Автор книги: Юрий Гавердовский
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]
4—я фаза – результирующая, когда происходит притормаживание ранее ускоренных маховых звеньев тела с передачей импульса в направлении опоры и падением давления на нее.
Описанная «двухпиковая» картина динамограммы присутствует практически во всех мощных спортивных отталкиваниях. Однако в более простых условиях (например, при легких подпрыгиваниях на жестком полу, прыжках в художественной гимнастике и др.) отталкивание имеет практически «однопиковую» структуру, т.е. здесь останавливающие и преодолевающие действия не «расщепляются» промежуточной фазой динамической «подстройки» (в). В известном смысле это – идеальное отталкивание, в котором энергия двигательного действия используется наиболее просто и эффективно. К этому идеалу должны стремиться и спортсмены, выполняющие максимально мощные отталкивания с наскока. Однако этого можно достичь в обучении только посредством совершенствования скоростно-силовых и координационных возможностей прыгуна.
Заметим, что в описанной структуре с четырьмя фазами действий первые две фазы связаны с возможным наскоком на опору, то есть с т.н. «подготовительными действиями», и только 3-я и 4-я фазы соответствуют базовому двухфазному циклу, описанному выше, как принципиальный инвариант всех отталкиваний.
Упругое отталкивание. Практически все современные спортивные снаряды, предназначенные для отталкивания и подобных действий, обладают свойствами упругости. В целом ряде случаев эти свойства конструктивно предусмотрены. Таковы гимнастические мостики для прыжков, помост для вольных упражнений, акробатическая дорожка, батуты разных типов, трамплин для прыжков в воду, шест для легкоатлетических прыжков и др. В отдельных случаях прыжковые снаряды оснащены устройствами для изменения модуля упругости снаряда в соответствии с индивидуальными масс-геометрическими показателями спортсмена.
Кроме того, в спорте почти все стационарные снаряды обладают более или менее выраженной пластичностью, требующей точного согласования двигательных действий спортсмена с упругими свойствами опоры. От этого существенно, часто решающим образом, зависит эффективность самых важных, прежде всего энергообеспечивающих действий спортсмена. Это относится также к разного рода специальным, как бы «твердым» покрытиям, которые на самом деле всегда обладают более или менее выраженными упругими свойствами. Таковы современные беговые дорожки, опорные поверхности для отталкивания в легкоатлетических прыжках, пол в залах для спортивных игр, художественной гимнастики и т. д.
В целом, модернизация снарядов и оборудования в направлении увеличения и специализации его упругих свойств, целесообразных с биомеханической точки зрения – одна из ведущих эргономических тенденций в современном спорте. Те же тенденции издавна и, в особенности, на современном этапе отмечаются в отношении конструирования спортивной обуви, которая должна обладать оптимальными (в идеале – индивидуально выверенными) упругими свойствами.
Биомеханика упругого взаимодействия с опорой весьма сложна, и в обучении можно руководствоваться лишь рядом наиболее общих посылок, помогающих избежать грубых ошибок в технике отталкивания от упругой опоры.
На рис. 4.11 схематически показан процесс активного взаимодействия тела спортсмена с упругой опорой при отвесном движении. Выделяется несколько принципиальных фаз такого взаимодействия на модели, построенной по схеме «наскок – отскок».
Рис. 4.11. Упругое отталкивание.
Фаза наскока (к.к. 1—3). Выполнив разбег или наскок сверху, спортсмен получает к моменту возникновения контакта со снарядом (к. 3) некоторую кинетическую энергию и встречает опору в активно выпрямленном положении, сохраняя высокий тонус мышечного аппарата.
Фаза амортизации (к.к. 3—5) чрезвычайно важна как фаза подготовительных действий к последующему активному выталкиванию. С началом контакта (к. 3) тело спортсмена и снаряд, действуя друг на друга, упруго деформируются: прыгун напряженно переходит в положение «подседа», а подвижные элементы снаряда «прожимаются» в направлении исходного движения тела или по нормали к опорной поверхности.
При этом кинетическая энергия тела преобразуется в форму потенциальной энергии упругой деформации, накапливающейся как в снаряде, так и в мышечно-связочном аппарате спортсмена, и в дальнейшем может быть до известной степени возвращена по механизму рекуперации. В фазе амортизации мышцы спортсмена, напрягаясь, натягиваются и развивают максимальные для данного случая усилия при давлении на опору. Это действие имеет самое кардинальное значение в плане подготовки последующих действий. Одновременно меняется поза в расчете на выполнение не только собственно толчковых, но и маховых движений в следующей фазе действий.
Фаза активного выталкивания (к.к. 5—7). Немедленно после напряженного подседа спортсмен начинает мощно выпрямляться, усиливая взаимодействие с опорой и прожимая ее вниз, дополнительно «погружаясь» при этом в опору. Как уже отмечалось, это действие носит генерализованный характер: выпрямляясь всем телом, спортсмен не только действует ногами на опору, но и выполняет ускоренное маховое движение свободными звеньями в направлении от опоры. В итоге активного выталкивания тело спортсмена должно быть, по возможности, предельно выпрямлено, оттянуто от опоры, а натяжение упругих элементов снаряда (к моменту мгновенной остановки движения, к. 7) достигает максимума.
Фаза «выбрасывания» (к.к. 7—9). К моменту полного (или индивидуально посильного для данного спортсмена) выпрямления тела (к. 7) упругий снаряд предельно (в применении к данному случаю) деформирован и максимально «заряжен» потенциальной энергией, которая при «выбрасывании» тела вверх может быть ему возвращена в кинетической форме. Для того, чтобы эта фаза отталкивания прошла без потерь энергии, прыгун должен сохранять предельную «оттяжку» (активное выпрямление, удлинение) тела и эффективный контакт с опорной поверхностью снаряда. В противном случае энергия упругого снаряда в буквальном смысле «уходит в воздух». Типичная грубейшая ошибка этого рода – преждевременное освобождение от опоры (к.к. 7– 8, а – 9, а – 10, а), связанное с желанием поскорее перейти в полет. В действительности такие действия всегда идут резко в ущерб всем параметрам.
Фаза вылета (к.к. 9—10) – результирующая. В норме спортсмен должен начинать ее (к. 9) в строго оттянутом, активно выпрямленном положении. Лишь после отделения от опоры (еще лучше – с паузой после этого, к. 10) он может менять позу по своему усмотрению, реализуя дальнейшую программу движения и демонстрируя «фигуру полета».
Описанная техника упругого отталкивания – лишь один из ее вариантов, в наибольшей степени характерный для достаточно эластичной опоры (типа большого батута). Он наиболее удобен в обучении как модель для анализа структуры упругого отталкивания. Однако в реальности акценты в «отдаче» упругой опоры и динамике ее активного «прожимания» могут несколько смещаться относительно друг друга, меняя характер отталкивания. Идеален случай, когда фазы колебания упругой опоры, загруженной весом тела спортсмена, и активного деформирующего воздействия на нее при толчке совпадают по принципу параметрического резонанса (когда акценты пассивного и активного отталкивания совпадают. Это означает, что спортсмен хорошо согласует свои действия с механическими свойствами снаряда и «попадает в отталкивание».
Проще эта задача решается в случаях, когда упругие свойства снаряда могут перестраиваться с учетом индивидуального запроса спортсмена (трамплин для прыжков в воду). Однако в большинстве случаев это пока что невозможно. Поэтому в процессе обучения крайне важно учиться чувствовать упругую опору и, по возможности, подстраиваться к ней с учетом скоростно-силовых, мощностных возможностей исполнителя и рабочей массы его тела. В частности, на наиболее «мягких» опорах типа батута, где период колебания упругой опоры, загруженной весом тела спортсмена, достаточно велик, время резонансного отталкивания также должно быть относительно большим. Для отталкиваний от гимнастического мостика, акробатической дорожки, мини-батута оно меньше, а при упругих отталкиваниях от «рейтеровского» помоста в гимнастике еще короче.
Это нередко является причиной интерференции навыков отталкивания при смене опор, обладающих разным модулем упругости. Поэтому отталкивание всегда должно в этих случаях осваиваться и совершенствоваться как базовый навык с выраженными вариативными свойствами. Этот навык весьма ценен даже в тех случаях, когда спортсмен имеет возможность пользоваться снарядом с индивидуально изменяемым модулем упругости.
Вместе с тем на «мощных» упругих опорах типа большого батута возможны отталкивания как бы пассивного типа, когда спортсмен довольствуется, в основном, «извлечением» из снаряда ранее приобретенной потенциальной энергии упругой деформации, добавляя к ней собственной активной работой лишь некоторый минимум, восполняющий диссипацию. Так, прыгуны на батуте, приступая к исполнению прыжковой комбинации, вначале «распрыгиваются», набирая значительную высоту (у мужчин – до 5—6 метров над поверхностью сетки), и после этого выполняют основные прыжки. При этом они уже гораздо меньше используют собственно отталкивание ногами, маховая же работа руками исключается практически полностью.
Главное внимание в этом случае уделяется управлению ранее полученным движением. В этом случае приход на сетку рассчитывается так, чтобы ее упругая отдача сама по себе задавала телу спортсмена расчетное поступательное или сложное движение с вращением того или иного направления. Однако изъяном такой техники движения часто является постепенное снижение его энергетики, выражающееся в потере высоты прыжков, что и карается в судействе.
Таким образом упругое отталкивание этого типа складывается из фаз наскока (рис. 4.8, к.к.1—3), инерционного прожимания снаряда (к.к. 3—7, но без промежуточного изменения позы), выбрасывания тела спортсмена снарядом (к.к. 7—9) и вылета (к.к. 9—10).
Наконец, прыжки, выполняемые на жесткой опоре (где период упругой деформации опоры на порядки меньше, чем на специальных упругих снарядах), практически не доступны для резонансного режима действий и в этом (но только в этом) смысле координационно проще, так как зависят по преимуществу от скоростно-силовых возможностей исполнителя.
Отталкивание в движении. За краткое время отталкивания меняются не только количественные значения сил, действующих при опоре, но, как правило, меняется и их векторная направленность. Этого не происходит лишь в простых отталкиваниях, направленных перпендикулярно к опоре, тогда как в более сложных ситуациях векторная картина отталкивания оказывается весьма разнообразной, что не всегда учитывается при обучении движениям.
На рис. 4.12 показаны четыре положения, которые можно рассматривать как отдельные моменты одного отталкивания (например, акробатического переворота назад) с соответствующими векторами опорной реакции и ее составляющими.
Рис. 4.12. Пофазное изменение векторной картины при отталкивании в движении.
Можно убедиться, что в разных фазах такого отталкивания его конкретный физический эффект совершенно различен. Если в приведенном примере (с переворотом назад) тело с самого начала имело перемещение и вращение назад, то в положении (а) оба этих компонента движения будут «гаситься», хотя именно они и требуются в данном упражнении более всего. Далее, в положении (б), отталкивание содействует вращению тела назад, но никак не влияет на перемещение по горизонтали. И лишь позднее, в положениях (в, г) опорная реакция, вызванная активными действиями акробата, будет, наконец, все больше содействовать необходимому в перевороте перемещению и вращению назад.
Весьма показательна тензорная картина такого отталкивания (рис. 4.13), показывающая как меняются в этом случае величина и направление опорной реакции. Это чрезвычайно важно понимать в процессе обучения движениям, так как с этим связан выбор наиболее эффективной техники отталкивания и приемов исправления ошибок.
Рис. 4.13. Тензор опорной реакции при отталкивании в движении.
Дополняя разбор ситуаций отталкивания, обратимся еще раз к рис. 4.9 и представим себе, что каждое из четырех показанных там положений является определяющим при отталкивании в упражнениях определенного типа. Тогда отталкивание, показанное на к.е (а), соответствовало бы сальто вперед с продвижением вперед; положение (б) было бы ключевым для сальто назад «на месте», т.е. с вылетом вверх, но без смещения по горизонтали. Ситуация (к.к в) отвечала бы требованиям исполнения движения типа невысокого быстрого сальто назад с одноименным смещением (типа «темпового»), а последний (к. г) – быстрому низкому движению в перевороте назад («фляке»).
Таким образом, «одно и то же» отталкивание, взятое в его разных фазах, содержит в себе «зародыши» совершенно разных движений и может, при определенных условиях, дать сложное (составное) пространственное движение с совершенно разными результатами.
Перемещающий и вращающий эффекты отталкивания. Анализируя векторную картину, характеризующую отталкивание, можно также заметить, что его физический результат определяется соотношением параметров переместительного (с учетом только горизонтального смещения) и вращательного движений. Анализируя характер отталкивания и его возможные эффекты можно также убедиться, что переместительные и вращательные составляющие опорной реакции, связаны обратной зависимостью (рис. 4.14): чем больше одна из составляющих, тем меньше другая, и наоборот. Это и понятно: переместительная и вращательная составляющие отталкивания не могут выходить за пределы своей геометрической суммы. Поэтому, образно говоря, все нужды отталкивания могут «оплачиваться» только из «бюджета» равнодействующей опорной реакции, и если большая ее часть «тратится», например, на перемещение тела, то его вращение «субсидируется» по остаточному принципу, и наоборот.
Рис. 4.14. Взаимосвязь составляющих опорной реакции при отталкивании.
Поэтому в относительно высоких прыжках (а) обычно ограничено интенсивное вращение тела, а прыжки с вращательной доминантой (б), напротив, лимитированы в отношении высоты перемещения. То же самое имеет место с соотношением составляющих переместительной компоненты опорной реакции (в). Чем больше, при прочих равных условиях, вертикальная составляющая прыжка (определяющая его высоту), тем меньше будет горизонтальное смещение тела спортсмена и наоборот.
Из сказанного ясно, что в процессе учебной работы над прыжковыми движениями важно найти наиболее рациональное сочетание параметров движения, когда исключаются технические крайности, и для решения сложной двигательной задачи должно избираться оптимальное решение.
4.2. ПРИЗЕМЛЕНИЕВозвращение на опору после безопорного движения – действие, обратное по физическому смыслу отталкиванию: если последнее сообщает телу спортсмена движение, то приземление, напротив, имеет своей целью его упорядоченное преобразование с полным или частичным гашением энергетики движения.
4.2.1. Динамические взаимодействия при приземлениях
Характер взаимодействия с опорой, в том числе амортизация при приземлении, зависят как от техники, так и от самой цели движения.
Рассмотрим четыре модели прихода спортсмена на твердую опору после обычного соскока сверху на ноги. Спортсмен может при этом сообщать ему различные физические свойства, отраженные ниже в образных названиях каждой модели (рис. 4.15).
Рис. 4.15. Модели приземления
Модель «пружинного человечка» (а) – случай, когда спортсмен, попадая на опору «с лёта», стремится сохранить упругие свойства опорно-двигательного аппарата. Мышцы спортсмена еще до прихода на опору заблаговременно напряжены, а с началом амортизации его тело, стремясь по инерции двигаться в направлении опоры, упруго «подседает», заставляя мышцы (в основном разгибатели ног и туловища) без снижения тонуса действовать в останавливающем режиме. При такой технике приземления возможна рекуперация энергии, то есть преобразование кинетической энергии безопорного движения в потенциальную энергию упругой деформации и ее возврат в форме нового «пружинного» отскока, который в данном случае неизбежен.
Движение такого типа идеально для выполнения, например, беговых шагов, многоскоков, серийных акробатических прыжков и т. п. Но оно совершенно непригодно в тех случаях, когда приземление должно закончиться остановкой в «доскок», т.е. не сохранением, а, напротив, полным рассеянием кинетической энергии тела, переходящей в тепловую форму.
Модель «фарфоровой статуэтки» (б). Практически возможен приход на опору с полностью фиксированными суставами, исключающими амортизационное подседание тела. С физической точки зрения это означает, что все элементы масс тела спортсмена (и ОЦМ) останавливаются одновременно, вызывая очень большое отрицательное ускорение и, как следствие – сильнейший удар, который действует на ноги и вдоль позвоночника, приводя к самым опасным последствиям (б). Для сравнения: технически грамотный «прыжок в глубину», например, с высоты стола, абсолютно безопасен, в то время как приземление с той же высоты, выполненное на пятки и с жестко фиксированными суставами ног и туловища чревато страшными травмами вплоть до перелома позвоночника.
Модель «тряпичной куклы» (в) – приземление, при котором тело спортсмена в момент прихода на опору полностью расслаблено. В этом случае звенья тела стремятся падать как бы автономно, а перегрузки, возникающие при их столкновении с опорой, действуют, прежде всего, на мышечно-связочный аппарат и суставы. Такое приземление не только весьма травмоопасно, но и совершенно неуправляемо.
Модель «пластилиновой фигурки» (г). К моменту приземления тело гимнаста должно сохранять заданную форму, соответствующую равновесной стойке на ногах, и если полет необходимо завершить полной остановкой, то оно, как было показано, не должно быть ни упругим, ни абсолютно жестким, ни слишком податливым. При этом тело должно рассеивать свою энергию не одномоментно, как при опасных ударах, а постепенно «вминаясь» в опору.
Таким образом, в данном случае требуется пластичная модель поведения. Это возможно, если гимнаст будет умело использовать биомеханические свойства мышечного аппарата. Для этого во время приземления в остановку мышцы должны последовательно, начиная от приопорных звеньев, постепенно подрасслабляться, теряя свои упругие свойства, причем темпы подрасслабления должны как можно точнее соответствовать скорости инерционного подседания в позе «доскока». Если это требование не выдерживается, тело спортсмена будет вести себя либо как «пружинная» модель (скорость подрасслабления отстает от скорости натяжения мышц при подседании), либо как «тряпичная» (темпы расслабления быстрее, чем требуется в данном конкретном случае).
Сказанное означает, что верное приземление в остановку требует овладения тонким двигательным навыком, который нужно тщательно осваивать и совершенствовать, тем более что двигательные действия приземления скоротечны и трудно поддаются осознанному управлению.
Одна из наиболее эффективных форм приземления, в связи с этим – приход на опору из положения с возможно более выпрямленным телом с поднятыми вверх руками и последующим глубоким вязким приседанием (рис. 4.16, а). Только в этом случае тормозной путь масс тела и время приземления оказываются достаточно большими, чтобы сделать возвращение на опору мягким, безопасным и лучше управляемым.
Рис. 4.16. «Мягкое» и «жесткое» приземления.
Всякие попытки быстро и «жестко» погасить движение ради зрелищного эффекта (в гимнастике, акробатике) не только опасно усиливают удар и компрессионное воздействие на опорный аппарат спортсмена, но и резко снижают возможности управления действиями приземления (б). Начинать обучение приземлению в любом случае следует с освоения глубокого мягкого «подседа» и лишь по мере приобретения мастерства, такое движение может постепенно сменяться более компактными, «сухими» действиями.
4.2.2. Гашение сложного движения при приземлениях
В гимнастике приземление, как правило, выполняется после сложного пространственного движения, т.е. на фоне перемещения ОЦМ тела спортсмена не просто по вертикали, а чаще по криволинейной траектории, с горизонтальным смещением, и обычно при одновременном вращении тела, по меньшей мере, вокруг одной из его центральных осей (табл. 4.1).
Это означает, что приземление в остановку требует одновременного гашения, как минимум, трех компонентов движения тела – вертикального и горизонтального перемещений и вращения. При этом вращение тела может быть не простым, а многоосным, как это бывает, например, при акробатических сальто с поворотами. Здесь полная остановка движения должна достигаться в положении ограниченно-устойчивого равновесия.
Успех таких действий зависит от ряда факторов, главные из которых —точность исполнения упражнения в целом (т.е. принципиальная возможность попадания в нужную стойку по завершении упражнения), режим амортизации при контакте с опорой, своевременность и эффективность корректирующих действий, если они необходимы в приземлении.
Рассмотрим в этой связи особенности приземления в остановку после движения в полете (рис. 4.17).
Рис. 4.17. Гашение движения при разных формах приземления.
Как отмечалось, простейший вариант этого рода – приземление после отвесного падения на опору без вращения (а), когда достаточно амортизационных действий на опоре, рассеивающих энергию падения. Более сложный вариант движения – отвесное приземление при наличии вращения тела. В этом случае приземление должно происходить так, чтобы одновременно с амортизацией гасилась вращательная компонента движения (б). Если этого не учитывать и действовать, как в случае (а), то спортсмена сбросит в сторону вращения. Предотвратить эту ошибку можно только заблаговременно, если прийти в положение, при котором контакт с опорой (физически подобный отталкиванию) порождает импульс, направленный противоположно тому, что был в полете (в).
Еще сложнее ситуация, в которой следует гасить также смещение по горизонтали. Если ему не противопоставить во время приземления соответствующую опорную реакцию, то спортсмена «свалит» при инерционном продолжении движения (г). Этот нежелательный эффект должен быть предусмотрен заранее (д).
Таким образом, техника приземлений связана с освоением целого ряда более или менее сложных навыков, требующих специального обучения и совершенствования. Тренер и спортсмен должны, в частности, знать, что единой техники правильного приземления (за исключением приемов демпфирования) не существует. Каждый тип сложного пространственного движения требует своих условий приземления, при которых генерируется механический импульс, обратный тому, что имеет тело спортсмена в полете (табл. 4.1).
Аналогичным закономерностям также подчиняются приходы на руки в таких элементах как сальто назад на брусьях или акробатический полупереворот назад в стойку на кистях (рис. 4.18). В этом случае дохват выполняется в положении, когда прогнутое тело еще не достигло вертикали, и завершающие действия заканчиваются уже на опоре замедленным приходом в вертикальную стойку.
Рис. 4.18. Гашение движения при приходе на руки.
В уже прокомментированной ранее табл. 4.1 отражены основные варианты сочетания вращений-перемещений тела спортсмена в полете и, соответственно, разновидности входа тела спортсмена в приземление.
Рассматривая приведенные в ней случаи, можно прийти к выводу, что освоение и совершенствование приземлений требует дифференцированного обучения девяти разным формам ДД (без учета вариантов вращения вокруг продольной оси). Однако ситуация облегчается сходством некоторых ситуаций приземления друг с другом.
Базовые формы приземления. В реальности важно, прежде всего, освоение и настойчивое совершенствование трех базовых навыков приземления (рис. 4.19):
– Базовый навык простого демпфирующего приземления без горизонтального смещения и вращения тела в целом (на рис. 4.11, а, в табл. 4.1 – центральный случай «Д»).
– Навык приземления в движениях типа сальто назад с опережающим «стопорящим» выносом ног назад (на рис. 4.19, а, в табл. 4.1 – А, Б, Г).
– Навык приземления в движениях типа сальто вперед с опережающим «стопорящим» выносом ног вперед (на рис. 4.19, б, в табл. 4.1 – Е, З, И).
Рис. 4.19. Базовые формы приземлений в сальто назад и вперед с одноименным перемещением и вращением в момент прихода на опору.
Существуют, как уже отмечалось, приземления с разноименным направлением перемещения-вращения тела (в табл. 4.1 – В и Ж). Благодаря этому компоненты полетного движения в момент приземления в той или иной степени взаимно гасят друг друга, и задача приземления сводится к относительно простому демпфированию (как в базовом навыке первого типа). Наиболее характерный пример такого приземления – в форме «ауэрбах» (сальто назад с перекладины или брусьев р.в.).
Таблица 4.1. Разновидности форм движения тела гимнаста к моменту приземления
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?