Текст книги "100 знаменитых изобретений"
Автор книги: Владислав Пристинский
Жанр: Публицистика: прочее, Публицистика
сообщить о неприемлемом содержимом
Текущая страница: 46 (всего у книги 47 страниц)
Колесо Пельтона применялось при очень больших напорах и малых количеств воды, когда другие турбины работают с низким КПД. В нем нет каналов, по которым протекает вода, а имеются лишь ковшеобразные лопатки на рабочем колесе, подвергающиеся непосредственному действию воды. Колесо Пельтона является свободноструйной, или ковшовой, турбиной. Она является парциальной, так как вода в любой момент времени действует на небольшое число лопаток. На самые нижние точки колеса бьет струя воды из сопла. Мощность струи регулировалась сначала язычковым затвором, а затем особым шпинделем, входящим в сопло. Колесо Пельтона может приводиться во вращение действием нескольких струй, выходящих из сопел, расположенных особым образом.
К началу XX в. в основном применялись два типа турбин: радиально-осевая реактивная турбина и колесо Пельтона. После опытов, поставленных во время Лауффен-Франкфуртской выставки 1891 г. началась новая эра в производстве электроэнергии на гидроэлектростанциях. Для характеристики водяных турбин был введен коэффициент быстроходности, равный числу оборотов данной турбины при напоре 1 м и мощности 1 л. с. В первых радиально-осевых турбинах он равнялся 60–70, а к концу XIX в. возрос до 320. Для повышения коэффициента быстроходности стремились распределить мощность между несколькими рабочими колесами. Появились горизонтальные и вертикальные турбины сдвоенного типа. В 1914 г. Дубе доказал, что при значительном увеличении зазора между направляющим аппаратом и рабочим колесом и одновременном уменьшении длины лопаток рабочего колеса можно довести этот коэффициент до 500 в несдвоенной турбине. Но при рабочем колесе с неподвижными лопатками при этом снижался КПД.
Решительный прогресс в отношении коэффициента быстроходности был достигнут в 1914–1916 гг., когда В. Каплан (Чехословакия) осуществил радиальный подвод воды в направляющий аппарат и осевое прохождение воды через рабочее колесо при большом зазоре между направляющим и рабочим колесами.
Гидравлические турбины, предложенные Капланом для низконапорных установок, в процессе своего развития прошли две формы. Вначале в этой турбине между выходными ребрами направляющего аппарата и входными ребрами рабочего колеса имелось большое незанятое пространство, лопатки были очень короткими в направлении движения воды, водный поток в турбине имел большую свободу, чем в других турбинах, и уменьшались гидравлические потери, что приводило к повышению коэффициента быстроходности. Стремясь устранить детали, усложняющие прохождение воды через рабочее колесо, Каплан в 1916 г. предложил турбину без обода и придал рабочему колесу форму судового гребного винта. Коэффициент быстроходности достиг 1000, КПД при полном подводе воды к турбине равнялся 0,8–0,82. Но испытания показали, что при неполном подводе воды к рабочему колесу КПД резко падает. После этого был предложен поворотный тип лопаток рабочего колеса. Поворот лопаток вначале регулировался вручную, а затем был автоматизирован. Турбины этого типа называются поворотнолопастными. Поворотнолопастные турбины, применяемые на напоры до 150 м, могут быть осевыми и диагональными.
Радиально-осевые гидротурбины применяют на напоры до 500–600 м. Из активных гидротурбин чаще всего используют ковшовые и применяют на напоры выше 500–600 м.
Паровую турбину впервые создал Герон Александрийский. Устройство, названное им «эолипил», действовало на реактивном принципе. Реактивная сила пара, вытекавшего из согнутых трубок (сопел), приводила во вращение шар, закрепленный на оси.
Прообразом современных паровых турбин стала модель паровой турбины, построенная в XVI в. итальянцем Бранка. Она состояла из бачка с водой, под которым находилась горелка. При нагревании струя пара, поднимаясь по специальной трубке-соплу, попадала на лопатки, укрепленные на диске, и вращала диск.
Попытки построения паровых турбин, основанных на реактивном принципе, осуществил в 1791 г. Садлер. Опыты Сен-Венана и Вантцеля над истечением пара показали наличие больших трудностей в постройке паровой турбины, связанных с высокими скоростями пара. Открытое при эксплуатации гидравлических турбин рациональное отношение между скоростями движущей среды и лопатками турбины показало, что паровая турбина может эффективно работать только при очень высоких оборотах.
Таким образом, при разработке паровых турбин были два возможных пути: снижение числа оборотов паровых турбин без потери КПД и разработка конструкций, способных работать при большом числе оборотов.
Первое направление заключалось в применении многоступенчатой турбины. Этот принцип описал в 1853 г. Турнер.
Кроме него многоступенчатый принцип предложили Жирар в 1855 г., Перриго и Фарко в 1864 г., Эдвардс в1871 году.
Развитие паровых турбин началось с появлением электроэнергетики. Ряд принципиальных вопросов в их конструировании разрешил в своих трудах шведский инженер Г. П. Лаваль. Он был сторонником увеличения числа оборотов технических агрегатов. В конструкции первого сепаратора непрерывного действия в 1878 г. он применил большое число оборотов (6000–7000 в минуту). Для непосредственного привода своего сепаратора Лаваль в 1883 г. предложил сначала простейшую турбину в виде героновского эолипила. Стремясь повысить КПД турбины, Лаваль в 1889 г. изобрел расширяющееся сопло, носящее сейчас его имя. Оно позволяет понизить давление пара ниже критического, сообщив ему при этом сверхзвуковую скорость. Сопло Лаваля позволило повысить начальное давление пара и увеличить экономичность парового двигателя.
Пойдя по пути освоения высоких скоростей, Лаваль создал активную одновенечную турбину с рядом рабочих лопаток на одном рабочем колесе, вращавшемся со скоростью примерно 30 000 об/мин. В процессе ее конструирования Лавалю пришлось решить ряд проблем: расширяющегося сопла, гибкого вала, турбинного колеса-диска в форме тела равного сопротивления инерционным силам, возникающим при громадном числе оборотов, подшипников гибкого вала с шаровой опорой, специальных материалов (Лаваль впервые применил никелевую сталь для лопаток и дисков); автоматического останова турбины при переходе за допускаемую предельную скорость вращения (решенного им в виде «разрушителя вакуума»), наконец, проблему редуктора в виде механического зубчатого зацепления пары колес с шевронными геликоидальными зубцами.
Турбины конструкции Лаваля получили название активных. Малая мощность и довольно большой расход пара (6–7 кг/л. с. ч.) в турбинах Лаваля ограничили их применение областью привода маломощных агрегатов с большим числом оборотов.
Быстроходная паровая турбина, не имеющая частей, совершающих возвратно-поступательное движение, способна была сконцентрировать в одном агрегате громадные мощности. Это свойство турбины могло проявиться только при ее объединении с генератором электрического тока.
В этом направлении вел работу английский инженер Ч. Парсонс. В 1884 г. он получил патент на многоступенчатую реактивную турбину мощностью около 6 л. с. при 1000 об/мин. Для уравновешивания осевых усилий пар подводился в кольцевое пространство в средней части турбины, откуда через венцы подвижных и неподвижных лопаток он проходил к концам турбины. Размеры всех лопаток были почти одинаковыми, так что рост сечения для прохода пара практически отсутствовал. Такие турбины стали называться реактивными.
С 1885 по 1899 г. Парсонс строил паровые турбины разнообразных конструкций, постепенно вводя новые и новые улучшения, снижая расход пара, достигавшего в первых образцах громадной величины – около 60 кг/кВт-ч. К 1889 г. турбины Парсонса имели расход пара порядка 12 кг/кВт-ч. Эти турбины развивали мощность 60–75 кВт при 4800–5000 об/мин. В 1887 г. были впервые применены лабиринтовые уплотнения, использованные для разгрузочного поршня, с введением которого турбины начали строить однопроточными.
В Европе паровые турбины получили всеобщее признание в качестве двигателя электрогенераторов в 1899 г, когда в немецком городе Эльберфельд на электрической станции для привода генераторов трехфазного переменного тока впервые были применены турбины Парсонса мощностью 1000 кВт. Испытание Эльберфельдской станции было поручено лучшим немецким специалистам. Опубликованный ими в 1900 г. отчет установил неоспоримое преимущество паровой турбины перед другими типами двигателей, служивших для привода генераторов электрических станций. Турбины работали паром со средним давлением 10,5 атм, температурой 200 °C и показали расход пара 8–9 кг/кВт-ч при полной нагрузке агрегата.
В 1896 г. американский инженер Ч. Кертис ввел разбивку скоростного перепада на ряд ступеней скорости. При этом пар, покидавший сопло с большой скоростью, отдавал активному венцу только половину своей скоростной энергии. Для этого лопатки венца двигались не с половинной, а с четвертной скоростью по сравнению со скоростью струи пара. Вышедший из первого венца и отдавший ему половину своей скорости пар поворачивался без изменения его параметров на неподвижных лопатках направляющего аппарата и затем поступал на лопатки второго рабочего венца, которому он отдавал всю свою скорость, поскольку второй венец двигался в 2 раза медленнее струи пара. Таким образом, абсолютная скорость первого венца была равной абсолютной скорости второго венца, и их можно объединить на одном колесе-диске, получившем название диска Кертиса.
В 1900 г. на Всемирной выставке в Париже французский профессор О. Рато представил чертежи и детали паровой турбины мощностью 1 000 л. с. Она была сконструирована на основе принципа разбивки общего перепада давлений на отдельные активные ступени, в каждой из которых срабатывался лишь незначительный перепад давлений.
В 1903 г. инженер швейцарского завода «Эшер-Висс» Г. Целли усовершенствовал турбину Рато, уменьшив число активных ступеней давления с 16–20 до 7–10, что значительно упростило и удешевило ее. Ряд крупных машиностроительных заводов образовал синдикат для постройки турбин по патенту Целли.
Паровые турбины продолжали развиваться, и в 1913 г. расход пара в турбине Парсонса мощностью 25 000 кВт, работавшей с паром давлением 14 атм при температуре 304 °C, составил 5 кг/кВт-ч.
Снижение расхода пара было во многом связано с примененным впервые в турбинах завода Парсонса углублением вакуума при помощи струйных элементов, ставших предшественниками современных пароструйных эжекторов.
Постепенно реактивная паровая турбина Парсонса уступила место более компактным активно-реактивным паровым турбинам, в которых реактивная часть высокого давления заменена одно– или двухвенчатым активным диском. Такая турбина проще и экономичнее, поскольку уменьшились потери на утечки пара через зазоры между лопатками.
Паровые турбины, устанавливаемые на теплоэлектростанциях, выпускают отработанный пар в конденсатор, где поддерживается вакуум. Конденсация отработанного пара сопровождается выделением тепла, ранее затраченным на испарение жидкости.
Паровые турбины теплоэлектростанций соединены с генераторами переменного электрического тока (турбогенераторами). В зависимости от назначения они делятся на базовые, несущие постоянную основную нагрузку, пиковые, работающие непродолжительное время для покрытия пиков нагрузки, и турбины для собственных нужд, которые обеспечивают потребность в электроэнергии самой электростанции.
Основное требование к базовым турбинам – экономичность на больших нагрузках, к пиковым – возможность быстрого пуска и включения в работу, к турбинам для собственных нужд – высокая надежность в работе.
Для покрытия пиковых нагрузок на электростанциях могут применяться газотурбинные установки. Воздух в них сжимается компрессором и подается в камеру сгорания, куда также вводится жидкое топливо или горючий газ. Нагретый сжатый газ вращает турбину. Часть энергии турбины идет на компрессор, сжимающий воздух, часть – электрогенератору.
Электродвигатель
В 1821 г., исследуя взаимодействие проводников с током и магнитов, Фарадей установил, что электрический ток, проходящий по проводнику, может заставить этот проводник совершать вращение вокруг магнита или вызывать вращение магнита вокруг проводника. Этот опыт доказал принципиальную возможность построения электродвигателя.
Возможность превращения электрической энергии в механическую была показана и во многих других экспериментах. Так, в книге П. Барлоу «Исследование магнитных притяжений», опубликованной в 1824 г., описывалось устройство, известное под названием «колеса Барлоу». Оно является одним из памятников предыстории развития электродвигателя. Колесо Барлоу по принципу действия представляло собой однополярную электрическую машину, работавшую в двигательном режиме: в результате взаимодействия магнитного поля постоянных магнитов и тока, проходящего через оба медных зубчатых колеса, сидящих на одной оси, колеса начинают быстро вращаться в одном и том же направлении. Барлоу установил, что перемена контактов или перемена положения полюсов магнитов немедленно вызывает перемену направления вращения колес.
В качестве примера другой конструкции электродвигателя может служить прибор, описанный в 1833 г. английским ученым У. Риччи. Магнитное поле в этом двигателе создавалось постоянным неподвижным подковообразным магнитом. Между этими полюсами на вертикальной оси помещался электромагнит, по обмотке которого пропускался ток. Направление тока периодически изменялось коммутатором. Взаимодействие полюсов постоянного магнита и электромагнита приводило к вращению электромагнита вокруг оси. Однако этот электродвигатель вследствие своей примитивной конструкции и незначительной мощности не мог иметь практического значения.
В приборе американского физика Дж. Генри изменение полярности электромагнита происходило за счет перемены направления протекающего по его обмотке тока. Оно приводило электромагнит в равномерное качательное движение. В модели, построенной самим Генри, электромагнит совершал 75 качаний в минуту. Мощность двигателей подобного типа была очень небольшой, примерно 0,05 Вт.
Было предложено много конструкций двигателей с качательным движением якоря. Однако более прогрессивными оказались попытки построить электродвигатель с вращательным движением якоря.
В 1834–1860 гг. появлялись конструкции с вращательным движением явно полюсного якоря. Вращающий момент на валу таких двигателей обычно был резко пульсирующим.
Наиболее важные работы по конструированию электродвигателей принадлежат русскому ученому Б. С. Якоби. Изучая конструкции электродвигателей своих предшественников, в которых было осуществлено возвратно-поступательное или качательное движение якоря, Якоби отозвался об одном из них: «такой прибор будет не больше, чем забавной игрушкой для обогащения физических кабинетов» и что «его нельзя будет применять в большом масштабе с какой-нибудь экономической выгодой». Поэтому он направил свое внимание на построение более мощного электродвигателя с вращательным движением якоря.
В 1834 г. Якоби построил и описал электродвигатель, который действовал на принципе притяжения и отталкивания между электромагнитами. Этот двигатель имел две группы П-образных электромагнитов, одна из которых располагалась на неподвижной раме, а другая аналогичная группа – на вращающемся диске. В качестве источника тока для питания электромагнитов была применена батарея гальванических элементов. Для попеременного изменения полярности подвижных электромагнитов служил коммутатор.
Коммутатор был чрезвычайно важной частью устройства электродвигателя Якоби. Конструктивно он представлял собой четыре металлических кольца, установленных на валу и изолированных от него. Каждое кольцо имело четыре выреза, которые соответствовали одной восьмой части окружности. Вырезы были заполнены изолирующими вкладками; каждое кольцо было смещено на 45° по отношению к предыдущему. По окружности кольца скользил рычаг, представлявший собой своеобразную щетку. Второй конец рычага был погружен в соответствующий сосуд с ртутью, к которому подводились проводники от батареи. Таким образом, при каждом обороте кольца 4 раза разрывалась электрическая цепь. К электромагнитам вращающегося диска отходили от колец проводники, укрепленные на валу машины. Обмотки всех электромагнитов неподвижной рамы были соединены последовательно и обтекались током батареи в одном направлении. Обмотки электромагнитов вращающегося диска были также соединены последовательно, но направление тока в них с помощью коммутатора изменялось 8 раз за один оборот вала. Следовательно, полярность этих электромагнитов также изменялась 8 раз за один оборот вала, и эти электромагниты поочередно притягивались и отталкивались электромагнитами неподвижной рамы. Первый электродвигатель, построенный Якоби, развивал мощность около 15 Вт.
Первый свой электродвигатель Якоби построил в мае 1834 г., а в ноябре того же года он представил Парижской академии наук сообщение об этом устройстве. Оно было прочитано на заседании Академии в декабре 1834 г. и сразу же опубликовано.
В 1837 г. американский техник Т. Девенпорт также построил электродвигатель с непосредственным вращением якоря, где взаимодействовали подвижные электромагниты с неподвижными постоянными магнитами. Электродвигатель Девенпорта имел четыре горизонтальных крестообразно расположенных электромагнита, укрепленных на деревянном диске, жестко связанном с вертикальным валом. Эти электромагниты были расположены внутри двух постоянных магнитов в форме полуокружностей, опирающихся на деревянное кольцо; магниты соприкасались одноименными полюсами и создавали кольцо с двумя полюсами. На особой подставке были расположены медные пластины, разделенные посередине изоляцией. К ним подводился ток от источника питания. Концы последовательной обмотки каждой пары электромагнитов имели пружинящие контакты. Взаимодействие электромагнитов и постоянных магнитов приводило электродвигатель в работу, причем полярность электромагнитов изменялась при помощи коммутатора.
Двигатель Девенпорта был более компактным, чем двигатель Якоби, благодаря расположению в одной плоскости подвижных и неподвижных магнитов.
Якоби пытался приспособить свой двигатель для электропривода судна. Однако опыты показали, что использование на судне в качестве источников тока гальванических батарей является неэкономичным. После того как были разработаны более совершенные генераторы тока, применение электродвигателя на автономных транспортных установках, в частности на судах, стало возможным только при наличии первичного теплового двигателя, приводящего в движение генератор.
В 50-х и 60-х годах XIX в. электродвигатель находил применение в некоторых отраслях производства, например в типографиях. В то время большинство производственных операций в них велось либо ручным способом, либо на машинах с ручным приводом. Для крупной печатной машины, обычной для того времени, проще было использовать электродвигатель. В этих случаях практики применялся электродвигатель французского электротехника П. Г. Фромана.
Его действие основывалось на притяжении к неподвижным электромагнитам пластин из мягкой стали, расположенных на двух деревянных колесах, которые укреплялись на вращающейся оси. Посредством зубчатого коммутатора электрический ток подводился поочередно к двум противоположно размещенным электромагнитам, притягивавшим пару соответствующим образом расположенных пластин. В результате такого притяжения, происходящего всегда в одном и том же направлении и притом только тогда, когда стальные пластины находятся близко от сердечника соответствующего электромагнита, вал машины приводился во вращение.
Некоторые из электродвигателей, построенных в 40–60-х годах XIX в., действовали на принципе втягивания стального сердечника в соленоид. Возвратно-поступательное движение преобразовывалось посредством балансира или шатунно-кривошипного механизма во вращательное движение вала, снабженного для равномерности хода маховыми колесами.
Все рассмотренные выше электродвигатели действовали на принципе взаимного притяжения и отталкивания магнитов или электромагнитов. Им были свойственны существенные недостатки. Наиболее серьезными из них являлись большие габариты машины при сравнительно малой мощности, большое магнитное рассеяние и низкий КПД. Кроме того, вращающий момент на валу таких электродвигателей отличался непостоянством, и в связи с попеременными притяжениями и отталкиваниями стержневых якорей действие таких электродвигателей было в большей или меньшей степени толчкообразным. При столь резких и частых изменениях вращающего момента на валу двигателя применение последнего в системе электропривода представлялось малоперспективным.
Наряду с электродвигателями постоянного тока в середине XIX в. стали разрабатываться двигатели, работающие от переменного тока.
Известно, что электрическая машина обладает свойством обратимости. С этой точки зрения, принципиальных трудностей для построения двигателей переменного тока не было. Еще в 1841 г. Чарльз Уитстон построил синхронный электродвигатель. Если обмотки электромагнитов питать переменным током, то обращенные друг к другу их концы одновременно через каждые полпериода изменяют свою полярность. Следовательно, полюсы постоянных магнитов, взаимодействуя с полюсами электромагнитов, будут вращаться синхронно со скоростью изменения полярности электромагнитов.
Аналогичным образом можно было построить синхронный двигатель, заменив постоянные магниты электромагнитами, обмотки которых питались бы постоянным током.
Очевидным недостатком всех однофазных синхронных двигателей являлся затрудненный пуск, особенно под нагрузкой. Двигатель будет хорошо работать, если разогнать его до некоторой скорости, более или менее близкой к синхронной, после чего он самостоятельно втянется в синхронизм. Понятно, что такие электродвигатели, нуждающиеся в дополнительных разгонных двигателях, не могли иметь сколько-нибудь широкого практического применения. В современных синхронных многофазных двигателях для пуска в ход на роторе обычно устраивается дополнительная короткозамкнутая обмотка и двигатель пускается как асинхронный, а затем втягивается в синхронизм. Асинхронный пуск однофазных синхронных двигателей невозможен, так как магнитное поле в них не вращается, как в многофазных машинах, а пульсирует.
Имелась возможность применять в сетях однофазного тока коллекторные двигатели постоянного тока с последовательным возбуждением. При питании этих двигателей переменным током направление основного магнитного потока изменяется одновременно с изменением направления тока в якоре, следовательно, вращающий момент имеет постоянное направление. Впервые предложили применять коллекторные однофазные двигатели в 1885 г. М. Дери и О. Блати. Однако широкого распространения эти двигатели тоже не нашли, главным образом, по двум причинам: чрезмерный нагрев сердечников электромагнитов вихревыми токами и тяжелые условия коммутации тока, вызывавшие сильное искрение на коллекторе. Несколько улучшило дело применение дополнительных полюсов, однако они оказались неэффективными в пусковых условиях. Поэтому коллекторный однофазный двигатель получил весьма ограниченное применение, в настоящее же время он используется, главным образом, на электрифицированных железных дорогах однофазного тока.
Вначале XIX в. французский физик Араго открыл явление, названное им «магнетизмом вращения». В опыте Араго в том случае, когда вращение медного диска происходило при вращении находящегося вблизи него постоянного магнита, был заложен принцип асинхронного электродвигателя с вращающимся магнитным полем. Однако здесь вращающееся поле создавалось не неподвижным устройством, каким в современных машинах является статор, а вращающимся магнитом.
Долгое время явление, открытое Араго, не находило себе практического применения. Только в 1879 г. была сделана попытка усовершенствовать опыт Араго для получения вращения магнитного поля с помощью неподвижного устройства. В том же году англичанин У. Бейли сконструировал прибор, в котором пространственное перемещение магнитного поля осуществлялось путем поочередного намагничивания четырех расположенных по периферии круга электромагнитов. Намагничивание производилось с помощью импульсов постоянного тока, посылаемых в обмотки электромагнитов специально приспособленным для этого коммутатором. Полярность верхних концов стержней изменялась в определенной последовательности так, что через каждые восемь переключений коммутатора магнитный поток изменял свое направление в пространстве на 360°. Над полюсами электромагнитов, как и в опытах Араго, был подвешен медный диск. Бейли указывал, что при бесконечно большом числе электромагнитов можно было бы получить равномерное вращение магнитного поля. Прибор Бейли, не получив никакого применения, остался физической игрушкой. Тем не менее, это было некоторое связующее звено между опытом Араго и более поздними исследованиями.
К открытию явления вращающегося магнитного поля в современном его понимании пришли независимо друг от друга итальянский ученый Г. Феррарис и югославский ученый и изобретатель, работавший большую часть жизни в Америке, Н. Тесла.
Феррарис и Тесла доказали, что если две катушки, расположенные под прямым углом друг к другу, питать двумя переменными синусоидальными токами, отличающимися друг от друга только по фазе, и если этот фазный сдвиг составляет ровно 90°, то вектор суммарной магнитной индукции в точке пересечения осей этих катушек получает равномерное вращательное движение, не изменяясь по абсолютной величине. Так было установлено, что с помощью двух или более переменных токов можно получить непрерывно вращающееся магнитное поле. Минимально необходимое для этого число токов равно двум. Поэтому вполне естественно, что исследование многофазных систем началось с двухфазной системы.
Двухфазный двигатель Феррариса состоял из двух пар взаимно-перпендикулярных катушек полого медного цилиндра, сидящего на валу. Если подвести к одной паре катушкам ток, отличающийся по фазе от тока в другой паре катушек на 90°, то во внутренней полости катушек возникнет вращающееся магнитное поле и медный цилиндр (ротор) начнет вращаться. Измерения показали, что двигатель развивал мощность до 3 Вт. Задачу получения двух токов, отличающихся по фазе на 90°, Феррарис решал двумя путями. В одном случае пара катушек включалась в первичную цепь трансформатора с разомкнутой магнитной системой, другая – во вторичную; в другом – в цепь первой катушки включалось добавочное активное сопротивление, а в цепь второй – добавочное индуктивное сопротивление.
Таким образом, одна возможность получить двухфазную систему токов состояла в «расщеплении» обычного однофазного переменного тока; при этом создавалась так называемая искусственная, или вспомогательная, фаза.
Этот метод требовал дополнительных, довольно сложных устройств для «расщепления» фаз, и, кроме того, фазный сдвиг практически никогда не составлял 90°, что приводило к искажению вращающегося поля.
Но не эти недостатки (на которые, собственно, сначала и не обратили внимания) помешали Феррарису и некоторым его современникам разработать конструкцию промышленного двухфазного электродвигателя. По иному пути пошли некоторые другие изобретатели, и среди них наибольших успехов добился Никола Тесла. Тесла, не прибегая к попыткам получить необходимую разность фаз в самом двигателе, пришел к выводу о целесообразности построения такого генератора, который сразу давал бы, так сказать, в готовом виде два тока с разностью фаз 90°.
Тесла построил двухфазный генератор и питал от него двухфазный асинхронный двигатель. Он состоял из синхронного генератора и асинхронного двигателя. В генераторе между полюсами вращались две взаимно-перпендикулярные катушки, в которых генерировались два тока, сдвинутые по фазе на 90°. Концы каждой катушки были выведены на кольца, расположенные на валу генератора.
Пока Тесла пытался усовершенствовать двухфазную систему, в Европе была разработана более совершенная система трехфазного тока.
Это сделал М. О. Доливо-Добровольский, который сумел придать своим работам практический характер и явился основоположником техники трехфазного тока.
Осенью 1888 г. Доливо-Добровольский, познакомившись с содержанием доклада Феррариса, не согласился с его выводом о практической непригодности индукционного электродвигателя. Еще раньше Доливо-Добровольский заметил, что если замкнуть накоротко обмотку якоря двигателя постоянного тока при его торможении, то возникает тормозящий момент большой величины. Он пришел к выводу о нецелесообразности изготовления обмотки ротора с таким большим сопротивлением, при котором ротор имел бы скольжение около 50 %. Наоборот, если сопротивление обмотки ротора будет небольшим, то уже при незначительном скольжении в стержнях обмотки возникнут большие токи, которые в достаточно сильном поле статора создадут значительный вращающий момент.
Эксперименты в этом направлении привели его к разработке трехфазной электрической системы и, в принципе, не изменившейся до настоящего времени конструкции асинхронного электродвигателя.
Первым важным шагом, который сделал Доливо-Добровольский, было изобретение ротора с обмоткой в виде беличьей клетки. С точки зрения уменьшения сопротивления обмотки ротора лучшим конструктивным решением мог бы стать ротор в виде медного цилиндра, как в двигателе Феррариса. Но медь плохо проводит магнитный поток статора, и КПД такого двигателя был бы очень низким. Если же медный цилиндр заменить стальным, то магнитный поток резко возрастет, но КПД не повышается, так как электрическая проводимость стали меньше, чем меди. Выход из этого противоречия состоял в том, чтобы выполнить ротор в виде стального цилиндра и в просверленные по его периферии каналы закладывать медные стержни. На лобовых частях ротора эти стержни должны быть хорошо электрически соединены друг с другом. В 1889 г. Доливо-Добровольский запатентовал изобретение ротора с беличьей клеткой, той конструкции ротора асинхронного двигателя, которая сохранилась принципиально в том же виде и до настоящего времени.
Важнейшим достижением Доливо-Добровольского явилась замена двухфазной системы трехфазной. Он совершенно справедливо отмечал, что при увеличении числа фаз улучшается распределение намагничивающей силы по окружности статора асинхронного двигателя и использование машины. Переход от двухфазной системы к трехфазной дает значительный выигрыш в этом отношении. Дальнейшее увеличение числа фаз приведет к значительному увеличению расхода меди на провода.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.