Электронная библиотека » Александр Прищепенко » » онлайн чтение - страница 4

Текст книги "Шелест гранаты"


  • Текст добавлен: 21 декабря 2013, 05:09


Автор книги: Александр Прищепенко


Жанр: Военное дело; спецслужбы, Публицистика


сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 23 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +


Рис. 1.38


Йодистый азот – одно из самых чувствительных взрывчатых веществ. Касание нижнего образца птичьим пером привело к возникновению детонации. Расположенный выше образец йодистого азота отделен от взорвавшегося значительным воздушным промежутком, но детонацию вызвал движение воздуха от первого взрыва (ударная волна). Промышленно синтезируемые ВВ, конечно, не так чувствительны, как йодистый азот: чтобы инициировать в них детонацию, давление в ударной волне должно превышать 20 тысяч атмосфер

Новое достижение немедленно нашло применение. Был воспроизведен кумулятивный заряд, который описал Лей. Слой иодистого азота наносился на конус из пластилина, но «бронебойный» эффект не был отчетлив, потому, что в первых опытах подрыв производился поднесением спички к основанию конуса. Углубленное изучение литературы показало: инициирование должно проводиться с вершины (рис. 1.39). Эффект стал заметнее, а, когда угол раствора конуса был увеличен, танк-мишень разнесло, несмотря на то, что пластилин затвердел на морозе (через много лет стало ясно, что из пластилина формировалась не кумулятивная струя, а что-то похожее на ударное ядро, рис. 1.40).


Рис. 1.39


Моделирование сжатия медной воронки (врезка слева вверху): взрывом, фронт которого обозначен «радугой». Из воронки с острым углом раствора вначале выдавливается самый высокоскоростной элемент. Далее: воронка сжата, кумулятивная струя сформировалась, внедрилась в броню. Внизу: металл струи расходится по стенкам каверны, вылетая из нее в направлении, обратном движению струи. Бронепробитие продолжается, пока кумулятивная струя не будет израсходована на всю длину


В военные годы такие заряды называли «бронепрожигающими», потом термин «кумулятивный» (от латинского cumulo – накапливаю) сменил ошибочный. Кумулятивная струя (КС) ничего не «прожигает» и даже сама состоит не из расплавленного, а сравнительно холодного металла, но такого, в котором огромное давление нарушило прочностные связи и потому ведущего себя, как жидкость.




Рис. 1.40


При взрыве заряда с облицовкой, угол раствора которой значителен, формируется поражающий элемент называемый ударным ядром (слева). Правда, на ядро он мало похож, и автор полагает, что более точен английский термин Explosively Formed Projectile – «снаряд, формируемый взрывом». Настоящее ударное ядро может пробить броню толщиной до 0,8 диаметра заряда, но обеспечивает значительный заброневой эффект (в центре: ядро прорвалось сквозь броню). Справа: танк из пластилина, разбитый ударным ядром


Любой желающий может наблюдать кумуляцию, даже если ему не разрешают ничего взрывать. Начать можно с наблюдений за падением в воду шарика (он должен быть несмачиваемым, например – из пластилина). При падении и погружении в воду, шарик создаст в ней полость, «схлопывание» которой приведет к формированию струи, бьющей вверх. Но струя эта будет «толстой» и невысокой.

Улучшить «кумулятивный заряд» можно, применив наполненную водой пробирку: отпущенная в строго вертикальный полет с высоты 5–6 см, она, при ударе о твердую поверхность, «выдаст» мощную, тонкую струю, бьющую выше чем на метр. Кумулятивная воронка образуется в фазе полета – мениск смачивающей стекло воды в невесомости стремится принять форму, близкую к полусфере. Потом – удар и стенки полусферы устремятся вниз, «схлопывая» полость и формируя струю. Освоив «низковысотные» опыты, можно, пожертвовав пробиркой, отпустить ее на пол от уровня груди. Удачное стечение обстоятельств приведет к тому, что капли – элементы кумулятивной струи – достигнут потолка.

Но опять же – не то: да, образуется струя, но что она может? Придется подобрать на свалке старый телевизор.

КС будет сформирована без взрыва – за него сыграет высоковольтный разряд в воде. Разрядник изготовим из обрезка «телевизионного» кабеля РК-50 или РК-75 внешним диаметром 10 мм. К оплетке припаяем медную шайбу с отверстием 3 мм – соосно с жилой. Другой конец кабеля зачистим на длину 6–7 см, и за центральную (высоковольтную) жилу укрепим на конденсаторе, обеспечив контакт жилы с его выводом.

Роль воронки выполнит мениск воды. Желательна большая его глубина, а значит, стенки трубки должны хорошо смачиваться. Стеклянная неприятна тем, что разлетается на осколки. Хорошо смачиваемый эбонит редок, но выход есть: вкладыш из бумаги в трубке из любого диэлектрика. Калибр «кумулятивного заряда» (внутренний диаметр трубки) – 6–8 мм.

О воде. Та, что из-под крана – не годится: она хорошо проводит и ток пройдет по всему объему. В воде же для инъекций, приобретенной в аптеке, солей нет и вся энергия разряда выделится в области пробоя, смоделировав взрыв.

Разряд в воде между шайбой и жилой кабеля, обеспечит высокое напряжение – для этого и нужен телевизор, в котором есть высоковольтный источник. Работа с напряжением 25 киловольт, которое подается на кинескоп, требует навыка, поэтому, если есть источник на 6–7 киловольт, лучше использовать его (рис. 1.41). Для желательной в опытах энергии разряда около 10 Дж, напряжение U имеющегося у вас источника определит и емкость С конденсатора (E=CU2/2). После каждого опыта конденсатор обязательно надо закорачивать, чтобы не «дернуло» остаточное напряжение на нем, но вообще-то этого все равно не избежать. Если нет серьезных проблем с сердцем, «встряхивание» будет безвредным и наилучшим образом научит правилам безопасной работы с высоким напряжением.

Соединим кабель и трубку обрезком шланга для душа. Воду нальем с помощью шприца: в ней не должно быть пузырьков, они исказят течение. Убедимся, что мениск образовался на расстоянии примерно в сантиметр от шайбы.


Рис. 1.41


Установка для формирования водяной кумулятивной струи (КС) включает (слева):

1 – источник высокого напряжения;

2 – высоковольтный конденсатор;

3 – зачищенный на половину длины радиочастотный кабель

4 – трубка с налитой водой.

В центре – пробитие слоя желатина струей воды и крупный план этой струи. КС образовалась из вогнутого мениска воды, при воздействии на него ударной волны от разряда. Энергия конденсатора коммутируется при помощи стержня из оргстекла, сближающего электроды (стержень и искра разряда при коммутации видны в нижнем правом углу снимка); справа – выход из слоя т с борта подводной лодки желатина вошедшей в него под углом кумулятивной струи

Зарядим конденсатор и замкнем контур. В воде пробой разовьет большое давление и образуется ударная волна, которая и «схлопнет» мениск.

Тонкую и быструю КС вы обнаружите по тычку в протянутую в метре над установкой ладонь или по водяным каплям на потолке. Увидеть ее невооруженным глазом сложно, но можно получить кинограмму (на черном фоне). Для этого подойдет камера CASIO Exilim Pro EX-F1, позволяющая снимать видео со скоростью до 1200 кадров в секунду. Правда, искра «подсвечивает» КС и «бронепробитие» можно заснять и недорогим фотоаппаратом, открывая в темноте его затвор и затем замыкая контакт. В качестве «брони» подойдет желатин.

Настроив установку, можно экспериментировать:

– менять толщину и угол расположения слоя желатина, посмотреть, как влияет на «бронепробитие» разделение преграды на несколько разнесенных слоев;

– менять диаметр трубки и расстояние между воронкой и точкой «взрыва», наливая в трубку разное количество воды;

– устанавливать в трубке на тонких ниточках «линзы» из пластилина, меняя тем самым форму фронта УВ, воздействующей на воронку;

– не ставить в трубку бумагу и сделать мениск выпуклым – тогда КС не образуется, а в разные стороны полетят брызги.

Полезно знать выводы теории кумуляции:

– если параметры удара КС обеспечивают ожижение материала преграды, то дальнейшее повышение ее скорости не имеет смысла – бронепробитие зависит в основном от длины струи;

– оно же зависит от соотношения плотностей брони и КС.

Понятно, что неудача попытки пробить фольгу будет обусловлена не неблагоприятным соотношением плотностей, а тем, что водяная струя установки слабовата для ожижения алюминия…

…Йодистый азот не мог долго храниться, он разлагался, окрашивая все вокруг парами йода. Разложение многократно ускорялось в присутствии алюминия (поднимались бурые пары), а алюминиевая фольга была основным конструкционным материалом в ракетах. Так что йодистый азот не подходил для «боевого» применения.

Да и «битвы» прекратились, участники игры уже не штамповали массово десятки танков, а производили единичные, но все более технически сложные устройства, с том числе – многоступенчатые ракеты. Первой ступенью служил «пулевой» двигатель на черном порохе. Он придавал ракете начальную скорость, но и перегрузки при пуске были большими, иногда ломавшими всю конструкцию. Такие случаи прекратились, когда нос первой ступени был сделан упиравшимся в сопло второй, прочный стальной корпус которой воспринимал нагрузку. Ступени соединялись все той же довольно прочной смесью дымного и бездымного порохов. Выгорание топлива в предыдущей ступени приводило к воспламенению этой связки, отработанная ступень освобождалась и отлетала, а горение связки поджигало топливо следующей ступени, сгоравшее медленнее.

Ракеты летали красиво, быстро и довольно устойчиво, потому что имели развитые аэродинамические поверхности (рис. 1.42).

Под влиянием книги Бриджмэна «Один в бескрайнем небе» был также построен ракетоплан, стартовавший из трубы. Сам ракетоплан был полностью сделан из затвердевшей смеси порохов и, когда отделялся от ракеты-носителя, летел, оставляя хорошо видный форс пламени и дыма.




Рис. 1.42

Слева направо: многоступенчатая ракета, ракетоплан с ускорителем, ракета подводного старта. Справа – старт с борта подводной лодки настоящей ракеты «Поларис»


В те годы в СССР поднялся большой шум по поводу американской ракеты «Поларис»[22]22
  UGM-27A «Поларис» – ракета подводного старта, с двигателями на смесевом твердом топливе, принята на вооружение ВМС США в 1960 году. Максимальная дальность стрельбы первой модификации – 2200 км. Запускалась с атомной подводной лодки, идущей на перископной (20–25 м) глубине.


[Закрыть]
, ее старты из-под воды часто показывали по телевидению. Накопленный опыт позволял воспроизвести подводный старт. Несколько попыток запустить ракету с помощью тока от батарейки были неудачными, провода мешали, а их небольшая длина делала предприятие небезопасным. Тогда был сооружен стенд для запуска, автоматика которого работала на хорошо освоенной пороховой смеси. В грунт втыкался стальной штырь. За его надводную часть цеплялась петля из нитки, удерживавшая пусковую трубу и закрепленная в пороховой смеси. Когда смесь поджигалась, нить перегорала и пусковая труба уходила под воду. Поверхность воды бурлила несколько секунд от газов горящей пороховой колбаски (за это время можно было отбежать), но, наконец, горение доходило до запального отверстия в трубе, вода с урчанием исторгала большой пузырь дымных газов, а из него вылетала ракета с уже работающим двигателем и очень быстро вращающаяся (иначе она кувыркалась бы при взлете). Недоставало главного – «ядерного взрыва», которым завершаются полеты ракет.

Уже было прочитано достаточно, чтобы понять, что взрывчатое вещество (ВВ) для такого применения должно быть инициирующим (то есть – взрывающимся от огневого импульса), потому что ракеты могли нести боеголовки весом в граммы и использовать в них тротил не имело смысла – чтобы возбудить его детонацию уже нужны были

граммы инициирующего ВВ. В советских изданиях упоминались только гремучая ртуть и азид свинца, но для их синтеза требовались либо сильная кислота, либо токсичное вещество. Знание немецкого языка позволило прочитать книгу Кройтера, попавшуюся на глаза в магазине иностранной литературы. Там нашлись упоминания о ДНДАФ и ГМТОД. Все исходные вещества открыто продавались в аптеках или магазинах химреактивов. Правда, ГМТОД подванивал мочой, но это было несущественно. Смешение взрывчатки с порошком алюминия приводило к тому, что взрыв происходил с яркой вспышкой, но если алюминия было слишком много, детонация затухала. Но ведь можно было не смешивать их, а просто подорвать заряд, отделенный от алюминиевого порошка… После нескольких опытов была создана и испытана «атомная» боеголовка. Подрыв ВВ в ее донной части приводил к распылению алюминиевой пудры, ее смешению с воздухом и воспламенению от газов взрыва. Короткая вспышка слепила, а образовавшееся из окислов белое облако очень напоминало «атомный гриб»…

…Отец, учась в военной академии, славился образцовым выполнением чертежей. Мне этот талант не передался: пространственное воображение позволяло читать чертежи, но выполнять их аккуратно не хватало терпения. Отец старался как-то компенсировать недостаток и назначил премию: по хорошо сделанным тушью, на ватмане, чертежам, пообещал изготовить в мастерской ракетные двигатели из металла. Мучения окупились: двигатели были изготовлены (рис. 1.43). С ними был связан последний (и самый сложный) проект увлекательной эпохи – построен бомбардировщик (рис. 1.44). Он значительно превосходил по размерам предшественников, имел складывающиеся крылья. Долгими были раздумья, чем снарядить двигатели. Галсит был отвергнут – он просто прожег бы их. Выбор был сделан в пользу трубчатого бездымного пороха.


Рис. 1.43

Ракетные двигатели из металла, бомбы, ракеты


Но не двигательная установка была «изюминой» проекта, а автоматика на колбасках пороховой смеси, внутри которых для прочности была пропущена медная проволока. Загораясь одновременно с пуском двигателя, колбаски последовательно пережигали рад нитей, освобождавших створки бомболюков и те открывались пружинками. Затем пережигались крепления авиабомб.

…Как только заработал двигатель, сразу выяснилась слабость конструкции: хвостовая часть оторвалась и, закувыркалась в воздухе. Сам же бомбардировщик упал неподалеку и мощно горел. Я подбежал и сквозь пороховой дым увидел, как раскрылись створки бомболюка и газы вытолкнули из него бомбу. Едва успел отпрыгнуть – она взорвалась, раскрыв веер порохового дыма…


Рис. 1.44

Тяжелый бомбардировщик. Под его крылом – «фугасные» бомбы


…Наступило время, когда хобби пришлось оставить – мне уже исполнилось 16 лет и, вняв уговорам родителей, я стал, дополнительно к освоенному в школе немецкому, изучать английский язык. Преподавательница в свое время учила и отца на курсах ГРУ. Отец сохранил о ней впечатления, как о крайне придирчивой особе и был удивлен, когда, справившись об успеваемости сына, получил положительный отзыв. Не исключено, что таким образом природой были компенсированы плохие способности к черчению.

Предстоял первый важный экзамен – поступление в институт. Эксперименты неугомонного советского премьера Хрущева в сфере образования привели к тому, что 1966 год стал выпускным для окончивших десяти– и одиннадцатилетнее обучение в школах, а значит – годом двойного конкурса во все институты. Был выбран

Московский инженерно-физический институт – учебное заведение атомного ведомства (Министерства среднего машиностроения, Средмаша). В отличие от авиационного института или училища им. Баумана, там не так мучили студентов чертежными работами, да и экзамены принимали раньше, поэтому, в случае неблагоприятного исхода, возможность поступить в другой институт оставалась. Несмотря на хорошую успеваемость в школе, родители наняли репетиторов, которые дополнительно подготовили к экзаменам по физике и математике, но все равно сессия была адом – конкурс в МИФИ в тот год составлял 20 человек на место. В конце сессии пришлось почувствовать, что такое сильные головные боли, но это показалось ерундой по сравнению со счастьем увидеть свою фамилию в заветных списках, вывешенных у входа в МИФИ!

2. Ветер в стали

2.1. «Изо всех сил старайтесь стать образованными, воспитанными людьми и берегите себя»

Тикубасё. 9 февраля 1383 года. Третий год Эйтоку


Учиться в МИФИ было трудно. Неудовлетворительные оценки на первых курсах не миновали многих, а треть поступивших была отчислена. Однажды на экзамене обратил на себя внимание студент, монотонно бубнящий ответ. Лицо экзаменатора вытянулось от удивления, он заглянул в учебник, потом начал шептаться с сидевшими рядом коллегами. Удивляться было чему: студент заучил наизусть пару сотен страниц с многочисленными формулами! Этот подвиг, воистину достойный Геракла, пропал втуне: парню не зачли экзамен, потому что решить качественные задачи и ответить на дополнительные вопросы он не смог. Острое желание несмотря ни на что «стать ученым» привело некоторых в психиатрические клиники. Но успешная учеба еще не является гарантией успеха в дальнейшем: можно разбираться в ходе рассуждений тех, кто заложил основы дисциплины, но не быть способным к синтезу – творческому объединению их идей со своими собственными.

Счастливчики, сочетавшие уникальную память и интеллект, встречались: один из приятелей на спор пролистал несколько десятков страниц заведомо незнакомой ему книги и потом свободно воспроизводил любой из абзацев. Я же, не обладая выдающейся памятью, на экзаменах пользовался шпаргалками. Обнаружение шпаргалки преподавателем влекло запрет на повторную сдачу экзамена во время сессии, но за все годы пришлось быть пойманным лишь раз. Избежать последствий огромных нагрузок помогали занятия спортом, выступления за сборную команду МИФИ. Не обходилось и без «спорта сильных и смелых», как на условном языке именовался преферанс. Игра в карты строго преследовалась ректоратом, да и правители страны – по давней традиции, людишки недалекие – подражали вкусам Ленина, считавшего игру в карты предосудительной, но обожавшего шахматы. Сбросить напряжение удавалось, конечно, и в каникулы, которые я проводил на спортивных сборах, а также – отдыхая с родителями (летом 1968 г. – в закарпатском селе Камьяница).

…В тот год обстановка настораживала: в окрестных лесах стояли солдатские палатки и бронетехника, поход за грибами был чреват встречей с патрулем и нудными расспросами «откуда-куда-зачем». Однажды, боясь опоздать на автобус, идущий в Ужгород, я в спешке натянул отцовские форменные брюки, в которых он ходил по грибы. В «вароше»[23]23
  Город (венг.). Язык жителей Закарпатья – смесь украинских, словацких, венгерских и русских слов, что отражает историю этого края, побывавшего во владении многих государств. В кофейнях бывшего Унгвара иные пожилые дамы беседовали и на немецком.


[Закрыть]
ко мне подошел измученный поисками, одетый в гражданское, человек и, приглушенно сказав «здравия желаю», спросил, как пройти к штабу корпуса. Его ввели в заблуждение брюки и моя короткая стрижка. За обедом, рассказав о случае, я заметил тень, промелькнувшую на отцовском лице. Когда нас не могла услышать мама, он кратко прокомментировал: «В мирное время корпуса формируют только в Особый период»[24]24
  Когда вооруженные силы приводятся в повышенную готовность.


[Закрыть]
.

В ночь на 21 августа спать помешал рев моторов на шоссе и вонь сожженного горючего – войска двинулись в Чехословакию. Их поток не прервался и утром: вперемежку шли подразделения танков Т-54/55 (не самых новых) и совсем уж раздолбанные, груженные всяким хламом, мобилизованные в колхозах автомашины. Барражировали парами фронтовые бомбардировщики Ил-28 (тоже – устаревшие). Поняв, что мне довелось стать свидетелем исторических событий, я собрал газеты за эти дни (рис. 2.1). Войска, оказывается, вводились, поскольку «…Опасность братоубийственной борьбы, которую подготовила реакция и которая была бы трагическим повторением Липан[25]25
  Междоусобная битва, произошедшая в 1434 г.


[Закрыть]
, поставила нас перед необходимостью принять историческое решение – обратиться за помощью к Советскому Союзу и к другим братским социалистическим странам. Наши союзники предоставили нам эту помощь так же, как в 1945 году, когда речь шла о том, быть нам или не быть…». Радовал резкий рост бдительности. Если члены «народного правительства Финляндии» 1939 г. опрометчиво были названы поименно, то теперь империалистическим наймитам оставалось только совершить каппукку[26]26
  Мучительный обряд японского ритуального самоубийства.


[Закрыть]
, прочитав подпись к Воззванию: «Группа членов ЦК КПЧ, Правительства и Национального собрания, которые обратились за помощью к правительствам и коммунистическим партиям братских стран»…



Рис. 2.1


Слева: «Советских воинов, оказывающих братскую помощь, повсюду радостно встречали дети Чехословакии». Справа: «Обнаруженный советскими воинами склад оружия, которым снабжали реакцию ее зарубежные хозяева». Видно, у «зарубежных хозяев» склады ломились от ручных пулеметов Дегтярева (на переднем плане), станковых – Горюнова, а также – автоматов Калашникова


…Напряженность учебы несколько спала только через три года: в расписании появилось много специальных предметов, для студентов организовывали экскурсии по институтам Средмаша, которых было немало в Москве.

2.2. Уран, нейтроны мгновенные и запаздывающие, быстрые и тепловые

…Руды урана выглядят очень красиво (рис. 2.2). Ядро урана содержит 92 положительно заряженных протона, как и все тяжелые металлы, он вреден для человека. К тому же уран очень медленно распадается, испуская альфа-частицы (ядра гелия). Пробег их в конденсированных веществах – десятки микрон и, если залить кусок урана прозрачным компаундом, получается вполне безопасный сувенир. Кроме протонов, ядро урана включает и нейтроны, число которых может быть различным: в природном уране большинство ядер содержат по 146 нейтронов и лишь 0,7 % – по 143 (ядра с другим числом нейтронов в естественных условиях чрезвычайно редки́). Ядра с равными количествами протонов, но различными – нейтронов, называют изотопами. Ядерные свойства изотопов, как правило, различаются очень существенно[27]27
  Так, для углерода – «основы жизни» – известно несколько изотопов. Наиболее распространенный из них (С12) стабилен, изотоп С14 распадается с полупериодом 55 лет, излучая бета-частицы, а половина ядер С15 распадается за 2,4 секунды. Попадание радиоактивных изотопов в организм очень опасно, потому что они «занимают» места стабильных ядер и облучают ткани изнутри.


[Закрыть]
, а вот химические – идентичны и разделить изотопы химическими методами нельзя, но различие в массах позволяет сделать это физическими методами.

…Припомним попытки очистить запачканные штаны или юбку. Использование бензина или другого растворителя часто приводит к тому, что после его высыхания на светлой материи вместо компактного пятна остается отчетливо различимый, расплывшийся круг (а то – и несколько, концентрических).




Рис. 2.2


Урановые руды, слева направо: друза кристаллов желтого отунита, гуммит и смолка. Обычно они содержат менее процента урана


Все наверняка слышали о броуновском, хаотическом движении молекул, а многие – о том, что при данной температуре скорость движения молекулы тем выше, чем меньше ее масса[28]28
  Например, при комнатной температуре скорость теплового движения молекул водорода – 1800 м/с, а азота – 470 м/с.


[Закрыть]
. Если растворитель испаряется достаточно интенсивно, он служит «фотофинишем» – фиксирует результат гонки молекул. Возьмите лупу и рассмотрите на ваших изгаженных штанах (хорошо, если они белые) результат этого забега. Произошло вот что: раствор, благодаря капиллярным явлениям, просачивался по тонким зазорам между ворсинками материи. Растворенные загрязнения вынуждены были пройти довольно большие расстояния по таким узкостям, легкие компоненты при этом опередили тяжелые, а испарение растворителя законсервировало распределение. Это явление называют хроматографией. Его можно наблюдать на фильтровальной бумаге, сначала капнув растворитель с загрязнениями, а потом – добавляя по каплям в центр пятна чистый растворитель (рис. 2.3). Когда бумага высохнет, ее можно по концентрическим окружностям, определяющим границы разделенных зон, разрезать, став обладателем обогащенных различными компонентами кусочков…


Рис. 2.3

Разделение методом хроматографии на промокательной бумаге синих чернил марки «Радуга-2»:

а) на бумагу капнули чернила, растворителя в них недостаточно, он быстро испарился, заметного разделения нет;

б) в центр чернильного пятна шприцем добавили растворителя (воды), разделение началось;

в) дальнейшее добавление воды привело к тому, что самая быстрая (зеленоватая) компонента настолько опередила другие, что между ней и компонентой с промежуточной скоростью диффузии образовался разрыв (светлая область, в которой, вероятно, присутствует в основном растворитель). Совсем уж «медленная» компонента занимает область в центре хроматограммы, более темную, чем остальные


В процессе разделения уранов есть много общего с хроматографией. Сначала их природную смесь переводят в газообразное состояние, соединяя с фтором, потом – прокачивают через бесчисленные пористые перегородки, так что молекулы гексафторида более легкого изотопа постепенно опережают тяжелые. Обогащенный легким изотопом газ собирают и выделяют из него металл. Разделение идет медленно, потому что массы (235 и 238 единиц), а значит, и скорости теплового движения этих изотопов урана различаются незначительно.

Более эффективен процесс их разделения в центрифугах (рис. 2.4), работа которых напоминает отжимание белья в стиральных машинах, но автор воздержится от описания демонстрационного опыта, поскольку при этом возможен выход из строя ценного в любой семье аппарата. Да, к тому же, и метод газовой диффузии применяется до сих пор.



Puc. 2.4


Слева, вверху: уран – серебристый на свежем изломе металл, который на воздухе сначала покрывается налетом цвета спелой сливы, а затем и вовсе чернеет. Ниже: центрифуга, предназначенная для разделения газообразных гексафторидов урана. Справа: цех центрифуг на заводе под Екатеринбургом.

Желающие могут прикинуть, через сколько центрифуг (ступеней разделения) проходят газы, пока будет выделен достаточно «облегченный» гексафторид. Из разделенных газов опять получают металлические ураны: «оружейный» и «отвальный»


Заводы, где из природного урана извлекают легкий изотоп, занимают площади в многие квадратные километры. Миллиарды долларов расходуются, чтобы разделить «близнецов», неотличимых ни по внешнему виду, ни химическим анализом. Но их ядерные «характеры» – совершенно разные.

Процесс деления U238 – «платный»: прилетающий извне нейтрон должен «принести» с собой энергию более МэВа. A U235 «бескорыстен»: для возбуждения и последующего распада от пришедшего нейтрона ничего не требуется, вполне достаточно его энергии связи в ядре (рис. 2.5). При попадании нейтрона в способное к делению ядро, образуется неустойчивый «компаунд», но очень быстро (через 10-23 – 10-22 секунды) такое ядро разваливается на два осколка, неравных по массе и испускающих новые нейтроны (по 2–3 в каждом акте деления, процесс этот вероятностный), и, благодаря им, со временем может «размножаться» число делящихся ядер – эта реакция называется цепной. В U235 цепь развивается, а кинетическая энергия осколков деления на много порядков превышает выход энергии при любом акте химической реакции, в которой состав ядер не меняется.

Продукты деления нестабильны и еще долго «приходят в себя», испуская излучения самых различных видов, в том числе – те же нейтроны. Короткоживущими осколками нейтроны испускаются спустя 10-16-10-14 секунды после развала компаунд-ядра и такие нейтроны называют мгновенными. Но некоторые нейтроны испускаются через вполне ощутимое человеком время (до десятков секунд). Эти нейтроны называют запаздывающими, доля их по сравнению с мгновенными мала (менее процента).


Рис. 2.5


В ядерной физике оказалась весьма плодотворной модель «жидкой капли», в соответствии с которой действие внутриядерных сил приводит к явлению, напоминающему поверхностное натяжение. Возбужденное попаданием нейтрона в U235 компаунд-ядро U236 не разваливается сразу, в нем сначала образуется перетяжка (верхний рисунок), а затем происходит деление на осколки, как правило, неравной массы. Процесс этот – вероятностный, а пример показывает, что делящаяся в первом поколении, растянувшаяся «капля» вот-вот распадется на ядра бария и криптона. Из образовавшихся после распада трех мгновенных нейтронов деления один (в центре) «промахнулся», а два других – положили начало второму поколению, с образованием пар цезия и рубидия, ксенона и стронция. На графике – сечения реакции деления U233 на нейтронах разных энергий. Вероятность того, что медленный нейтрон вызовет деление, на порядки превышает ту же вероятность для быстрого нейтрона


Свободные нейтроны активно взаимодействуют с любыми ядрами, причем весьма разнообразно. Вероятность взаимодействия описывают «сечениями», измеряемыми барнами (барн равен 10-24 см2), уподобляя то или иное ядро мишени соответствующей площади для летящего нейтрона. Одно и то же ядро может представлять различной площади мишень для разных сценариев взаимодействия: например, отскок нейтрона от ядра может быть намного более вероятен, чем его захват ядром с испусканием гамма кванта. Таких сценариев очень много и по совокупности информации о них можно «узнать» то или иное ядро так же точно, как по отпечаткам пальцев – человека.

Образованные делением частицы при многочисленных столкновениях с окружающими атомами отдают им свою энергию, повышая, таким образом, температуру вещества. После того как в сборке с делящимся веществом появились нейтроны, мощность тепловыделения может возрастать или убывать, а может быть и постоянной. Параметры сборки, в которой число делений в единицу времени не растет, но и не уменьшается, называют критическими. Критичность сборки может поддерживаться и при большом, и при малом числе нейтронов, находящихся в ней в данный момент времени. В зависимости от того, больше или меньше это число, больше или меньше и мощность тепловыделения. Тепловую мощность увеличивают, либо «подкачивая» дополнительные нейтроны извне в критическую сборку, либо делая сборку сверхкритичной (тогда дополнительные нейтроны «поставляют» все более многочисленные «поколения» делящихся ядер).

Образующиеся при делении нейтроны часто пролетают мимо окружающих ядер, не вызывая повторного деления. Чем ближе нейтрон к свободной поверхности, тем больше у него шансов вылететь из делящегося материала и никогда не возвратиться обратно (подумайте, кто из суетящейся у обрыва толпы скорее других свалится в пропасть!). Форма сборки, сберегающей нейтроны в наибольшей мере – шар: для данной массы вещества он имеет минимальную поверхность. Ничем не окруженный (уединенный) шар из 94 %-ного U235 без полостей внутри становится критичным при массе в 49 кг и радиусе 85 мм. Если же сборка из такого же урана – цилиндр с длиной, равной диаметру, она становится критичной при массе в 52 кг, а для длинного цилиндра, с высотой восьмикратно превосходящей диаметр, эта масса превысит 100 кг[29]29
  Читатель может решить, что данные о критичности цилиндров практического значения не имеют, но это не так: из коротких цилиндров урана состояла сборка заряда ствольного типа в бомбе «Малыш», а цепная реакция в длинных цилиндрах «подогревала» топливо в первых термоядерных зарядах.


[Закрыть]
.

Понятно, что внешнюю поверхность сборки можно уменьшить и увеличив плотность ее вещества, поэтому-то взрывное сжатие, не меняя количества делящегося материала, тем не менее, может переводить сборку из до критического состояния в сверхкритическое.

И, наконец, о роли энергии нейтронов. «Отскакивая» от ядер, нейтроны передают им часть своей энергии, тем большую, чем «легче» (ближе им по массе) ядра. Чем больше столкновений претерпевают нейтроны, тем более они «замедляются», и, наконец, приходят в тепловое равновесие с окружающим веществом («термализуются»). Скорость «тепловых» нейтронов – 2200 м/с, что соответствует энергии 0,025 эВ. Время термализации (миллисекунды) ощутимо человеком, но важно помнить, что за такое время быстрые нейтроны снижают свою энергию на много порядков, до «тепловых» значений; в разы же они теряют ее всего за несколько столкновений, что займет доли пикосекунды!. Нейтроны могут ускользнуть из замедлителя, захватываются его ядрами, но с уменьшением энергии их способность вступать в реакции существенно возрастает, поэтому нейтроны, которые «не потерялись», с лихвой компенсируют убыль численности.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации