Текст книги "Шелест гранаты"
Автор книги: Александр Прищепенко
Жанр: Военное дело; спецслужбы, Публицистика
сообщить о неприемлемом содержимом
Текущая страница: 21 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]
5.19. За что любят постоянные магниты. Самодельный прибор для измерения индукции поля. Другой прибор, избавляющий от мучений с расчетом обмотки
Огромное преимущество магнитов – их постоянное во времени поле не нуждается в синхронизации со взрывными процессами и может быть измерено еще до того момента, когда сборку разнесет на мелкие осколки. Средства измерения известны – преобразователи Холла[118]118
Ток не только создает собственное магнитное поле, но и взаимодействует с полем внешним, следствием чего является генерация ЭДС, о чем читатель знает из раздела, где описан МГД эффект. Если металлическую пластинку, вдоль которой протекает постоянный ток, поместить в перпендикулярное к ней магнитное поле, то на ее краях возникнет разность потенциалов, называемая по имени первооткрывателя этого эффекта. Измерив ее и зная ток, вычисляют напряженность поля. Важно только, чтобы не «вмешивался» скин-эффект – тогда распределения тока и поля будут неравномерными, а результаты измерений – недостоверными. Конденсатор большой емкости нужен для того, чтобы запитывающие преобразователь токовые импульсы были достаточно длительными и скин-эффект не проявлялся.
[Закрыть]. Однако для работы таких преобразователей необходимы высокостабильные источники питания, а этим последним требовалась сеть напряжением 220 В, избавленная от «бросков» – сложная задача для условий высокогорного полигона, где лампочки «мигали» довольно заметно. Запитку датчика Холла сделали «импульсной» от разряда электролитического конденсатора большой (десятки микрофарад) емкости. Заряжаться этот конденсатор мог хоть от даже не совсем «свежих» батареек. На лучи осциллографа выводились два сигнала (рис. 5.39): один – питающего датчик напряжения, другой – с самого датчика. Для снятия показаний достаточно было выбрать на луче питания регламентированное значение напряжения питания датчика и, переведя маркер на другой луч – прочитать значение эдс Холла в этот момент времени. Осциллографы всегда пользовались большими «привилегиями» и обеспечивались электропитанием от стабилизаторов, но в коробочке, где был смонтирован прибор, имелся кусочек постоянного магнита, служивший эталоном поля.
Рис. 5.39
Вверху слева – прибор для измерения индукции магнитного поля; внизу – осциллограммы сигналов: напряжения питания и ЭДС Холла. На лучи осциллографа выводятся два сигнала: один – с питающего датчик конденсатора (который заряжается хоть от даже не совсем «свежих» батареек), другой – с самого датчика.
5.20. Конференция «Евроэм-94». Доклад и «гражданин начальник» в нагрузку
…В ЦФТИ пришло приглашение в Бордо, на конференцию «Евроэм 94», посвященную различным, в том числе – военным, аспектам исследований РЧЭМИ. 12-е управление Минобороны выделило деньги для того, чтобы специалисты подчиненного ему ЦФТИ могли посетить конференцию. Желающих нашлись – тучи. Несколько офицеров стали уговаривать меня написать доклад о взрывных излучателях, причем не только сделать обзор конструкций, но и изложить взгляды на их тактическое применение. Свербили сомнения: уж очень все это было рискованно, но последовали заверения, что разрешение будет оформлено. Мне вручили письмо за подписью начальника института генерала В. Лоборева с официальным приглашением принять участие в «Евроэм» в составе делегации ЦФТИ.
Доклад был написан мгновенно и материалы отправлены в Бордо. Я пришел к Хавеяшеву и попросил об оформлении служебного загранпаспорта. Тот долго вертел приглашение и заключение экспертизы, просматривая чуть ли не на свет, но придраться было не к чему и он пообещал, что «вопрос будет решен». Через неделю я обнаружил, что осчастливлен появлением нового начальника, да какого: Хавеяшев, презрев утвержденную министерством структуру института, подчинил лабораторию своему заместителю по незримой для непосвященных деятельности! Герою этому, по его профессии, а уж, тем более – по темпераменту, подошла бы фамилия «Вездессущий» (присутствует орфографическая ошибка, но в фамилиях такое встречается). Истомившаяся от коллекционирования прослушек и доносов душенька воспарила над этим затхлым мирком, алкала научной славы, но предпринимавшиеся ранее попытки влезть в чужие ниши пресекались законными обитателями. Был бы жив В. Морозов – у Вездессущего не было бы никаких шансов и в данном случае, но увы…
Ветеран незримых схваток с гордостью проинформировал, что по образованию он – авиационный инженер, но, по зову сердца приобрел и другую специальность. Он беззлобно подшутил над присущей ученым наивностью, мешающей им вскрывать грязное коварство империалистических разведок. Далее направленность «задушевки» изменилась, обнажив недоумение собеседника тем, что многие стремятся к заграничным поездкам, в то время как буквально ничего способствующего духовному совершенствованию в таковых нет и не предвидится. Подумалось, что лаконичнее были бы поэтические строки:
Бездуховно и нагло там люди живут,
Потребляют товар и друг в друга плюют.
А у нас колосятся родные хлеба,
Мы живем в мире счастья, любви и добра!»
Документы на получение загранпаспорта были для отправки в министерство мной подготовлены. Вездессущий сказал, что оформление поручено ему. Возражать было бессмысленно, но слегка облажался обладатель чистых рук, горячего сердца, ну, насчет холодной головы-то… Короче, Вездессущий оставил свои автографы с датой на письме ЦФТИ и на командировочном предписании…
…Позвонили из министерства и сказали, что документы на загранпаспорт «надо забрать, потому что они только что поступили и за два дня до начала конференции мы ничего не успеем оформить». Поблагодарив, удалось стать обладателем полезного доказательства: Вездессущий продержал у себя документы более двух месяцев, прежде чем выслать их (об этом свидетельствовали даты на входящих и исходящих штампах). В тот же день Хавеяшев попросил «получить от военных такое же приглашение на Вездессущего» (у того загранпаспорт был). Решив, что устраивать скандал именно сейчас ни к чему, я сухо посоветовал страждущим обратиться к руководству ЦФТИ.
К тому времени 12-е управление «передумало» и урезало средства до минимума, дав возможность поехать всего нескольким руководителям ЦФТИ. Генерал Лоборев, которому доклад понравился, представил его на конференции. Обменяться впечатлениями не довелось, потому что важные серии испытаний шли одна за другой.
5.21. ЭМБП– бревно для Полифема в руках Одиссея. Совет высоколобого начальника
…Испытания в Кызбуруне-3 проходили в присутствии полковника В. Наместникова – старшего офицера ГРАУ. Излучение ИМГЧ вывело из строя ночной прицел и оптические взрыватели неконтактных мин на дальностях до 60 м. Подрывы ФМГЧ блокировали функционирование магнитных взрывателей на несколько минут на удалении в 5–7 метров.
Неожиданно была получена телеграмма с требованием срочно прибыть в Москву (рис. 5.40): намечался визит чиновника очень высокого ранга, вокруг которого дирекцией планировались «половецкие пляски» с целью получения вспомоществования. Без достаточного финансирования ЦНИИХМ уже задыхался, но я в первую очередь отвечал за свое дело, да и имел представление о манерах поведения подобных лиц. Расчет оказался верным: визит чиновника состоялся лишь полгода спустя.
Следующая серия испытаний проводилась по просьбе друзей из филиала НИИ «Базальт» – разработчиков противотанковых гранатометов.
На полигоне Главного автобронетанкового управления стоял один из немногих танков, оснащенный системой активной защиты (САЗ).
Рис. 5.40
Переписка по вопросу «доставки Прищепенко»
САЗ – это миниатюрный комплекс ПВО танка (рис. 5.41). Радиолокатор миллиметрового диапазона контролирует пространство впереди боевой машины, летящие к танку предметы селектируются и навстречу тем, которые представляют опасность – выстреливаются осколочные боеприпасы. Эффективность САЗ по таким целям, как реактивные гранаты или управляемые противотанковые ракеты близка к абсолютной: в моем присутствии были расстреляны несколько гранат, подлетавших к танку с разных курсовых углов. Для «Базальта» эта работа была поиском концепции гранатомета нового поколения. Помочь ему «пробить» активную защиту должны были излучатели трех типов: ВМГЧ, ФМГЧ и новые пьезоэлектрические генераторы частоты (ПЭГЧ, рис. 5.42). Последние имели много общего с ФМГЧ.
Электрические заряды в диэлектриках связаны и не могут двигаться свободно, как в металлах. Диэлектрики способны накапливать энергию: если “закоротить” заряженный конденсатор (удалив таким образом свободные заряды с металлических обкладок), а затем снять “закоротку”, спустя небольшое время конденсатор снова окажется частично заряжен. Причина в том, что изолятор при зарядке был поляризован внешним полем. При «закорачивании» исчезло поле, но не направленная поляризация. Возвращение поляризации к равновесному значению вызывает протекание тока смещения, вновь заряжающего конденсатор.
Рис. 5.41
Радиолокатор или оптико-электронная система САЗ контролирует пространство впереди боевой машины, летящие к танку предметы селектируются и навстречу тем, которые представляют опасность, выстреливаются осколочные боеприпасы. Слева направо, верхний ряд: Танк Т-80, оснащенный САЗ «Дрозд», более чем на два десятилетия опередившей зарубежные аналоги; радиолокатор (1) и мортирки 2 боеприпасов защиты, головные части которых окрашены в красный цвет. Нижний ряд: боеприпасы защиты САЗ «Дрозд 1» и «Дрозд 2» (более крупного калибра); израильская САЗ Iron Fist, «активно защитившая» бронетранспортер от подлетавшей кумулятивной гранаты
Структурные элементы некоторых видов диэлектриков (сегнетоэлектриков) обладают собственными электрическими дипольными моментами. Сегнетоэлектрики также сохраняют остаточную поляризацию и деполяризуются при нагревании до точки Кюри. Они более «капризны», чем ферромагнетики: слишком мощная ударная волна может индуцировать в них столь сильное поле, что возникнет пробой и ток смещения не будет заряжать металлические обкладки, между которыми расположено рабочее тело (РТ). Но пусть все обошлось без пробоя и обкладки заряжаются, создавая в РТ внешнее поле. Когда, при электрических колебаниях, направленность поля меняется, состояние вещества РТ становится неравновесным и оно излучает.
Как ПЭГЧ, так и ФМГЧ, представляли излучатели РЧЭМИ, мощности которого было достаточно только для создания перегрузок в электронных цепях целей, да и то кратковременных (сотни миллисекунд). Эффекты определялись незначительной энергией, которая содержалась в веществах рабочих тел. Но для временного ослепления САЗ хватило и этого…
Срабатывание всех без исключения типов излучателей в тот момент, когда решался успех перехвата – обеспечило прорыв САЗ. Разработчики защиты пытались (правда, довольно вяло) оспорить результаты, но все, чего они добились, был переход к опытам с боевой стрельбой и здесь спорить стало трудно: без воздействия РЧЭМИ САЗ перехватила все летящие на танк гранаты, но «пропустила» все гранаты, подлет которых сопровождался подрывом макетов ЭМБП.
Рис. 5.42
Схема пьезоэлектрического генератора частоты (слева). В таком генераторе заряд взрывчатого вещества (ВВ) 1 состоит из двух конусов с разными скоростями детонации (у внутреннего конуса она меньше), чтобы обеспечить плоский фронт детонационной волны. Достигнув буфера 2, детонация формирует в нем ударную волну (УВ), которая, в несколько раз ослабившись (иначе – произойдет пробой), переходит из буфера в рабочее тело (РТ) 3 из сегнетоэлектрика, вызывая нагрев вещества РТ до температуры, превышающей точку Кюри и переход его в параэлектрическое состояние. Структурные элементы разрушаются и направленная поляризация вещества исчезает, что вызывает протекание тока деполяризации. Этот ток заряжает последовательно соединенные конденсаторы: образованный металлизованными поверхностями на РТ и обычный 4, подсоединенный к обмотке 5 для получения нужной частоты колебаний в контуре. Другой вывод обмотки подключен к обкладке РТ. Через промежуток времени, определяемый емкостью и индуктивностью контура, ток, а значит, и поле в РТ меняют полярность (осциллограмма справа). Полуволны тока одной полярности сравнительно велики (происходит «подкачка» энергии в контур за счет деполяризации), а другой – значительно меньше из-за отбора энергии, том числе и на излучение (из вещества, ставшего неравновесным в поле изменившегося направления). Взрыв используется лишь как спусковой механизм, но его энергия на пять порядков превышает заключенную в веществе рабочего тела
Это был очень важный результат. На демонстрацию были приглашены В. Базилевич (один из главных конструкторов «Базальта») и В. Житников (заместитель начальника управления ГРАУ). ЭМБП не подвели и на показе, обеспечив прорыв абсолютно всех гранат, подлетавших к танку с самых разных курсовых углов, в том числе – при разрыве ЭМБП на корме танка (этого, вообще-то, не требовалось). Тем вечером запасам спирта пришел конец. Причины для ликования, действительно, были.
Во-первых, ФМГЧ и ПЭГЧ идеально вписывались в те габариты, которые «Базальт» мог выделить в гранатомете под вспомогательную гранату. Габариты излучателей можно было снизить еще, но это не имело смысла, потому что их диаметры и так были меньшими, чем у подходящих по характеристикам взрывателей. Во-вторых, для вспомогательной гранаты требовался контактный подрыв, который мог обеспечить производившийся с 50-х годов, отработанный и надежный взрыватель М-6 к минометным боеприпасам. В-третьих, перечень целей для нового оружия исчерпывался танками с САЗ, и эффективность ЭМБП при стрельбе по такой цели была продемонстрирована абсолютная.
Концепция нового гранатомета просматривалась следующая (рис. 5.43).
Рис. 5.43
Боевое применение гранатомета-«двустволки» для поражения танков, оснащенных системой активной защиты. На врезке – 42-мм реактивная граната «Атропус» с электромагнитной боевой частью, лидирующая при выстреле из гранатомета. Осциллограмма внизу – пример эффекта временного ослепления автоматической миллиметровой РЛС наведения САЗ при перехвате ракеты. Слева – нормальный сигнал от блока определения дальности до цели. Справа – после разрыва 30-мм ЭМБП в нескольких метрах от РЛС под углом 160° по отношению к оси антенны. Система потеряла способность оценивать расстояние до цели, пуск и перехват не состоялись. Момент взрыва ЭМБП показан стрелкой
Помимо малокалиберного ствола с ЭМБП, ручной противотанковый гранатомет имеет еще один ствол (большего калибра) со второй – кумулятивной – гранатой.
При выстреле сначала запускается двигатель электромагнитной, потом – с небольшой задержкой – кумулятивной гранаты. Радиолокационное сечение первой очень мало, поэтому защита пропускает ее. Попав в танк, ЭМБП временно ослепляет его защиту, обеспечивая прорыв кумулятивной гранаты к броне. Радиус ослепления всего пара – тройка метров, но этого достаточно: антенна радиолокатора расположена на башне танка, и если промах больше, то и летящая вслед кумулятивная граната не попадет в цель (попросту стрелок «промазал»).
Можно ли повысить чувствительность САЗ, чтобы она перехватила и ЭМБП? Можно, но это не поможет танку: вспомогательную гранату уничтожат на подлете, а кумулятивная все равно поразит машину – защите уже не останется времени для повторной реакции. К тому же, при повышенной чувствительности САЗ, быстро исчерпывается ее потенциал: немногие оборонительные выстрелы расходуются на отражение ложных угроз (пролетающих осколков, обломков и даже птиц).
Сразу после испытаний состоялся визит ближайшего помощника тогдашнего президента, планировавшийся полгода назад. Вначале чиновник и руководство ЦНИИХМ беседовали пару часов, а потом для доклада был приглашен и я. Директор нашептал: «Александр Борисович, только очень просто, максимально просто!» Такая установка была небезосновательна, потому что, выслушав доклад, чиновник с энтузиазмом предложил «сжигать» аппаратуру на «подводных лодках, нарушающих наши границы», а потом спросил, не придется ли защищать от излучения сотрудников складов, где будут храниться ЭМБП и экипажи оснащенной ими боевой техники.
Заунывные мольбы о подаянии пропали втуне: чиновник уехал, посоветовав дирекции «взять кредит в банке».
5.22. «Атропус» означает «Неотвратимая», а «все противоминное рассосется». Изощренность Вездессущего (это – фамилия такая необычная!)
Новогодние праздники еще не закончились, когда меня 02 января 1995 года вызвали в ГРАУ, на очередное совещание. Началась, причем неудачно, операция в Чечне и военное руководство пыталось пожарными мерами компенсировать изъяны в боевой подготовке войск, дав указание форсировать их оснащение новыми образцами оружия, не выделив на это финансирования. Нелепость ситуации понимали и в ГРАУ, но приказ оставался приказом. Так или иначе, В. Базилевич дал обещание «за счет внутренних резервов» обеспечить производство реактивных гранат: «Атропус» и другой, калибром 105–125 мм для борьбы с минами. Позиция Базилевича была достаточно ясна в том, что касалось «Атропуса»: это был логичный шаг к созданию гранатомета нового поколения, который предстояло разработать и без понуканий. С «противоминной» гранатой все было сложнее: противник широко применял методы минной войны, ставил нажимные и натяжные мины, а, кроме них – самодельные ловушки и диверсионные фугасы. Против мин с механическими взрывателями РЧЭМИ бессильно, а схем «самоделок» было великое множество, с самыми разнообразными исполнительными элементами (на основе мобильников, детских радиоуправляемых игрушек, кухонных таймеров и пр.) и было неясно, какие эффекты в них вызовет облучение: то ли мгновенный подрыв, то ли временное ослепление. Для выяснения требовалось немалое время и средства, а без такой информации нельзя было даже написать инструкцию, как применять новое оружие.
Для «противоминного» ЭМБП не годился контактный подрыв, потому что прикопанные мины «напрямую», не могли быть облучены разорвавшейся на грунте гранатой, а значит, воздействующая на них плотность энергии РЧЭМИ была бы существенно снижена. Для подрыва на высоте в несколько метров, требовался радиолокационный неконтактный взрыватель, вроде тех, которые послужили мишенями в 1986 году. Они были разработаны для применения в артиллерийских снарядах: стрельбовой перегрузкой в них разрушались разделяющие компоненты батарей перегородки, при этом питание поступало в электронную схему взрывателя. Но перегрузка в канале артиллерийского ствола достигала 13000, а при выстреле из гранатомета – 6000, так что приведение батарей в действие во втором случае не гарантировалось. Кроме того, чтобы исключить возможность подрыва снаряда в опасной близости от орудия, взрыватель взводился с некоторой задержкой, небольшой для условий артиллерийской стрельбы, но почти равной характерным полетным временам реактивной гранаты. И, наконец, взрывателю металлический корпус снаряда служил элементом антенны, а сделать цельнометаллическим корпус ЭМБП было нельзя, так как при этом невозможен выход РЧЭМИ. Все эти проблемы наверняка можно было решить, но разработчики взрывателей заявили: необходимо создание нового изделия, что займет не один год. Это была обоснованная позиция, я вновь посетил ГРАУ, где был сочувственно выслушан, но офицеры сказали, что «решение принято не на нашем с тобой уровне, машина запущена, и ее не остановить». Базилевич тоже разделял мои опасения, но считал, что противоминный вариант «рассосется сам собой», а ставить ЭМБП на реальные носители все равно придется, так что лучше начинать испытания побыстрее. Дальнейшие события подтвердили его правоту.
Первоочередная реализация «противоминного» варианта была нежелательной потому, что именно от первого образца ждут наглядной демонстрации эффективности нового оружия. Поскольку минные поля могли быть смешанными (состоять из различных, в том числе механических мин), возможны были подрывы на облученных участках. Нареканий (пусть несправедливых) в таких случаях было не избежать.
ЭМБП могли бы «прозвенеть» не при разминировании, а там, где роль электроники витальна, то есть – в наиболее маневренных видах боя. Если мины выходили из строя на несколько минут, то совершенно иные – на четыре порядка меньшие (в сотни миллисекунд) длительности ослепления необходимы для срыва атаки ракеты класса «воздух-воздух». Плотности энергии РЧЭМИ, для такого применения требуются тоже меньшие. Еще более ценно, что, в отличие от зрелищно разлетающихся в разные стороны от самолета инфракрасных ложных целей, РЧЭМИ эффективно против ракет с любым принципом наведения, что тоже было подтверждено. Кроме уже продемонстрированного «Атропусом» преодоления активной защиты танка, можно было привести и другие примеры боевых ситуаций, в которых возможности ЭМБП проявились бы вполне:
• оборона корабля от низколетящей ракеты (при автоматической стрельбе малокалиберными ЭМБП в упрежденную точку моря перед ракетой с последующим короткозамедленным подрывом рикошетирующих снарядов, что сделало бы ракету «незрячей»);
• прикрытие боевых блоков МБР на конечном участке траектории (требуемая длительность временного ослепления канала подрыва противоракеты – десятки миллисекунд);
• защита от высокоточных кассетных суббоеприпасов, в фазе поиска ими цели – на ближних подступах к обороняемому объекту.
Иными словами, рациональным эффектом применения ЭМО является функциональное поражение цели на такое время, чтобы она не смогла выполнить свою боевую задачу. Это время зависит от длительности цикла обработки информации целью. Эта длительность может служить масштабом эффектов воздействия:
– короткое последействие, т. е. перегрузка электронных цепей в течение времени, равного длительности одного или немногих циклов обработки информации – незначительно влияет на вероятность выполнения целью боевой задачи ввиду того, что выработка команд производится по накоплении информации за довольно большое число циклов;
– временное ослепление – перегрузка в течении времени, значительно превышающего длительность цикла обработки информации, существенно снижающая вероятность выполнения целью боевой задачи, как это было проиллюстрировано на примере с САЗ;
– стойкий отказ.
Механизм воздействия РЧЭМИ на полупроводниковые приборы к моменту написания этой книги не вполне ясен. Попытка его описания сделана Л. Алтджильберсом, указавшим, что при протекании импульсных токов возможны следующие эффекты:
– утрата диодами выпрямительных функций;
– интермодуляционные искажения;
– «запирание» микросхем при накоплении в них объемного заряда;
– тепловой пробой (при воздействии сравнительно длительных (микросекундных) импульсов);
– электрический пробой (при воздействии наносекундных и более коротких импульсов).
Вследствие утраты диодами своих функций, подвергаются воздействию и другие элементы. Воздействие возможно также через паразитные связи, наводки на соседних кабелях, путем ударного возбуждения колебаний на различных резонансных частотах. Подобный сигнал преобразуется в «видеоимпульс» нелинейными устройствами, такими как биполярные транзисторы, и, благодаря своей аномальной мощности, вызывает срыв передачи данных, сброс информации, а в некоторых случаях – приводящие к повреждениям наиболее чувствительных элементов перегрузки.
Ясно, что данное описание может объяснить наблюдавшиеся эффекты лишь на качественном уровне и далеко не все. Так, например, указанными выше причинами нельзя объяснить зарегистрированное однажды восстановление работоспособности электроники спустя несколько суток после воздействия РЧЭМИ.
.. В ЦНИИХМ вести об экстренных работах вызвали неуместный восторг, хотя из моего доклада ясно следовало, что увеличения финансирования не предвидится. Похоже, руководство вообще не воспринимало ситуацию адекватно: Хавеяшев, в числе других директоров институтов, подписал письмо правительству о трагическом положении в военной науке, обосновывав необходимость многократного увеличения финансирования. Бедняжка восхищался своей и своих коллег смелостью, пребывая в твердой уверенности, что финансирование со дня на день будет увеличено. Все эти потуги выглядели наивно, потому что примерно в это же время Ельцин, посетив танковое производство, поделился с окружившими его работницами: «Да кому нужны ваши танки? Они сразу пойдут в переплавку!»
Пополнялась коллекция анекдотов и в ЦНИИХМ: как в лужу пернул поднаторевший в незримых схватках: «А вы поставляйте (на невидимый фронт) часть изделий, которые делаете для ГРАУ, а армейцам скажите, что они недостаточно заплатили!» Пойти на неизбежный скандал с заказчиком, пусть несвоевременно и недостаточно, но все же финансировавшим работы, и тайно сделать все бесплатно – действительно было сильным предложением. Вездессущий энергично лоббировал интересы представителей своего ведомства, понабравшихся знаний во время организованных Хавеяшевым экскурсий. На вопрос, как будут оплачиваться предлагаемые работы, последовало поппурп об опасностях незримой службы. Аргументация не выдержала столкновения с логикой: в ЦНИИХМ трагических случаев насчитывалось предостаточно, но мысль о том, что надо оплачивать тройной риск работы (с ВВ, высоким напряжением и излучением) в недоохлажденную голову не приходила. В то время моя зарплата в ЦНИИХМ (даже – с учетом и надбавки за степень доктора наук) лишь на несколько рублей превышала стоимость «единого» месячного проездного.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?