Электронная библиотека » Владимир Живетин » » онлайн чтение - страница 3


  • Текст добавлен: 13 августа 2015, 18:30


Автор книги: Владимир Живетин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 21 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
1.1.4. Человеческий фактор в летных происшествиях. Пути нейтрализации ошибок

В соответствии с результатами статистических исследований, проводимых в США, в настоящее время надежность пилота как оператора сложного человеко-машинного комплекса очень приближенно может быть оценена показателем: 4 ошибочных действия на 1 млн выполненных операций. Если предположить, что в течение каждого полета экипаж выполняет около 20 важных операций, неправильное выполнение которых может инициировать развитие опасных ситуаций, то, связывая эти величины с достигнутым в настоящее время уровнем безопасности в США (2,3 катастрофы на 1 млн полетов) и долей человеческого фактора в общем числе причин катастроф (75 %), нетрудно получить еще одну приближенную оценку, что 2 из каждых 100 ошибочных действий экипажа воздушного судна приведут к катастрофам.

В наибольшей степени человеческий фактор проявляется в летных происшествиях, связанных с потерей пространственного положения, сваливанием, превышением установленных предельных ограничений (15 % от общего количества катастроф), а также связанных со столкновениями исправных воздушных судов с возвышенностями (также 15 % катастроф за период с 1958 по 2001 год). Основными причинами таких происшествий являются:

– неумение экипажей выводить самолет из сложного пространственного положения;

– неумение экипажей распознавать ненормальную работу пилотажно-навигационного комплекса;

– отсутствие контроля за параметрами полета в процессе возникновения и развития особой ситуации;

– неправильная работа с функциональными системами самолета, в том числе:

– невключение авиагоризонтов перед взлетом;

– невключение обогрева приемников полного давления;

– запрещенная перекачка топлива в полете из одной группы баков в другую;

– пропуск операций (невыпуск закрылков перед взлетом, нерасстопоривание рулей перед взлетом, невключение реверса тяги двигателей на посадке, невключение противообледенительной системы в условиях обледенения);

– неправильное выполнение операций (неправильный ввод координат радиомаяка в вычислитель бортовой навигационной системы);

– непреднамеренное включение или выключение той или иной функциональной системы в полете (выпуск интерцепторов на взлете, включение реверса тяги двигателя в воздухе, выключение питания авиагоризонта и др.).

Следует отметить огромное значение психоэмоционального фактора в стрессовых ситуациях, которые возникают в процессе полета при неполадках, угрожающих опасной ситуацией и тем более катастрофой. При этом разрушаются стереотипы управления экипажем воздушного судна, наработанные в процессе обучения и полетов. Возможно, это является основной причиной того, что доля негативного влияния человеческого фактора на уровень безопасности полетов (75–80 %) долгие годы сохранялась во всем мире независимо от степени совершенства системы обучения.

Согласно рекомендации Международного авиационного комитата по расширению комплекса технических средств, позволяющих свести к минимуму влияние перечисленных выше ошибочных действий экипажей воздушных судов, сюда относятся:

– усовершенствованные световые и звуковые сигнализаторы режимов работы систем и выхода параметров за ограничения;

– расширенная номенклатура бортовых устройств, подсказывающих экипажу необходимость выполнения определенных действий;

– блокировки, предотвращающие неправильное использование систем;

– активные средства вмешательства в парирование особых ситуаций.

Программные мероприятия, направленные на снижение негативного влияния человеческого фактора на безопасность полетов:

а) раннее предупреждение экипажа о возможности столкновения воздушного судна с землей за счет использования спутниковых навигационных систем и цифровых трехмерных карт местности;

б) раннее предупреждение экипажа о возможности потери воздушным судном пространственной ориентации (в том числе о возможности сваливания) за счет более совершенных алгоритмов обработки информации по сравнению с реализованными в штатных системах типа автомата углов атаки и сигнализации перегрузок (АУАСП) и системы предупреждения критических режимов (СПКР), учета факторов, характеризующих конкретные условия полета;

в) измерение массы и центровки воздушного судна на стоянке и в полете;

г) автоматический контроль параметров разбега и взлета (скорости, ускорения, пройденного на взлетно-посадочной полосе расстояния) с выдачей сигнала на прекращение взлета при их несоответствии нормативным значениям;

д) организация в рамках интегрированного комплекса авионики бортовой электронной библиотеки (электронное руководство по летной эксплуатации) с функцией автоматического контроля правильности выполнения экипажем нормативной последовательности операций по управлению воздушным судном на всех этапах полета;

е) блокировка операций по управлению воздушным судном, которые могут привести к развитию осложненных ситуаций в катастрофические (например, блокировка отключения нормально работающих двигателей при отказе или пожаре в одном из двигателей);

ж) предоставление экипажу воздушного судна информации, предупреждающей об опасности в более эффективных форматах, например замена штатной сигнализации АУАСП и СПКР на комплексную визуально-звуковую (в том числе речевую) сигнализацию с нарастающей интенсивностью по мере развития опасной ситуации, а также с сообщением о лимите времени до возможного катастрофического финала и с выдачей команд по его предотвращению.

Сваливание есть один из основных факторов, когда роль пилота в предотвращении сваливания очень важна. Приведем причины сваливания.

1. Наиболее часто возникают катастрофы по причине сваливания на этапах:

– взлета;

– посадки.

2. Факторы, обусловливающие сваливание:

– вертикальные потоки большой мощности на обе или одну несущую поверхность;

– резко изменяется состояние поля сил аэродинамического давления и соответственно аэродинамические силы на несущих поверхностях ЛА.

3. Не все параметры траектории, изменяющиеся в процессе сваливания, когда реализуется пространственное движение, контролируются бортовым комплексом.

Так, информация J, поступающая пилоту, включает: θ, γ, β, ωx, ωy, ωz, однако угол атаки при этом не контролируется.

На следующих этапах формируются погрешности контроля и управления.

4. Полученная пилотом информация характеризует пространственное положение ЛА, а у него есть четыре органа управления: δрв, δэ, δрн, δдв, которые могут изменять аэродинамические силы несущих поверхностей, т. е. предотвращать сваливание.

5. Одновременно на информацию Jф, получаемую пилотом от приборов, накладываются его собственные ощущения в виде информации Jизм о пространственном состоянии ЛА, формируемой его органами и анализируемой его интеллектуальной системой.

В итоге формируются ошибки восприятия информации, роль которых в авиационных происшествиях следующая:



6. На следующем этапе реализуется синтез цели, которую пилот создает для предотвращения сваливания. Синтез формируется разумом [16], представляющим собой биокомпьютер с соответствующей программой, формирующей образные пространственные модели взаимосвязи Jф(Jизм) и поля сил аэродинамического давления путем синтеза. Эта процедура реализуется практически мгновенно в силу свойств разума пилота. Однако формирование процедуры управления реализуется с ошибкой, роль которой в авиационных происшествиях приведена в таблице 2 [15].



7. На следующем этапе предотвращения катастрофы пилот посредством аналитического ума (рассудка) формирует решение (анализ): каким органом управления, в какую сторону и на какую величину необходимо среагировать. Формируемая при этом ошибка, обусловливающая катастрофу, возрастает. Дело в том, что время запаздывания реакции аналитического ума в 30 000 раз превышает запаздывание разума. Кроме того, процесс анализа от разума сложнее для пилота, чем синтез. Это обусловлено уровнем его теоретических и практических знаний в области аэродинамики и динамики полета самолета.

Ошибки, связанные с выработкой ошибочных решений, и их роль в различных авиациях приведены в таблице 3.



Таким образом, в критической ситуации, исходом которой может быть катастрофа, летчик выполняет множество функций согласно своей интеллектуальной системе: целеполагания; целедостижения; целереализацию; целеконтроль. Интегральный комплекс бортового оборудования осуществляет контроль состояния воздушного судна на докритических режимах достаточно точно, а на критических режимах – с недопустимо большими погрешностями. В области критических состояний воздушного судна летчик, по существу, один на один со стихией. При этом они протекают достаточно быстро, а разнообразие параметров, характеризующих критические ситуации, велико.

Возможности интеллектуальной системы пилота в катастрофической ситуации:

– разум мгновенно оценивает ситуацию и формирует цель (время оценки примерно 0,0001 с);

– аналитический ум (рассудок), реализующий цель в виде команд на отклонение δрв, δдв, δэ, δрн, одной или в комбинации срабатывает в 30 000 раз медленнее, чем разум, т. е. за время ~3 с.

Полет ЛА осуществляется, как правило, с помощью двух информационно-аналитических центров: ИАЦ-1 и ИАЦ-2 (рис. 1.4). Информационно-аналитический центр человека (ИАЦ-1) рассмотрен в работах [14, 16], где указаны следующие ему присущие ограничения: по объему оперативной и долговременной памяти; по скорости обработки информации; по точности обработки информации; по наличию зоны нечувствительности.

Под ИАЦ-2 будем понимать совокупность технических систем, подсистем, блоков, элементов, осуществляющих сбор и обработку информации с целью формирования управлений для достижения целей функционирования ЛА.


Рис. 1.4


ИАЦ-1 и ИАЦ-2 могут дополнять друг друга в полете, тем самым снижая стоимость бортового оборудования, расширяя область применения возможностей ЛА, что повышает выгоду от его использования. Что касается формирования управления, то ИАЦ-1 – система с заданными свойствами, которая обладает указанными выше ограничениями.

Параметры технической системы ИАЦ-2 можно выбирать и причем оптимальным образом с учетом ограничений на ее возможности. Эту систему, в отличие от ИАЦ-1, мы можем создавать с нуля, в то время как ИАЦ-1 мы вынуждены воспринимать в основном уже созданной. Мы получаем два антипода, дополняющих друг друга. При этом параметры ИАЦ-1 можно изменять в достаточно широком диапазоне путем тренировок и обучения, однако основные физиологические параметры (быстродействие умственной деятельности, объем памяти и т. п.) мы не в состоянии существенно изменить.

Объединяя ИАЦ-1 и ИАЦ-2 в единый комплекс, мы получаем новый ИАЦ, который лишен недостатков ИАЦ-1 и ИАЦ-2, т. е. каждого в отдельности. Проектирование совместного комплекса связано с определенными трудностями, так как требует:

– подбора (в процессе обучения по специальным программам) экипажа с наилучшими возможностями с позиции достижения минимального технического риска и со свойственными ему физиологическими свойствами и ограничениями, параметры которых задают некоторую область Ω1;

– проектирования самолета и двигателя как системы, свойства и параметры которых заполняют некоторую область Ω2, заданную инвестором;

– проектирования бортового оборудования под этот комплекс, способного обеспечить надежное (устойчивое, безопасное, оптимальное) состояние и достижение цели полетного задания в области Ω2, т. е. при расширении области Ω1 до Ω2.

При этом возможны различные ситуации, связанные с совместным проектированием комплекса с позиции минимизации потерь при эксплуатации, начиная от измерения параметров самолета и двигателя до разработки специальных для данного класса самолетов комплексов тренажеров, позволяющих осуществлять необходимую подготовку летчиков (доводку его ИАЦ-1 до необходимого состояния). По существу, здесь рассматривается идея проектирования с максимальным использованием самого дешевого продукта для эксплуатации ЛА – человека.

В работах [14, 16] рассмотрен частный подход к решению задачи выбора параметров комплекса (рис. 1.4) с использованием одного критерия, связанного с энтропией системы. В общем случае необходимо использовать тот критерий, который связан с выполнением цели и назначения данного класса ЛА. Так, например, при проектировании комплекса следует учесть необходимость исключения летчика из контура управления, когда на вход ИАЦ поступают процессы высокой скорости изменения по амплитуде и частоте. С этой целью необходим анализатор входных сигналов xi:

– по амплитуде и удаленности его от Ωдоп;

– по скорости изменения xi;

– по количеству сигналов, которые могут достигнуть Ωдоп.

При этом необходимо осуществлять прогноз достижимости критической области [11].

Несмотря на эти ограничения, рассмотренный подход может быть использован в качестве метода или методики в случае, если критерий уточнен, расширен в зависимости от целей и задач проектируемого ЛА, когда необходимо решать многокритериальные задачи.

1.2. Поле сил аэродинамического давления как источник опасных и безопасных состояний самолета
1.2.1. Аэродинамические системы. Структурно-функциональные свойства аэромеханического контроля

Динамические системы, создающие аэродинамические силы и моменты для достижения заданной цели, будем называть аэродинамическими системами. Сюда относятся: самолеты, вертолеты, крылатые ракеты. Аэродинамические системы – это объекты, наделенные аэродинамическими характеристиками, определяющими принцип их функционирования, в том числе возможность, безопасность и экономичность их реализации. Таким образом, мы выделяем особый тип объектов, обладающих заложенным в него при его создании особым способом реализации цели – путем создания поля сил аэродинамического давления (ПСАД), которое контролируется и управляется так, чтобы отклонение от цели в каждый момент времени его параметров траектории было минимальным.

Из всех динамических систем, созданных и эксплуатируемых человеком, наиболее сложной является самолет. Проблема риска и безопасности для этого класса динамических систем была и остается наиболее актуальной. Аэродинамические системы, включающие: крыло, горизонтальное и вертикальное оперения, руль высоты, руль направления, элероны, закрылки, предкрылки, обладают определенной для этого класса динамических систем структурой, приведенной на рис. 1.5. На рис. 1.5 приведены следующие обозначения:

Lp, mp – расчетные дальность полета и масса самолета;

Lф, mф – фактические дальность полета и масса самолета соответственно;

Lизм, mизм – измеренные дальность полета и масса самолета;

ρ – плотность воздуха;

Wx, Wy, Wz – проекции вектора скорости ветра на оси, связанной с самолетной системой координат.

На рис. 1.5 представлена структура аэродинамической системы на макроуровне. Каждая из четырех подсистем (1–4), включенных в структуру, включает системы на микроуровне, функциональные свойства которых необходимо контролировать и поддерживать на заданном уровне. В противном случае происходит потеря функциональных свойств, и в итоге динамическая система не способна выполнять поставленную цель.

Особая роль принадлежит подсистеме 2 реализации цели, включающей конструкции несущих поверхностей. Конструкция несущих поверхностей выполняет одну из основных компонент реализации цели – создает поле сил аэродинамического давления, обеспечивая целевое перемещение самолета в пространстве. При этом конструкция, двигатель и бортовое оборудование обладают необходимыми свойствами.


Рис. 1.5


Создав ПСАД, конструкция самолета воспринимает необходимые для реализации целевого перемещения самолета силы и моменты. Особенности конструкции несущих поверхностей отвечают особенностям целевого назначения данного самолета. В свою очередь особенности конструкции порождают особенности структуры поля сил аэродинамического давления, переменного во времени и в пространстве. Взаимодействие конструктивных характеристик и создание ими в полете характеристик ПСАД обусловливают необходимость управлять и ограничивать аэродинамические силы и моменты, следовательно управлять ПСАД.

Рассмотрим роль и место ПСАД на качественном структурно-функциональном уровне в системе аэромеханического контроля и управления векторами аэродинамических сил R = (X, Y, Z) и моментом M = (Mx, My, Mz), где X, Y, Z – проекции вектора аэродинамической силы на связанные с самолетом оси координат; Mx, My, Mz – проекции вектора аэродинамического момента на связанные с самолетом оси координат.

На рис. 1.6 представлена структура физической модели процессов образования, контроля и управления полем сил аэродинамического давления с целью реализации заданной траектории движения. Отметим, что для управления полетом (движением) самолета необходимо знать результирующие аэродинамические силы и моменты, которые реализуются в процессе силового взаимодействия воздушной среды и самолета при разных скоростях и направлениях его движения.

В полете для управления, т. е. формирования потребных величин R и М и соответствующих им фактических параметров траектории движения xф = (x1,…,xn)ф, производится контроль фактических значений Rф и Мф и сравнение их с теоретическими (потребными) значениями RТ и МТ. При этом нам необходима информация о процессах хф, посредством которой формируются потребные углы отклонения органов управления с целью компенсации отклонения Rф, Мф от RТ, МТ. С помощью современных средств возможно измерение x*(t) = xизм = хф + δx*, где δх* – погрешности измерения х*. При этом достоверный контроль x(t) с помощью современных средств возможен только в горизонтальном установившемся полете, когда xx*.


Рис. 1.6


Чем дальше мы уходим от установившегося горизонтального полета, тем больше возникает отличие х* от х, тем больше имеют место погрешности в оценке аэродинамических сил R и моментов М.

На рис. 1.6 имеют место следующие соотношения:

1) измеренные значения аэродинамических сил:


R(1)изм = Rф + δRм + δRи; R(2)изм = Rф + δRи,


где δRм, δRи – погрешности измерения R методические и инструментальные соответственно;

2) фактические значения аэродинамических сил и моментов:


Rи = Rт + δR*м; Мф = Мт + δМ*м,


где δRм, δМ*м – методические погрешности, обусловленные несоответствием методов и средств идентификации R и М в полете;

3) x = (α,β,Vв,…) = (x1,x2,x3,…);

4) y(t) = (Hg,Xg,Yg,Zgхyz,…) = (у1, у2, у3,…),

где Hg, Χg, Yg, Ζg – высота полета и проекции положения координаты центра тяжести самолета на земные оси координат OXд, OYд, OZд соответственно; ωx, ωy, ωz – угловые скорости вращения самолета относительно осей OX, OY, OZ связанной системы координат;

5) ,

где Δx(·) – отклонение параметров возмущенного потока х* от параметров невозмущенного потока х; h – расстояние от несущих поверхностей самолета, измеренное, например, по нормали; – точка на несущей поверхности самолета;

6) Ωдоп(x) = Ωдоп(x*) + δΩдоп,

так, например, для угла атаки получим αдоп(x) = αдоп(x*) + δα;

7) Ωкр(x) = Ωкр(x*) + δΩкр.

При этом, начиная с некоторого расстояния h от несущих поверхностей, параметры потока получают возмущение, и при приближении к несущим поверхностям они увеличиваются, максимальная величина их достигается на поверхности, например, крыла. Таким образом, в системе аэромеханического контроля решается обратная задача – аэродинамическая. Здесь задано поле аэродинамического давления P(S,h,t), его величина в ограниченном числе точек на поверхности S; требуется определить параметры х невозмущенного набегающего потока. Отметим, что прямая задача связана с определением поля аэродинамического давления (сил и моментов), если известны параметры невозмущенного потока, в которое погружены несущие аэродинамические поверхности.

Согласно отмеченному в п. 1, система управления получает на вход с выхода двух систем контроля величины R(1)изм и R(2)изм, отличающиеся на методическую погрешность функционирования систем контроля Rм. Система управления обеспечивает RT = R(1)изм и RT = R(2)изм. В первом случае получаем Rф = RТ + (δRм + δRи), во втором – Rф = RТ + δRи. Величина методической погрешности δRм, как правило, существенно больше δRи. По этой причине погрешности управления существующих систем контроля и управления больше.

Для реализации безопасного полета необходимо организовать такое взаимодействие конструкции, обладающей соответствующими характеристиками, и созданного ею ПСАД, при которых выполняется поставленная цель. Особая роль принадлежит подсистеме 3 (рис. 1.5), посредством которой формируется ПСАД для реализации заданной цели на макроуровне, включая: реализацию траектории движения, обеспечение устойчивости, управляемости, реализацию управлений. Структура подсистемы 3 практической реализации цели представлена на рис. 1.7. Здесь обозначено: хдоп – допустимое значение х; xi(3) – заданное значение параметра хi.

Контролю и управлению подлежит совокупность параметров, включающих:

1) параметры, характеризующие цель (например, дальность полета L, высоту полета Н, скорость полета V и т. п.);

2) параметры траектории, с помощью которых задаются области допустимых или безопасных ее состояний (α, V, ny, ωx, ωy, nx, …), где nx, ny – проекции вектора перегрузки на оси ОХ, OY соответственно;

3) параметры траектории полета, используемые при оптимизации эффективности применения техники.


Рис. 1.7


Два основных фактора – поле сил аэродинамического давления и связанный с ним вектор тяги двигателя – задают фактические значения параметров траектории. Проблема контроля над состоянием ЛА связана с контролем над состоянием поля аэродинамического давления на несущих поверхностях, дабы предотвратить:

– разрушение конструкции;

– выход в область критических режимов полета.

Согласно приведенной структуре с функциональными свойствами подсистем Ф1, Ф2, Ф3, Ф4, для того чтобы аэродинамическая система способна была осуществлять реализацию заданной цели, она должна содержать из области допустимых значений такие показатели, как:

– идентифицируемость (α1);

– управляемость (α2);

– наблюдаемость (α3);

– устойчивость (α4): устойчивость во внешней среде, т. е. траекторию (α41); устойчивость во внутренней среде (α42).

Таким образом, имеют место следующие допустимые множества, порожденные αi α:


Ωдоп = Ωдоп1234);

Ω(1)доп = Ω(1)доп41); Ω(2)доп = Ω(2)доп42); Ω(3)доп = Ω(3)доп43).


При этом имеют место три уровня допустимых состояний аэродинамической системы:

– область допустимых состояний Ω(1)доп есть множество значений х, в которой соблюдается устойчивость фазовых траекторий;

– область Ω(2)доп, в которой соблюдается функциональная устойчивость подсистем аэродинамической системы;

– область Ωдоп, в которой реализуется структурная устойчивость аэродинамической системы, обеспечиваемая прежде всего ресурсным потенциалом всех ее подсистем.

Представим области допустимых состояний для аэродинамической системы в явном виде, задав их в виде неравенств.

I. Параметры траектории полета х = (х1,…,х7) включают нижеследующие.

Дальность полета х1 = L(Т) ≥ Lз, где Lз – заданная дальность полета; Т – время полета. При этом Lз = Lз(H3,V3,q33,n3y,M3,m3); Lф = Lф(Hф,Vф,qф,αф,…) – фактическая дальность полета; Hф, Vф,… – фактические значения параметров траектории; Hз, Vз,… – заданные значения параметров траектории; – скоростной напор; nзy – заданная величина перегрузки.

Высота полета х2 = Нф (рис. 1.8): Н1НФН2, где Н1, Н– минимально и максимально допустимые значения высоты полета.

Скорость полета х3 = Vф > Vдоп.

Скоростной напор , где ρ – плотность воздуха на высоте полета.

Число Маха х5 = МфМдоп.

Угол атаки крыла х6 = α: α1 ≤ αф ≤ α2.

Перегрузка x7 = n по вертикальной оси



где Y, Pр, α – подъемная сила, тяга двигателя, угол атаки соответственно.

В общем случае: α1, α2, Н1, Н2, Vдоп, qдоп, Mдоп, nу доп – функции таких параметров траектории, как скорость полета V, высота полета Н, число Маха.


Рис. 1.8


II. Устойчивость возмущенного движения.

Область Ω(1)доп устойчивости возмущенного движения в первом приближении строим, используя линеаризованные уравнения движения вида = Ах, где А = [aij]nxn – матрица с постоянными элементами аij. При этом должно соблюдаться неравенство mijaijMij, где mij, Mij зависят от конструктивных параметров аэродинамических поверхностей, создающих ПС АД; aij = f(B,X0), где В – конструктивные параметры самолета, характеризующие его внутренние свойства; Х– начальные значения параметров траектории.

Взаимосвязь аij и (B,X0) устанавливается следующим способом: аij такое, что γS < λ0 , где λ0 – некоторое заданное отрицательное число, а γS = λS; λS – корни характеристического уравнения (в общем случае комплексные) для матрицы А, при этом



Когда скорость полета возрастает, вещественная часть одного из λS → 0 и становится при некоторой Vкр равной нулю. Тогда самолет становится неустойчив, т. е. покидает область допустимых состояний.

III. Параметры управляемости, обусловленные свойствами ПСАД (качество переходного процесса).

Допустимая величина перерегулирования по перегрузке а1 = maxΔny(t), t [0,T], должна удовлетворять следующему неравенству:


a12a1a11,


где а12, а11 – заданные величины из условия прочности и быстродействия.

Время tср срабатывания автомата по перегрузке, при котором впервые выполняется равенство:


Δny = (1 – εn)(Δny)уст,


где (Δny)уст – приращение перегрузки nу в установившемся движении; εn > 0, заданная малая величина, должна принадлежать об-ласти допустимых значений Ωдоп, удовлетворяя неравенству


(tср)2tср ≤ (tср)1,


где (tср)1, (tср)2 – заданные величины.

Время tn переходного процесса по перегрузке попадания Δny в «трубку» | Δny – (Δny)уст | ≤ εn, где εn > 0 – заданная величина. На tn налагается ограничение tn ≤ (tn)max.

Применение информации о поле сил аэродинамического давления в системах контроля и управления особенно необходимо при полете:

1) на малой высоте, при взлете или посадке в условиях резкой смены направления ветра:

– со встречного на попутный;

– с нисходящих потоков на восходящие;

2) в условиях, когда возможно сваливание с переходом в штопор, например при пространственных маневрах;

3) в условиях пространственного неустановившегося движения высокоманевренных самолетов с целью обеспечения безопасности;

4) в условиях существенного изменения массы и центровки самолета с целью обеспечения оптимального расхода топлива и безопасности полета.

Отметим особенности обеспечения безопасности полета параметров траектории, зависящих от ПСАД. Создавая системы контроля, человек всегда шел по пути их упрощения. Так, например, с целью предотвращения критических значений поля сил аэродинамического давления на несущих поверхностях он измерял угол отклонения флюгарки и скорость полета с помощью приемника воздушного давления (ПВД), обеспечивая тем самым минимальные затраты на систему контроля.

Все это было возможно на заре авиации. Дело в том, что такие средства контроля, как флюгарик, ПВД измеряют локальный угол атаки и скорость (α*, V*) вне поля сил аэродинамического давления, т. е. когда х не принадлежит области Ω, в которой действует давление Р, подлежащее контролю, управлению и ограничению. В связи с этим (α*,V*) = х Ω(Р) и отличается от (α,V) = y Ω(P) на величину Δx = x y. При этом у – это истинные значения (α,V), а х – измеренные, обладающие методическими погрешностями δxм. Эти погрешности стремятся к нулю, когда ЛА совершает установившееся горизонтальное движение. Во всех остальных режимах δxм ≠ 0 и достигает максимальное значение в неустановившемся пространственном движении. Было совершено множество исследований по созданию модели учета возмущающих факторов от поля аэродинамического давления, создаваемого самолетом в пространстве на показания флюгарика и ПВД. Пока эти исследования привели к невозможности учета влияния и компенсации методических ошибок, создаваемых при контроле с помощью ПВД и флюгарика.

Таким образом, ограничение параметров траектории самолета хi (обеспечение безопасности полета) состоит не только в разработке средств контроля хi и управления, но и в учете погрешностей средств контроля, уменьшения их, поскольку уменьшение δxi обусловливает расширение области допустимых значений хi, т. е. Ωдоп(xi).

Целесообразность разработки и применения систем аэромеханического контроля широко просматривается в современной авиации:

– контроль над массой и положением центра масс, например, транспортных самолетов;

– контроль над тягой несущего винта вертолета, например, при взлете и посадке в горах; контроль над минимальной скоростью вертолета при посадке;

– обеспечение минимального расхода топлива на различных режимах полета;

– контроль над флаттерным режимом крыла, управление с целью увеличения скорости полета.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации