Электронная библиотека » Владимир Живетин » » онлайн чтение - страница 1


  • Текст добавлен: 12 августа 2015, 00:00


Автор книги: Владимир Живетин


Жанр: Техническая литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

В.Б.Живетин
Технический риск (элементы анализа по этапам жизненного цикла ЛА)

Научный редактор: д.т.н., профессор, академик АН РТ Т.К. Сиразетдинов.

Рецензенты: д.т.н., профессор В.Д.Фурасов, д.т.н., профессор Л.Г.Башкиров

Введение

Примерно пятьсот лет назад естествознание полностью отделилось от философии и стало самостоятельной отраслью человеческой деятельности. С той поры естествознание проникает во все сферы жизнедеятельности общества, обеспечивая высокие темпы экономического развития человека и социальной сферы в целом. Волна технико-технологических изменений, в основе которых лежали научные и научно-практические открытия, следовала одна за другой со все более короткими интервалами. Промежутки времени между научной мыслью и началом ее использования в технике постепенно сокращались. Понадобилось около ста лет, чтобы паровая машина из научной мысли превратилась в реальность и заняла свое достойное место в промышленности. Для электрической энергии этот срок составил менее пятидесяти лет, для двигателя внутреннего сгорания – всего тридцать лет.

В начале двадцатого столетия говорили, что «прикладная наука (техника) – это чистая наука двадцать лет спустя». Сегодня этот интервал намного короче.

Разработка и развитие новых технологий, машин и механизмов обуславливали не только отмену физического труда человека, но и повышение требований к его знаниям, без которых невозможно трудится в новой технико-технологической среде. При этом видоизменялись социальная сфера, общество, человек. В процессе такого развития одни слои населения нищали, теряли возможность трудиться, т. е. продавать свой труд – физическую энергию, а если и трудились, то их труд не имел должной оценки и оплаты. Появились новые люди, дух которых подвергся мутации культуры нового времени. Одного из них назовут бизнесменом, а все что они породили – капитализмом.

Современная индустриально-развитая экономика, в известной мере схожа с наделенными обратными связями техническими объектами, представляющими собой динамическую систему, которая подчинена закону сохранения энергии, так как энергетические процессы суть источники всего происходящего в ней. По этой причине, как и во всех системах, в экономике существуют ограничения для всех процессов. Дело в том, что каждая отрасль, каждый вид деятельности потребляют продукт и услуги других отраслей, секторов экономики и в тоже время поставляют им свои продукты, товары и оказывают услуги.

Труд составляет важный элемент затрат в народном хозяйстве, его роль не претерпела существенных изменений, несмотря на внедрение автоматических поточных линий, технологических процессов. При этом возникло противоречие между тем, что нужно от человека в процессе использования техники и тем, что человек имеет, а именно его знание, навыки, творческое мышление. Эти два антипода, один из которых есть творение рук человеческих, противостоят друг другу.

В процессе внедрения новой техники постоянно наблюдаются не только приобретения, но и потери:

– инвестора, создателей новой техники;

– экологические;

– в социальной среде;

– человеческие жертвы.

Аналитические методы анализа потерь, сопутствующих созданию и эксплуатации технических объектов и технологических процессов, всегда представляли и представляют интерес для инвесторов. Такой анализ производится часто как постфактум или де-факто, на различных этапах исполнения работ: научно-исследовательских, проектных, опытно-конструкторских; производства; эксплуатации.

Существуют попытки проводить такой анализ перед практической реализацией каждого из этапов с целью уменьшения потерь, а, следовательно, риска [1–5, 80, 81]. Эта задача сопряжена с прогнозом потерь (риска), решение которой чрезвычайно важно для человека во всех сферах жизнедеятельности. На этапе создания для оценки риска, как правило, используются математические модели, полученные в процессе научных исследований [6, 7]. Из-за несовершенства таких моделей, а именно из-за их погрешностей, как объекты, так и системы контроля и управления обладают погрешностями при реализации поставленных задач, что обуславливает потери на уровне технического исполнения, которые при этом, видоизменяясь, усиливаются. Потери, возникающие при создании и эксплуатации технических объектов, систем, технологических процессов есть технический риск.

Проблема анализа технического риска, а также управления его величиной, особенно важна в авиации, где экономичность и безопасность полетов всегда актуальны [9÷48].

Работа посвящена рассмотрению технического риска – векторной (многокомпонентной) величины, связанной со всеми этапами жизненного цикла самолета или вертолета, включающими в себя научно-исследовательский этап, в том числе в процессе создания новых систем на уровне изобретений, [49÷70]; проектирование (опытно-конструкторские работы) [71÷75]; производство; эксплуатацию [76÷79].

В монографии разработаны элементы анализа технического риска, который иллюстрируется на примере авиационной техники. В качестве основных рассматриваются потери, связанные с расходом топлива и потери, обусловленные авиационными происшествиями. С целью количественной оценки таких потерь вводятся вероятности. Для расчета указанных вероятностей приводятся математические модели, с помощью которых учитываются потери инвестора, связанные с разработкой, изготовлением, эксплуатацией новой авиационной техники.

При проектировании процесс управления риском исследуется на трех уровнях: ОКБ в целом; функциональные системы, агрегаты, блоки; узлы функциональной системы.

В качестве показателя потерь (риска) рассматриваются все издержки, связанные с перерасходом топлива и потери, обусловленные авариями, поломками, катастрофами авиационной техники. При этом анализируются следующие функциональные системы: оптимизации режимов пилотирования; предупреждения критических режимов, а также технологический комплекс производства ЛА. В систему оптимизации режимов пилотирования включена система контроля массы и центровки ЛА (вертолета) в полете.

Используя введенные в работе показатели технического риска, а также располагая расчетными погрешностями процессов проектирования конструкции ЛА и систем его насыщающих, подготовки производства, а также средств производства и технологий на всех этапах изготовления ЛА на достигнутом уровне научно-технического прогресса, был количественно оценен инвестиционный риск [6], связанный с выполнением технического (полетного) задания. В случае несоответствия полученной оценки требованиям сегодняшнего дня намечены первоочередные задачи в перевооружении технологической базы производства или применения (установки) принципиально новых систем управления ЛА, а также оптимального (с позиций экономики) перераспределения значений инвестиционного риска между средствами производства и бортовым оборудованием.

Такую задачу можно решить при наличии достаточно строгих математических моделей всей совокупности процессов, используемых при создании ЛА от начала его проектирования до достижения цели, например, максимальной (оптимальной) дальности полета. В случае отсутствия для какого-то этапа создания ЛА строгих математических моделей процессов необходимо иметь результаты экспериментальных (стендовых, трубных) исследований для ввода эмпирических соотношений в математические модели.

Для каждой функциональной системы разрабатываются необходимые математические модели, с помощью которых анализируется технический риск. Некоторые из рассмотренных систем были разработаны и внедрены с участием автора работы.

В монографии в большом объеме представлены материалы летных испытаний лопасти несущего винта вертолета Ми-8, связанные с измерением перепада давления в фиксированных точках zi – расстояние по размаху, xj – расстояние от носка профиля сечения лопасти. Представленные материалы получены в процессе апробации в натурных условиях систем измерения тяги несущего винта, осевой и продольной скоростей полета вертолета. Указанные материалы уникальны не только своим объемом, но и широтой охвата режимов, на которых они получены.

Приводится анализ и сравнение эксперимента с теорией. Этот материал использован автором монографии для построения таких систем контроля параметров вертолета, как вес G, тяга несущего винта Т, скорости Vx, Vz.

Проиллюстрируем технический риск, возникающий на этапе научно-исследовательских работ, на примере проекта «Икс Уинг». В 1975 г. управление авиационной техники и аппаратов на воздушной подушке (США) предложило проект скоростного винтокрылого аппарата «Икс Уинг» с останавливающимся несущим винтом и управляемой циркуляцией. Этот аппарат должен взлетать вертикально, как обычный вертолет, и по мере увеличения скорости горизонтального полета число оборотов несущего винта с управляющей циркуляцией должно было постепенно снижаться, а винт при Vx = 1010 км/час останавливаться, образуя Х – крыло с обратной стреловидностью.

Руководство и финансирование программой осуществляло управление перспективных исследований министерства обороны США. Проведенные фирмой «Локхид» с 1977 по 1982 г. работы воодушевили руководство NAСA. В результате был финансирован ряд других работ, в частности для воздушных мишеней; противолодочного винтокрылого аппарата.

Однако в 1988 г. в печати было отмечено недостаточно быстрое продвижение проекта «Икс Уинг», и по этой причине он был исключен из числа серьезных конкурентов в программе LHX. В результате проект был переведен в разряд НИР, и основной целью стало изучение аэродинамических характеристик несущей системы.

Затраченные на данную НИР финансы можно отнести к разряду потерь, если не полностью, то частично, т. е. имеет место риск инвестора, в данном случае управления перспективных исследований министерства обороны США.

Работа полезна инвесторам, конструкторам, а также студентам различных специальностей, изучающим проблемы инвестирования и инвестиционных рисков.

Глава 1. Показатели технического риска

1.1. Человеческий фактор

Во многих динамических системах человек-оператор был и остается основным звеном в системе контроля и управления. В наибольшей степени это касается таких систем, как «самолет – летчик». Задача оператора-летчика состоит в построении цели и выборе средств ее достижения путем преодоления внешних возмущений. При этом роль человека (летчика) состоит в адекватном отображении полетной ситуации с помощью систем отображения информации, формирования концептуальной модели режима полета, которая создается в его сознании путем анализа информационных потоков и знания моделей реакции ЛА на его управляющие воздействия [8].

На процесс управления, формируемый оператором, сказывается так называемый человеческий фактор, включающий в себя психические, умственные, физиологические, биомеханические, антропометрические и другие свойства человека. Под влиянием различных, в том числе человеческих, факторов могут возникать полетные режимы: штатный, особый, аварийный, критический. Штатный режим возникает, когда параметры xi управляемой динамической системы, подлежащие контролю и управлению, находятся в заданной или расчетной области, которую называют допустимой. Множество всех значений x1 из этой области обозначают Ωдоп. Все остальные ситуации характеризуются выходом параметров xl из области Ωдоп и называются особыми, в частности, аварийными или критическими. Возникновение последних приводит к летным происшествиям, в результате которых происходит полное или частичное разрушение ЛА с возможной гибелью пассажиров или членов экипажа.

Отметим, что в словаре Вебстера слово «риск» определяется как «опасность, возможность убытка или ущерба». В этом смысле особые ситуации, возникающие при полете ЛА, сопряжены с риском.

По оценкам специалистов особые ситуации в процессе эксплуатации ЛА на 20 % обусловлены техническими, а на 80 % – человеческими факторами [8]. Эти обстоятельства приводят к мысли о необходимости устранения человеческого фактора из контроля и управления ЛА. Однако устранить этот фактор невозможно, так как все технические системы любого уровня созданы человеком, и человеческий фактор всегда будет присутствовать в любой технической системе либо на уровне программ управления, либо на уровне технико-технологического совершенства.

Создавая автоматы, позволяющие исключить человека из контура контроля и управления ЛА, мы заменяем одни потери на другие, одни ошибки – другими, и величина потерь должна быть оценена по частоте их возникновения путем сравнения с выигрышем, выгодой. Таким образом, возникает оптимальная задача распределения функций контроля и управления между летчиком и автоматом, решение которой обеспечит максимальные выгоды.

Полет ЛА осуществляется, как правило, с помощью двух информационно-аналитических центров: ИАЦ-1 и ИАЦ-2. Информационно-аналитический центр человека (ИАЦ-1) рассмотрен в работе [8], где указаны следующие ему присущие ограничения: по объему оперативной и долговременной памяти; по скорости обработки информации; по точности обработки информации; по наличию зоны нечувствительности.

Под ИАЦ-2 будем понимать совокупность технических систем, подсистем, блоков, элементов, осуществляющих сбор и обработку информации с целью формирования управлений для достижения целей функционирования ЛА. До недавнего времени бортовое оборудование в авиации, как правило, не включало информационно-аналитический центр (ИАЦ-2).

ИАЦ-1 и ИАЦ-2 могут дополнять друг друга, в полете, тем самым, снижая стоимость бортового оборудования, расширяя область применения возможностей ЛА, что повышает выгоду от его использования. Что касается формирования управления, то ИАЦ-1 – система с заданными свойствами, которая обладает указанными выше ограничениями.

Параметры технической системы ИАЦ-2 можно выбирать и, причем оптимальным образом с учетом ограничений на ее возможности. Эту систему, в отличии от ИАЦ-1, мы можем создавать с нуля, в то время как ИАЦ-1 мы вынуждены воспринимать в основном уже созданной. Мы получаем два антипода, дополняющих друг друга. При этом параметры ИАЦ-1 можно изменять в достаточно широком диапазоне путем тренировок и обучения, однако основные физиологические параметры (быстродействие умственной деятельности, объем памяти и т. п.) мы не в состоянии существенно изменить.

Объединяя ИАЦ-1 и ИАЦ-2 в единый комплекс, мы получаем новый ИАЦ, который лишен недостатков ИАЦ-1 и ИАЦ-2, т. е. каждого в отдельности. Проектирование совместного комплекса связано с определенными трудностями, так как требует

– подбора (в процессе обучения по специальным программам) экипажа с наилучшими возможностями с позиции достижения минимального технического риска и со свойственными ему физиологическими свойствами и ограничениями, параметры которых задают некоторую область Ω1;

– проектирования самолета и двигателя как системы, свойства и параметры которых заполняют некоторую область Ω2, заданную инвестором;

– проектирования бортового оборудования под этот комплекс, способного обеспечить надежное (устойчивое, безопасное, оптимальное) состояние и достижение цели полетного задания в области Ω2, т. е. при расширении области Ω1 до Ω2.

При этом возможны различные ситуации, связанные с совместным проектированием комплекса с позиции минимизации потерь при эксплуатации, начиная от измерения параметров самолета и двигателя до разработки специальных для данного класса самолетов комплексов тренажеров, позволяющих осуществлять необходимую подготовку летчиков (доводку его ИАЦ-1 до необходимого состояния). По-существу, здесь рассматривается идея проектирования с максимальным использованием самого дешевого продукта для эксплуатации ЛА – человека.

В работе [8] рассмотрен частный подход к решению задачи выбора параметров комплекса (рис. 1.1) с использованием одного критерия, связанного с энтропией системы. В общем случае необходимо использовать тот критерий, который связан с выполнением цели и назначения данного класса ЛА. Так, например, при проектировании комплекса следует учесть необходимость исключения летчика из контура управления, когда на вход ИАЦ поступают процессы высокой скорости изменения по амплитуде и частоте. С этой целью необходим анализатор входных сигналов xi

– по амплитуде и удаленности его от Ωдоп;

– по скорости изменения xi;

– по количеству сигналов, которые могут достигнуть Ωдоп.

При этом необходимо осуществлять прогноз достижимости критической области [6].


Рис. 1.1


Несмотря на эти ограничения, рассмотренный подход может быть использован в качестве метода или методики в случае, если критерий уточнен, расширен в зависимости от целей и задач проектируемого ЛА, когда необходимо решать многокритериальные задачи.

1.2. Прибыль и убытки в технике

Прибыль и убытки в авиации, как и везде в технике, экономике, взаимосвязаны, взаимозависимы. Это антиподы, не существующие друг без друга. Таков основной закон среды жизнедеятельности. Как указано в работе [6]: риск – это ситуативная характеристика, представляющая собой величину потерь и частоту их появления, которая связана функционально с прибылью, полученной при этом.

В необходимости учета риска при разработке проекта (создания ЛА и его систем или организации эксплуатационного предприятия) заинтересованы следующие его участники: заказчик, инвестор, исполнитель, страховая компания. При анализе риска любого из участников проекта используются положения, предложенные американским экспертом Б.Берлимером:

– потери от рисков независимы друг от друга;

– потеря по одному направлению «портфеля рисков» не обязательно увеличивает вероятность потери по другому (за исключением форс-мажорных обстоятельств);

– возможный максимальный ущерб не должен превышать финансовые и другие возможности участника проекта.

При анализе характеристик риска выделим два взаимно дополняющих друг друга вида: количественный и качественный. Качественный анализ может быть сравнительно простым, его главная задача определить факторы, влияющие на риск, этапы и работы, при выполнении которых риск возникает. Количественный анализ сводится к численному расчету размеров отдельных компонент риска и риска проекта в целом. Этой проблеме посвящена данная работа.

Все факторы, так или иначе влияющие на рост величины риска в проекте, можно условно разделить на две группы: объективные и субъективные.

К объективным относятся факторы, независящие непосредственно от самой фирмы или авиационного комплекса: это инфляция (старение техники), анархия, политические и экономические кризисы, экология, таможенные пошлины, наличие режима наибольшего благоприятствования.

К субъективным относятся факторы, характеризующие непосредственно данную фирму, данный проект, данный авиационный комплекс; производственный потенциал, техническое оснащение, уровень предметной и технологической специализации, организация труда, уровень производительности.

При разработке нового ЛА или доработке старой модификации (путем установки нового бортового оборудования) возникают как взаимный интерес инвестора и конструкторского бюро, так и противоречия. Задача заказчика состоит в том, чтобы при минимальных затратах создать такой ЛА, который по основным показателям превысил бы известные ЛА. Задача конструкторского бюро в том, чтобы найти возможность удовлетворить требования заказчика. Как правило, не удается полностью достичь того, что хочет заказчик на те средства, которые он выделил. При этом эксплуатационники, а также пользователи услуг, страховые компании, организации типа IKAO требуют ЛА с заданной надежностью.

В качестве основного показателя, предъявляемого к ЛА, являются экономические показатели. Все остальные порождены этим показателем, за исключением показателя, который связан с человеческими жертвами. Так, например, такой показатель, как «регулярность» обеспечивает заданную величину отложенных полетов, учитывая их высокую стоимость. Показатель «безопасность» связан с расходами на поломку или восстановление техники, а также со страховыми выплатами. При этом по-существу из одного показателя экономичности был введен векторный показатель: экономичность, безопасность, регулярность. В последнее время к этим показателям добавился расход топлива.

Экономичность включает в себя чрезвычайно важную проблему авиастроения – оптимальное распределение стоимости производства конструкции ЛА и бортового оборудования, что обеспечивает получение максимальной прибыли при минимальных потерях.

При этом прибыль связана только с этапом эксплуатации, а потери с этапами разработки, производства, эксплуатации. Прибыль также существенно зависит от качества исполнения несущих аэродинамических поверхностей, в том числе от их свойств и возможностей, и от погрешностей δХ функционирования бортового оборудования. Чем выше возможность и меньше δХ, тем дороже самолет, тем большие издержки несет инвестор, которые могут не окупиться.

Введем общее расчетное (максимальное) количество полетов N, которые может совершить самолет за время Т. Пусть из-за погодных условий он не сможет совершить (при его низком показателе регулярности) n1 полетов. Из-за аварийных ситуаций он не завершит n2 полетов (в том числе поломок), а из-за недостоверной информации как бортового оборудования, так и средств управления воздушным движением – n3 полетов. Таким образом, полеты n0 = N – (n1 + n2 + n3) = N – n4 завершены благополучно и могут принести прибыль, а полеты n4 = n1 + n2 + n3 принесут убытки. Каждая из составляющих вектора = {n0, n1, n2, n4} несет в себе определенную информацию с позиции функционирования бортового оборудования:

n0 – выполнение поставленной цели;

n1 – невыполнение поставленной цели, при правильном функционировании систем контроля и управления бортовым оборудованием;

n2 – возникновение аварийных ситуаций, включая катастрофы, обусловленные превышением критических значений параметров состояния ЛА из-за погрешностей δx функционирования систем контроля бортового оборудования;

n3 – недостижение поставленной цели, в том числе отказ ее достижения из-за ложной информации систем контроля и средств управления воздушным движением.

Таким образом, убытки, а, следовательно, технический риск, обуславливают те же события, которые связаны с {n2, n3, n4}, из них {n3, n4} обусловлены погрешностями δx получения и обработки информации.

Качество системы управления и изготовления ЛА будем характеризовать ошибками выдерживания траектории Δx и, в частности дисперсией D(Δx) = σ21(Δx).

Если в качестве цели ставиться полет на дальность L, то в этом случае потери будем характеризовать частотой n2 – невыполнение полетов (в том числе по погодным условиям); безопасность характеризовать частотой n3; экономичность будем оценивать совокупностью {n2, n3, n4}, характеризующих потери в процессе эксплуатации; а с помощью n1 – прибыль, связанную с благополучным выполнением поставленной цели.

Для современной авиации характерны наперед заданные ограничения на компоненты потерь, связанные с безопасностью полетов, т. е. по-существу задана плата за риск эксплуатации и связанная с ним прибыль. Так, на посадке суммарный риск не должен превышать Р = 10–9. При этом предполагается, что современная авиация с современным оборудованием гарантированно имеет потери (убытки). Если абстрагироваться от реальности, то можно добиться от бортового оборудования такого функционирования, при котором нет катастроф, но стоимость такого самолета будет так высока, что доходы за счет n1 могут не покрыть эти расходы.

В общем случае количественные характеристики риска представляют векторные величины, а задача построения и прогноза их чрезвычайно сложна [6]. Таким образом, приступая к проектированию самолета, мы должны учитывать:

– затраты на создание и эксплуатацию;

– прибыль при эксплуатации;

– потери в процессе создания и эксплуатации.

В качестве примера рассмотрим техническую постановку задачи создания новых образцов авиационной техники.

Одной из основных задач, стоящих перед проектировщиками и разработчиками таких сложных и дорогостоящих технических систем, как авиационный комплекс, включающий: самолет и его бортовое оборудование; системы управления воздушным движением; аэродромные средства, является задача выбора и обоснования технических требований к комплексу, в которых отражалось бы целевое назначение его и которые соответствовали бы научно-техническому потенциалу разработчиков. При проектировании авиационного комплекса выбор технических требований к нему должен производиться исходя из целей и задач, стоящих перед проектировщиком самолета, в том числе и его бортовым оборудованием. Такие цели формулируются, как правило, на качественном уровне и позволяют судить лишь об общем направлении работ по созданию авиационного комплекса и его совершенствованию. Для обеспечения необходимой ясности и однозначности формулировок целей последние лучше задать в терминах характеристик авиационного комплекса. Для этого генеральную цель – выполнение самолетом полетного задания – приходится разбивать на совокупность более частных, зато более простых и конкретных подцелей, то есть проводить квантификацию целей. Такими подцелями являются обеспечение регулярности полета, его безопасности и экономичности.

Осуществив квантификацию, получают многоуровневое иерархическое дерево целей, на нижнем уровне которого оказывается полный набор измеримых целей. Для обеспечения полноты в набор целей нижнего уровня приходится включать цели, характеризующие различные стороны процесса функционирования системы. Дерево целей позволяет иметь полный перечень задач для подсистем любого уровня иерархии. При этом проектировщик формулирует технические задания для подсистем, в которых учитываются цели и задачи более высокого уровня.

Процесс квантификации целей завершен, когда получен набор количественно измеримых подцелей, связанных с показателями эффективности функционирования подсистем и системы, т. е. авиационного комплекса в целом. На практике обычно используется следующий, чисто эмпирический подход к построению показателей эффективности и оценке качества систем.

Из множества технических показателей систем авиационного комплекса лицо, принимающее решение, выделяет тот или те, которые, по его мнению, в наибольшей степени характеризуют соответствие системы заданному целевому назначению. Поскольку авиационный комплекс служит для обеспечения регулярности (R), безопасности (Б) и экономичности (Э) полета самолета, последние являются показателем эффективности авиационного комплекса. Отсюда следует, что задача проектирования авиационного комплекса заключается в том, чтобы создать такой авиационный комплекс, который обеспечивал бы самолету значения показателей регулярности, безопасности и экономичности его полета не хуже существующих, и при этом обеспечивал бы прибыль.

Таким образом, целью нового авиационного комплекса или совершенствования старого является, как следует из вышеизложенного, повышение регулярности, безопасности и экономичности полетов самолета. Как правило, реализация этой цели поддается экономической оценке, в результате чего могут быть получены зависимости


J1 = J1(ΔR, ΔБ, ΔЭ, Т), J2 = J2(ΔR, ΔБ, ΔЭ, Т),


где J1 – прибыль за время эксплуатации самолета, оснащенного таким авиационным комплексом; ΔR, ΔБ, ΔЭ – соответственно приращения показателей регулярности, безопасности и экономичности полета нового самолета по отношению к аналогичным показателям старого варианта самолета; J2 – затраты на создание авиационного комплекса; Т – время эксплуатации. Очевидно, что эффект от внедрения


ΔJ = J1 – J2. (11)


Рассмотрим вектор А параметров, полностью характеризующих авиационный комплекс. Тогда R = R(A); Б = Б(А); Э = Э(А), задача заключается в отыскании такого А = А*, при котором показатель (1.1) достигает максимальной величины на множестве значений ΔJ, на границах которого значения ΔJ достигают порога, характеризующего целесообразность создания авиационного комплекса. Таким образом, задача состоит в отыскании А = А*, удовлетворяющего условию


А* = min{J1(R(А), Б(А), Э(А)) – J2(R(А), Б(А), Э(А))}. (1.2)


В результате процесс проектирования авиационного комплекса сводится к построению алгоритма, с помощью которого устанавливается связь между свойствами вектора А* параметров авиационного комплекса и значениями R, Б, Э, а также метода нахождения А*, удовлетворяющего условию (1.2).

Предположим, что показатели регулярности, безопасности и экономичности полета представляют собой вероятности возникновения некоторых событий (например, особых ситуаций, опасных ситуаций, ложных срабатываний [6]). Предположим также, что алгоритм (метод) расчета эффекта J1 в зависимости от значений, указанных показателей известен. В качестве примера такого алгоритма рассмотрим алгоритм, устанавливающий зависимость между эффектом J1 и значениями показателя безопасности полета, под которым будем понимать вероятность или частоту особых ситуаций.

Пусть для всего парка самолетов заданного класса известно общее количество особых ситуаций, имевших место за заданный период времени. Это позволит определить экономические потери П*, обусловленные такими ситуациями. С другой стороны, предположим, что в результате проектирования будет создан такой авиационный комплекс, который обеспечит уменьшение особых ситуаций за тот же период времени, в результате чего потери от них составят величину П**. Тогда экономический эффект P1 от эксплуатации самолета-носителя, имеющего такой авиационный комплекс выразится следующим образом:


Р1 = П* – П**.


С учетом введенных предположений определение вектора А*, характеризующего авиационный комплекса и удовлетворяющего выражению (1.2), сведется к задаче определения затрат J2 на создание комплекса, обеспечивающего самолету значения показателей R, Б, Э полета не хуже заданных (требуемых).

Решение данной задачи может быть сведено к последовательному решению следующих двух задач: задачи синтеза структуры авиационного комплекса, обеспечивающего значения указанным показателям не хуже требуемых, и задачи определения затрат на создание авиационного комплекса, имеющего такую структуру.


Рис. 1.2


В простейшем случае процесс создания нового ЛА или совершенствования старого связан с инвестором (рис. 1.2). Как правило, инвестор, стремясь получить максимальный доход, заказывает КБ проектирование нового самолета с характеристиками R, Б, Э. Назовем их условно характеристиками идеального самолета. В силу ограниченных возможностей КБ создает вариант самолета с характеристиками (R1, Б1, Э1); назовем его проектный вариант ЛА. На последней стадии создания, на стадии производства все изменяется, и мы получаем ЛА с характеристиками (R2, Б2, Э2). Назовем такой самолет реальным или фактическим. В результате идеальный доход (Dн), на который рассчитывал инвестор не получился и стал равен некоторому фактическому значению Dф. В случае, если расхождение ΔD = Dн – Dф велико, в КБ проводятся исследования, направленные на поиск наилучшего соответствия между ΔD и стоимостью оборудования, необходимого для его уменьшения (рис. 1.3).


Страницы книги >> 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации