреждений сердечной мышцы [98]. Ингибирование возбуждения центров головного мозга, детерминирующих стресс-реакцию, с помощью транквилизаторов, блокада индералом адренорецепторов сердца, через которые реализуется кардиотоксический эффект катехоламинов (спазм коронарных сосудов), блокада липидной триады (повреждение лизосомальных мембран и выход протеолитических ферментов, детергентное действие избытка жирных кислот и активация ПОЛ) ингибиторами ПОЛ, фосфолипаз и липаз, ингибирование лизосомальных ферментов (дезинтеграция инфраструктуры кардиомиоцитов) и блокада вхождения Са2+ в клетки верапамилом (избыток Са2+ вызывает необратимые контрактуры и некробиоз миофибрилл, нарушает сокращение и расслабление миокарда) – эти 5 групп факторов могут предупредить или ограничить стрессорные повреждения сердца [98].

Поскольку ИМ является закономерным исходом стрессорной альтерации сердца [98], необходимо было убедиться в эффективности подобной схемы его защиты в принятых условиях. Как известно, в результате ИМ сохранившийся миокард оказывается в состоянии гиперфункции. Последняя является причиной морфофункциональных сдвигов, составляющих существо долговременного этапа адаптации [96]. Именно поэтому представляет интерес наблюдение за динамикой стереометрических показателей, характеризующих объемные соотношения в системе кардиомиоцит – капилляр в левом желудочке сердца.

В табл. І-4 приведены значения тех стереометрических показателей неишемизированного миокарда левого желудочка, которые обнаружили изменения в результате ИМ и динамику в постинфарктном периоде. Приведенные данные объективно свидетельствуют о том, что перенесенный ИМ, вызванный временным сдавливанием левой коронарной артерии [256], вносит существенные изменения в объемные соотношения компонентов «интактного» миокарда. В первую очередь они касаются изменений микроциркуляторного русла. Не приходится сомневаться, что изменения эти являются следствием стрессорного повреждения. Дело в том, что ранее аналогичные изменения были описаны нами и при сильном эмоционально-болевом стрессе (ЭБС) [347]. Микроциркуляторные нарушения в миокарде, документируемые уменьшением диаметра капилляров, обусловлены, очевидно, снижением их кровенаполнения из-за контрактурного спазма артериол [98]. Примечательно, что у контрольных животных эти сдвиги сохраняются до 30 сут постинфарктного периода.


Таблица І-4.

Стереометрические показатели ишемизированного миокарда в постинфарктном периоде после применения верапамила, ионола, индерала, вольпроата, празозина, тиамина и никотинамида

* p < 0,05 при сравнении с показателями ложнооперированных крыс.


Важными представляются и изменения объемной плотности интерстициальной соединительной ткани (физический смысл показателя сводится к тому, что относительный объем миокарда принимается равным 1, а доля в этом объеме интерстициальной соединительной ткани – некой дробной величине). Возрастание этой величины может объясняться двумя причинами: диффузным кардиосклерозом или отеком. Обратимость сдвигов указывает на вероятность второго процесса. Начиная с 15 сут у контрольных животных увеличиваются хорда сечения и минимальный диаметр кардиомиоцитов, что является следствием либо внутриклеточного отека, либо компенсаторной гипертрофии. Несовпадение динамики этих показателей с динамикой интерстициального отека указывает на вероятность гипертрофии.

Разобравшись с принципиальной динамикой стереометрических показателей в контроле, нетрудно дать оценку изменениям, привнесенным лекарственными препаратами. Основное благоприобретенное изменение, присущее всем препаратам, – нормализация диаметра капилляров не позднее 30 сут постинфарктного периода, а в случае применения верапамила – уже к 15-му дню. При применении верапамила полностью предотвращается интерстициальный отек миокарда (см. показатели объемной в табл. І-4) и значительно позднее, чем в контроле и при использовании других кардиопротекторов, появляются достоверные признаки компенсаторной рабочей гипертрофии неишемизированного миокарда. Очевидно, это связано с тем, что при существенном ограничении объема некроза сердечной мышцы соответственно уменьшается относительная перегрузка неинфарцированного миокарда.

Таким образом, верапамил (блокатор транспорта кальция вводили внутрь за 30 мин до ИМ в дозе 5 мг/кг), ионол (антиоксидант – 50 мг/кг внутрибрюшинно за 15 мин до ИМ), индерал (β-блокатор – 1 мг/кг аналогично), вольпраат (транквилизатор – 200 мг/кг внутрь за 30 мин до ИМ) и празозин (блокатор α-рецепторов – 1 мг/кг внутрибрюшинно за 15 мин до ИМ) способны в значительной степени предотвращать стрессорные повреждения неишемизированной мышцы сердца за счет усиления васкуляризации сохранившегося миокарда в постинфарктном периоде.

Идентичность кардиопротекторного действия всех использованных фармакологических препаратов (судя по данным стереометрического анализа – табл. І-4) предполагает и общий механизм реализации защиты, который, в силу своей универсальности, должен срабатывать не только в сердце, но и в других органах. Действительно, кардиопротекторы (ГОМК, индерал, верапамил) способны существенно ограничивать и даже полностью предупреждать развитие язвенных поражений слизистой оболочки желудка, обусловленных адренергическим спазмом артериол при ЭБС [98].

Поскольку язвообразование в желудочно-кишечном тракте является классическим проявлением стресса, элементом знаменитой еще со времени Г. Селье морфологической стрессорной триады: язвы слизистой желудка, инволюция тимуса, гипертрофия надпочечников – можно полагать, что обнаруженные сдвиги свидетельствуют об антистрессорном механизме защиты (кардиопротекции) в принятых условиях.

Считается, что, несмотря на структурные отличия указанных выше кардиопротекторов, все они действуют на развитие одного и того же приспособительного процесса, только на разных его уровнях, например, участвуя в оформлении доминантного сигнала адаптации в мозговых центрах либо в ограничении или выключении детерминирующего функцию сигнала на периферии, т. е. в органах-мишенях [100]. Из минимальной схемы общей стрессреализующей системы ЭБС: кора мозга (возбуждение эмоциогенных центров) – гипоталамус (синтез рилизинг-факторов) – гипофиз (синтез АКТГ) – надпочечники (синтез стресс-гормонов) – орган-мишень (рецепция стресс-гормонов) видно, что блокировкой любого звена этой цепи с помощью прицельно действующих фармакологических средств можно остановить дальнейшее развертывание стресс-реакции и, следовательно, предотвратить ее негативные органоспецифические проявления в миокарде. Поскольку при стрессе в мозгу увеличивается количество тормозных медиаторов (ГАМК, глицин, дофамин, серотонин и т. п.), активируется мобилизация жирных кислот, блокирующих вход в клетки Са2+ через медленные каналы, а в сердце повышается концентрация аденозина и простагландинов, выключающих адренорецепторы, не исключено, что широко используемые в медицинской практике кардиопротекторы в значительной мере дублируют естественные механизмы саморегуляции, функционирующие в рамках эндогенных стресслимитирующих систем сердца и организма в целом [98].

Экспериментально установлено, что при многократном действии стрессорных раздражителей активация гипофизадреналовой системы, контролируемая гомеостатическими механизмами, с каждым разом становится все меньше [121, 271]. Следовательно, существует принципиальная возможность профилактики кардиогенных осложнений избыточного стресса за счет собственных защитных ресурсов организма путем стимуляции стресслимитирующих систем дозированным неспецифическим раздражением (тренингом). Ранее было показано, что мягкий стресс и гипоксия способны существенно уменьшить объем повреждения миокарда (некpоз) в зоне ишемии, вызываемый окклюзией левой коpонаpной артерии [103]. Поскольку внеинфарктный миокард, как и миокард зоны ишемии, становится объектом стрессорной альтерации, было интересно оценить возможность его защиты предварительной адаптацией к действию стресса, гипоксии и физической нагрузки.

Примененный нами метод изучения соотношений кардиомиоцит – капилляр дает возможность формализованной количественной оценки скорости диффузии кислорода через мембрану капилляров (V1), интерстициальное пространство (V2), сарколемму (V3), и саркоплазму (V4). Следует иметь в виду, что здесь оценивается не истинная скорость, а лишь сердечная компонента соответствующего механизма. Практически истинные значения скоростей транспорта кислорода были бы пропорциональны величине коэффициентов K при допущении, что внесердечные факторы, лимитирующие диффузию, остаются постоянными. Подобный формализованный эксперимент соответствует условиям опыта, в котором скорости диффузии кислорода определяются при очередной трансплантации сердец в один и тот же организм с абсолютно жестким поддержанием гомеостатических параметров, влияющих на диффузию кислорода.

Данные табл. І-5 подтверждают наличие нарушений транспорта кислорода в системе кардиомиоцит – капилляр внеинфарктной зоны. При этом скорости диффузии кислорода через суммарные мембраны капилляров и интерстиций остаются сниженными только в течение 5 сут после ИМ. Снижение V1 обусловлено уменьшением артериального притока в результате контрактурного спазма артериол. Уменьшение V2 может быть связано с преходящим интерстициальным отеком. V3 и V4 остаются сниженными в течение всего срока наблюдения. Приняв во внимание, что уже к 15 сут поступление артериальной крови и, следовательно, кислорода нормализуется, уменьшение V3 и V4 объясняется гипертрофией кардиомиоцитов. Очевидно, рост новообразующихся сосудов отстает от скорости гипертрофии клеток сердечной мышцы. Иными словами, пластическое обеспечение гипертрофированного миокарда в принятых условиях явно недостаточно.

Динамика исследованных стереометрических показателей миокарда у животных, адаптированных к стрессу и бегу, отличается от описанной лишь тем, что скорости диффузии кислорода через саркоплазму и сарколемму нормализуются не позднее 15 сут. Эти несомненно положительные изменения могут интерпретироваться следующим образом: V3 и V4 зависят от двух факторов – гипертрофии миоцитов и артериального притока.

Поскольку объем некроза у животных адаптированных, в частности, к стрессу, почти в 2 раза меньше, чем в контроле, – соответственно у них пропорционально менее выражена и гипертрофия сохранившегося миокарда. Поэтому рост капилляров уже к 15 сут создает адекватное пластическое обеспечение. В контроле это соотношение не нормализовалось и спустя 30 сут. Совершенно иная картина наблюдалась у животных с предоперационной барокамерной подготовкой. В этой группе лишь V2 через 5 сут достоверно снижался по сравнению с контролем.


Таблица І-5.

Значения переменного коэффициента K условной скорости диффузии кислорода (Vi = Kα · T–1) через мембрану капилляров (V1), интерстициальное пространство (V2), мембрану кардиомиоцитов (V3) и саркоплазму (V4)

* p < 0,05 при сравнении с показателями ложнооперированных крыс.


Сосудистое русло животных, адаптированных к гипоксии, оказалось в наибольшей степени подготовленным к постстрессорным изменениям. Благодаря компенсаторному росту коронарных капилляров в процессе адаптации возможные патологические изменения в микроциркуляторном русле оказались практически нивелированными. Этим гарантируется адекватное пластическое обеспечение гиперфункционирующего внеинфарктного миокарда не позднее, чем к 5-му дню после ИМ.

Таким образом, представленные в табл. І-5 данные свидетельствуют, что предварительная адаптация к стрессу, физической нагрузке и гипоксии способствует ограничению альтерации внеинфарктного миокарда левого желудочка в результате стресса, сопутствующего наступлению циркуляторного некроза. Однако механизм защитного действия использованных вариантов тренинга различен. Адаптация к стрессу (иммобилизация животных на спине длительностью 15 мин – 1-й день, 30 мин – 2-й день, 45 мин – 3-й день и далее 5 раз по 1 ч через день) и физической нагрузке (принудительный бег в трет-бане по известной методике [2]) уменьшает повреждение за счет цитопротекторного действия, т. е. ограничения стрессреализующего механизма, а в случае адаптации к гипоксии (путем постепенного «подъема» животных в барокамере на высоту 5000 м над уровнем моря на 6 часов в день 5 раз в неделю на протяжении 6 недель) защита реализуется за счет заблаговременного усиленного роста коронарных коллатералей.

Выяснив, что защитное действие любых кардиопротекторов (в том числе неспецифического тренинга) при ИМ может реализоваться только двумя способами: через антистрессорные (цитопротекция) и собственно антиишемические (вазопролиферация) механизмы, было интересно использовать для этих целей витамины, известные как антистрессорными (витамин В1), так и сосудистыми (витамин РР) эффектами [13, 14]. Вероятность осложнений ИМ определяется величиной зоны некроза [116]. Размер некротического участка в миокарде детерминируется размерами зоны ишемии [103, 240], которые в решающей степени определяются чисто анатомическими факторами. Из этого следует, что лечебная коррекция здесь исходно затруднена [98]. А вот регуляция противоишемической устойчивости кардиомиоцитов, как показывает опыт (см. выше), представляется более доступной целью. Кроме того, исход ИМ в значительной мере определяется состоянием так называемого «неповрежденного» миокарда. Эти обстоятельства следует учитывать при оценке данных, характеризующих изменение размеров зон экспериментального ИМ (табл. І-6).


Таблица І-6.

Стереометрическая характеристика зон инфаркта миокарда у экспериментальных животных

* Различия достоверны в сравнении с показателями контрольной группы – р < 0,05.


Отсутствие изменений удельного объема зоны ишемии (V) между контролем и опытом свидетельствует против активации коронарного кровообращения и усиленного развития артериальных коллатералей под влиянием тиамина и никотинамида. Наряду с этим оба препарата обнаруживают непосредственный цитопротекторный эффект, который документируется снижением доли зоны повреждения (некроза) в зоне ишемии (VVп /V) и адекватным повышением относительного объема зоны защиты (V), характеризующей размеры неинфарцированного миокарда в зоне ишемии. Совершенно очевидно, что ограничение исходного ИМ должно было привести и к уменьшению размеров рубца. Именно об этом свидетельствуют данные табл. І-4. На всем протяжении постинфарктного периода объемная доля зоны повреждения (ИМ и замещающего его рубца) оказывается меньшей, чем в контроле, что отражает кардиопротекторное действие Т (200 мг/кг подкожно за 2 ч до ИМ) и НА (50 мг/кг подкожно 12 раз с интервалом 48 ч). В табл. І-7 представлены также цифры, свидетельствующие о том, что у животных, получавших Т и НА перед моделированием ИМ, соотношение объемных плотностей коллагеновых волокон и продуцирующих их фибробластов увеличивается через 15 и 30 сут после операции, что свидетельствует о стимуляции фибробластической деятельности. При расчете коэффициентов корреляции между величинами относительного объема зоны повреждения и фибробластическим индексом была установлена жесткая обратная коррелятивная связь между ними (коэффициент колебался от –0,77 до –0,84). Из этого следует, что стимуляция созревания рубцовой ткани в инфарктной зоне достигается опосредованно, путем ограничения размеров самой зоны повреждения.

В результате защиты сердца Т и НА были отмечены положительные сдвиги в околоинфарктном миокарде (табл. І-4). В неповрежденном миокарде у контрольных животных наблюдается запустевание капилляров, что проявляется в уменьшении их диаметра. Подобная картина раньше была отмечена нами в миокарде животных, перенесших сильный стресс [169, 347]. Это явление следует объяснить снижением кровотока в результате контрактурного спазма артериол. То же самое имеет место и в «неповрежденном» миокарде под влиянием Т или НА. Разница в том, что у животных, получавших любой из витаминов, этот период короче.

Нарушения микроциркуляции в «неповрежденном» миокарде проявляются также и увеличением объемной плотности интерстициальной ткани (VVп). В основе этого явления лежит интерстициальный отек миокарда. Правда, ни Т, ни НА предотвратить его не могут. Возрастающие в постинфарктном периоде значения хорды сечения миоцитов (Lм) и меньшего их диаметра (Дм) могут объясняться либо внутриклеточным отеком, либо гипертрофией (см. выше). Методом интерферентометрии мы установили, что концентрация сухого вещества в кардиомиоцитах не уменьшается (что свидетельствовало бы об отеке), а остается практически постоянной, чем доказывается гипертрофия кардиомиоцитов. Причем процесс этот более выражен у контрольных животных, нежели у тех, которые получали Т или НА.


Таблица І-7.

Значения относительных объемов зоны повреждения (VVп), показатели фибробластической активности в рубце (ФИ), весовая доля жидкости в легочной ткани (ΔР/Р) в течение постинфарктного периода

Примечания: 1) значения ΔР/Р даны в процентах; 2) * p < 0,05 при сравнении с контролем, а ΔР/Р – с показателем ложнооперированных крыс, который равен 73,1 ± 3,0.


В контроле достоверные признаки гипертрофии имеются уже к 15-му дню после ИМ, в то время как у крыс, получавших Т или НА, – только к тридцатому. По-видимому, больший объем ИМ у контрольных животных требует соответственно и большей гипертрофии миоцитов, при которой наступает нормализация относительной рабочей нагрузки на миокард.

Представленные выше данные показывают, что с помощью Т и НА нам удалось существенно ограничить размер инфарктного повреждения и оптимизировать некоторые морфофункциональные параметры неповрежденного миокарда. Эти сдвиги не могли положительно не сказаться на общей гемодинамике. В табл. І-7 показано, что у контрольных крыс отчетливо проявляется тенденция к накоплению жидкости в легочной ткани, что может являться признаком хронической левожелудочковой недостаточности. У животных, получавших витамин, этого не наблюдается, т. е. применявшееся у них лечение позволяет если не предотвратить, то по крайней мере отсрочить проявление такого грозного осложнения.

В связи с этим необходимо подчеркнуть, что несомненный эффект витаминотерапии в принятых условиях является следствием ограничения избыточной стрессорной реакции, которая имеет место во время развития острого ИМ [25]. Однотипные сдвиги были получены с помощью витаминов, влияющих на реализацию стресса прямо противоположным образом. Один из них (Т) действует как антистрессор [13], в то время как другой (НА) фактически является типичным стрессором [14]. Следовательно, механизмы действия обоих препаратов различны. При применении Т защита сердца достигается за счет оптимизации стресс-реакции, т. е. ограничения ее амплитуды [347], а в случае с НА мы, по существу, имеем дело с адаптацией к стрессу за счет создания относительно слабых повторяющихся фармакологических раздражений,

что и приводит к стимуляции стресслимитирующих систем [23].

Из табл. І-4 видно, что по кардиопротекторным свойствам Т не уступает самому эффективному из использованных нами фармакологических препаратов – блокатору медленного канала закачки внешнего Са2+ в клетку – верапамилу. Известно, что цитозольный Са2+ необходим для реализации действия стресс-гормонов на органы-мишени [156]. Ранее было показано, что метаболическая активность тиамина в тканях опосредуется антистрессорным гормоном инсулином [13]. Действие инсулина на клетку сопоставимо с эффектами атрактилозида – ингибитора выхода АТФ из митохондрий. Под влиянием атрактилозида органеллы становятся ареактивными к опосредуемым АДФ сигналам из цитозоля и работают только на себя. В результате вопреки катастрофическому уменьшению содержания адениловых нуклеотидов в цитозоле внутри митохондрий возрастает их сумма и отношение АТФ/АДФ или уровень ГТФ, что способствует тысячекратной активации синтеза белков митохондрий [71].

Инсулин активирует гликолиз [113] и сопряженную с гликолизом [98] работу внешней кальциевой помпы, откачивающей Са2+ из клетки [275]. Кроме того, он стимулирует внутриклеточный транспорт Са2+ в митохондрии [157], что в итоге приводит к снижению уровня цитозольного кальция и блокированию активности клетки. Под его воздействием с клеточной поверхности «снимаются» рецепторы, через которые осуществляется действие гормоновстимуляторов [71]. При дефиците Са2+ в цитозоле клетка становится ареактивной к адреналиновым, глюкагонным и глюкокортикоидным сигналам. Одновременно инсулин повышает вход глюкозы в клетку и стимулирует синтез из нее гликогена, липидов и аминокислот. Подобно атрактилозиду, инсулин, выключив функцию, активирует рост клеток, т. е. не только устраняет кардиотоксическое действие стресс-гормонов, но и осуществляет формирование «структурного следа адаптации» – компенсаторную гипертрофию неинфарцированного миокарда.

Кардиопротекторные свойства инсулина уже давно отмечены клиницистами, и начиная с 1950-х годов комбинация инсулина с глюкозой применяется для реанимации сердца после более или менее длительной остановки кровообращения, а также при сердечно-сосудистой недостаточности любого происхождения [82]. Четкий цитопротекторный эффект это средство оказывает на инфарцированный миокард [116]. Оно широко используется при лечении шоковых состояний, вызванных инфарктом миокарда [82]. Роль инсулина в развитии компенсаторной гипертрофии сердца [60, 62, 207] убедительно иллюстрируется хорошо известным в клинике отягчающим [60, 303, 332, 333], а нередко роковым влиянием инсулярной недостаточности на развитие основных заболеваний сердца: 70 % больных сахарным диабетом в США умирают от сердечной патологии [96]. Поэтому существует необходимость тщательного выявления и коррекции даже небольших нарушений функции инсулярного аппарата у сердечно-сосудистых больных [53, 60, 61, 302, 320, 329]. Способность Т активировать инсулинсинтетическую функцию поджелудочной железы [13] определяет его кардиопротекторные свойства и соответственно перспективы использования в кардиологической практике.

Из табл. І-6 видно, что НА более чем на треть (39 %) уменьшает объем зоны некроза и более чем в 2 раза (216 %) увеличивает объем зоны защиты инфарцированного миокарда у животных, подвергавшихся острой окклюзии коронарной артерии. Аналогичные результаты (39 и 211 %) ранее были получены нами после адаптации животных к иммобилизационному стрессу [103]. В обоих случаях антинекротическое действие реализуется одинаково по цитопротекторному, а не антиишемическому механизму, т. е. без изменения стереометрических параметров зоны ишемии, как это имело место после адаптации к гипоксии [103].

Адаптация к гипоксии ограничивает первичную ишемию за счет предшествующего роста коронарного русла [247]. Рост коронарного русла, по современным представлениям, определяется на молекулярном уровне специальными, генетически детерминированными факторами,

образующимися в увеличенном количестве при дефиците кислорода [98]. Этот антиишемический эффект адаптации сопровождался сравнительно небольшим повышением стабильности структур ишемизированной зоны к повреждению. Достигнутое в итоге значительное уменьшение размеров некроза было обусловлено, главным образом, антиишемическим (вазопролиферативным) эффектом [103].

При однократном введении большой дозы НА (200 мг/кг), вызывающем высокоамплитудную стрессорную реакцию [14], защитный кардиопротекторный эффект витамина не воспроизводится [24]. Для его реализации необходимо было существенно уменьшить дозу препарата (до 50 мг/кг), количество инъекций увеличить до 10–12 и выдерживать 48-часовой интервал между ними, т. е. перевести регуляторные системы организма в тренировочный режим адаптации к повторяющемуся мягкому фармакологическому раздражению.

Стресс по Г. Селье отражает только одну из сторон взаимоотношений организма со средой, а именно тот случай, когда сила постороннего влияния превышает нормальные физиологические границы. Из приведенных фактов следует, что существуют и неспецифические приспособительные реакции на слабые и умеренные раздражители. Согласно Л. Гаркави и др. [42], триада реакций «тренировка – активация – стресс» охватывает весь возможный диапазон раздражений, начиная с порога чувствительности и кончая предельными по силе воздействиями. «Реакция тренировки», как и стресс, последовательно проходит три стадии. Вначале организм как бы анализирует слабые воздействия, оценивает их. Защитные системы остаются при этом невредимыми, а возбудимость гипоталамуса и общая чувствительность организма уменьшаются (стадия ориентировки). Если интенсивность раздражения постепенно нарастает, деятельность нервной и эндокринной систем, а также обмен веществ постепенно перестраиваются. Стадию «перестройки» сменяет третья стадия – «тренированности», в которой заметно повышается активность защитных систем. В этом состоянии организм приобретает первичную резистентность к повреждающим агентам, причем не только тем, которыми его тренировали, но и многим другим.

Если же сила раздражителя заметно превышает «тренировочную», но при этом не достигает стрессового уровня, в ответ на него организм формирует неспецифическую «реакцию активации». В ее развитии тоже есть определенная последовательность. В стадии первичной активации в центральной нервной системе возникает умеренное возбуждение. Повышается возбудимость гипоталамуса, оживляется деятельность желез внутренней секреции, заметно ускоряется обмен веществ. Однако процессы эти хорошо уравновешены, а эндокринная система функционирует без патологии. Регулярное повторение такого среднего раздражения вызывает следующую фазу «стойкой активации». В это время организм успешно сопротивляется самым различным внешним и внутренним неблагоприятным воздействиям [20]. Поскольку речь идет о неспецифических реакциях организма, то совершенно очевидно, что спектр раздражителей, с помощью которых достигается защитный эффект, здесь, как и при стрессе, может быть достаточно широким и альтернативным. Полученные данные показывают, что НА является эффективным средством, обеспечивающим в терминах концепции Ф. Меерсона «совершенную адаптацию к стрессу», которая реализуется четким кардиопротекторным эффектом при окклюзионном ИМ.

В целом различия, обнаруженные в механизмах кардиопротекторного действия трех использованных адаптагенов (тиамина, никотинамида и гипоксии), весьма существенны, так как в перспективе создают возможность их рационального сочетания.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации