Электронная библиотека » Александр Прищепенко » » онлайн чтение - страница 6

Текст книги "Шелест гранаты"


  • Текст добавлен: 21 декабря 2013, 05:09


Автор книги: Александр Прищепенко


Жанр: Военное дело; спецслужбы, Публицистика


сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 23 страниц)

Шрифт:
- 100% +

Процесс захватывает новые слои воздуха, энергии на то, чтобы «ободрать» все электроны с атомов уже не хватает, уменьшается прозрачность фронта. Иссякает энергия ионизованного слоя и обрывков плазменного пузыря, они уже не в силах двигать перед собой огромную массу, вырождаются в струи (рис. 2.13 г) и заметно замедляются. Но то, что до взрыва было воздухом, движется, оторвавшись от шара, вбирая в себя все новые слои воздуха холодного – начинается образование ударной волны.

При отходе ударной волны от огненного шара, меняются характеристики излучающего слоя, и резко возрастает мощность излучения в оптической части спектра (так называемый «первый максимум»). При дальнейшем движении волны происходит сложная конкуренция процессов высвечивания и изменения прозрачности окружающего воздуха, приводящая к реализации и второго максимума, менее интенсивного, но значительно более длительного – настолько, что выход световой энергии больше, чем в первом максимуме.

Вблизи взрыва все окружающее испаряется, подальше – плавится, но и еще дальше, где тепловой поток уже недостаточен для плавления твердых тел, грунт, скалы, дома текут как жидкость под чудовищным, разрушающим все прочностные связи напором газа, раскаленного до нестерпимого для глаз сияния.



Рис. 2.14


«Постаревший» огненный шар превращается в облако радиоактивной пыли. Под местом взрыва произошло остекловывание песка, как это было и при первом испытании («Trinity Operation»). Образовавшийся новый минерал получил название «тринитит»


…Наконец, ударная волна уходит далеко от точки взрыва, где остается рыхлое и ослабевшее, но расширившееся во много раз облако (рис. 2.14) из конденсировавшихся, обратившихся в мельчайшую и очень радиоактивную пыль паров. Нет, не воды. Или в самом общем случае – не только воды, а того, что побывало плазмой заряда, рекомбинировало, и того, что в свой страшный час оказалось близко к месту, от которого следовало бы держаться как можно дальше. Облако начинает подниматься вверх. Оно остывает, меняя свой цвет, «надевает» белую шапку конденсировавшейся влаги, за ним тянется пыль с поверхности земли (рис. 2.15)…





Рис. 2.15


Испытание Encelade французского термоядерного заряда энерговыделением 440 кт. Атолл Муруроа, 12.06.1971


…Среди читателей попадаются настырные, проверяющие все с карандашом в руке. Автор сделал многое, чтобы осложнить им

задачу: энергию в МэВах надо перевести в джоули, потом – в тротиловый эквивалент, вспомнить правила действий со степенями. Но все же может найтись самый настырный, который получит результат, далекий от тех десятков и сотен килотонн тротилового эквивалента, о которых он читал в газетах, и, издевательски улыбаясь, потребует объяснений. Далее возможен такой диалог:

– А со скольких нейтронов, по вашим расчетам, начинается цепная реакция?

– С одного.

– Посмотрим, что получится, если реакция в сборке начнется с миллионов нейтронов.

– У вас про миллионы не написано.

– А покажите, где у меня написано, что он – один?

Вообще-то ситуация, которую описал своим расчетом Настырный, возможна: если не сработает или сработает не вовремя источник нейтронов, что повлечет строгую ответственность тех, кто был причастен (а может – и не причастен) к такому безобразию.

Чтобы такой жалкий результат не опозорил самоотверженно трудившийся коллектив, в сверхкритическую сборку в нужную микросекунду надо «брызнуть» нейтронами. Именно – в нужную, а не когда попало.

…Процесс перевода сборки из до критического в сверхкритическое состояние происходит за десятки микросекунд: казалось бы – быстро, но иногда (правда – редко) оказывается, что медленно. Случайный фоновый нейтрон может вызвать цепь делений и в докритической сборке, правда, затухающую, не сопровождающуюся заметным выделением энергии. Но если сборка перейдет критическое состояние пока такая цепь еще не угасла, начнется размножение нейтронов. Вначале, пока деление идет на медленных нейтронах, имплозия будет «сильнее», но, по мере роста сверхкритичности, «в дело» будут вступать все более быстрые (а значит, скорее размножающиеся) нейтроны и деление преодолеет имплозию, «разбросав» сборку. Произойдет «хлопок» – пиррова[44]44
  Эпирский царь Пирр в 279 г. до н. э. одержал победу над римлянами, но ценой таких потерь, что с тех пор его именем стали называть предприятия, вроде и успешные, но не оправдывающие понесенных затрат.


[Закрыть]
 победа деления: уровень энерговыделения будет на порядки более низким, чем тот, который мог бы быть достигнут. Так что и при безупречной работе заряда и его автоматики существует малая вероятность того, что полноценного ядерного взрыва не произойдет. А будет он таким, если при переводе сборки из докритического в сверхкритическое состояние в ее делящемся материале не будет нейтронов, а вот когда максимум сверхкритичности почти достигнут – их окажется там очень много.

В первых ядерных зарядах для этого использовали изотопные источники: полоний-210 в момент сжатия плутониевой сборки (и только тогда) соединялся с бериллием и своими альфа-частицами (ядрами гелия-4) вызывал нейтронную эмиссию:


Be9 +Не4 → С12 + п.


Но все изотопные источники – слабоваты, а самый интенсивный из них, легендарный[45]45
  Лишившись важнейшей роли в военном применении, полоний – 210 в начале XXI века стал символом прогресса в техническом оснащении малопочтенного ремесла «ликвидатора», придя на смену ледорубу, которым был убит Троцкий, начиненной взрывчаткой коробке конфет, положившей предел земным дням украинского националиста Коновальца и разнообразным устройствам для введения ядов.


[Закрыть]
полоний – уж очень «скоропортящийся» (всего за 138 суток снижает свою активность вдвое), так что держать его в находящемся на хранении заряде было нельзя, приходилось монтировать «свежий» источник незадолго до боевого применения (рис. 2.12). Поэтому на смену изотопным пришли менее опасные (не излучающие в невключенном состоянии), а главное, более интенсивные ускорительные источники – нейтронные генераторы (рис. 2.16). За несколько микросекунд, которые длится формируемый таким источником импульс, «рождается» примерно столько же нейтронов, что и в мощном ядерном реакторе за такое же время.

«Сердце» генератора – вакуумная нейтронная трубка, в которой ускоряются ионы дейтерия (D) и бомбардируют мишень, насыщенную тритием (Т), в результате чего образуются нейтроны (п) и альфа-частицы:


D + Т → Не4 + п + 17,6МэВ


По составу частиц, и даже по энергетическому выходу эта реакция идентична синтезу – процессу слияния легких ядер. Синтезом происходящее в трубке в 50 годах считали многие, но позже выяснилось, что это реакция другого класса – «срыва». Когда разогнанный электрическим полем ион дейтерия попадает в ядро трития, то либо протон, либо нейтрон, из которых состоит дейтерий, «увязает» в ней. Если «увязает» протон, то нейтрон «отрывается» и становится свободным. Эти нейтроны разлетаются в разные стороны (в физике говорят: «пространственное распределение – изотропно»), «собрать» и направить их на сборку – сложно, да и особого смысла не имеет: трубка способна выдать столько нейтронов, что и при изотропном их распределении энергетические возможности сборки будут реализованы полностью.





Рис. 2.16


Верхний снимок – нейтронные генераторы, которыми комплектуются американские заряды W-76. Ниже слева – нейтронная трубка. В ее анодном узле 1, при приложении импульсного напряжения, происходит пробой 2 между анодом и поджигающим электродом. Изолятор между этими электродами – насыщенная дейтерием керамика (розового цвета), поэтому при разряде по ее поверхности образуется много ионов дейтерия, которые разлетаются внутри анодного узла, а затем и покидают его. Между анодным узлом и насыщенной тритием мишенью 3 (катодом), прикладывается напряжение более ста тысяч вольт. Выход ионов дейтерия из экранированной сеткой горловины анодного узла должен происходить в момент, когда это напряжение достигает максимума. Нейтронная трубка генерирует до десяти миллионов быстрых нейтронов на каждый джоуль ее энергообеспечения. Источник высокого напряжения – на нижнем левом снимке. Ток от аккумулятора преобразуется в переменный, а напряжение умножается до величины, обеспечивающей формирование ускоряющего ионы дейтерия импульса. В современных ядерных зарядах системы взведения, инициирования детонаторов, программное устройство и система нейтронного инициирования объединены, как в блоке Мк-3 AFAF (Arming, Fusing And Firing System, правый снимок), обеспечивающем срабатывание ядерного заряда W-68. Энерговыделение этого заряда – 50 кт, но морская ракета «Посейдон» могла доставить к целям 10 боевых блоков с такими зарядами


Реагирующие в трубке дейтерий и тритий – изотопы широко распространенного в природе водорода (который любители научных терминов называют протием), но в их ядрах, помимо протона содержатся один (в дейтерии) или два (в тритии) нейтрона, а значит, они вдвое и втрое превосходят протий массами. Водороды способны образовывать твердые соединения с легкими металлами, например, литием и титаном. В тритиде титана и «удерживается» в трубке необходимый для реакции срыва изотоп. В таких соединениях, несмотря на наличие «балластных» ядер металла-носителя, плотность ядер любого из водородов намного выше, чем в сжатом до разумных давлений газе.

Доля дейтерия в природном водороде примерно впятеро меньшая, чем оружейного урана – в обычном, но массы их отличаются вдвое, а кинетика многих реакций – и того более. Так, электролитическое разложение дейтериевой воды протекает на порядок медленнее, чем воды легкой. На этом и основан один из методов разделения – значительно более эффективный, чем разделение уранов.


Рис. 2.17


Разрез урановой жилы месторождения Окла. За время работы этого «реактора» выделилось свыше 1018 Дж тепловой энергии, что привело к спеканию рудной массы


Затем произошли геологические подвижки грунта, поднявшие жилу наверх, и воды стало недостаточно для развития цепной реакции, что «законсервировало» реактор. Слабым утешением автору может служить лишь то, что и великий Э. Ферми утверждал, что «ядерный реактор может быть лишь человеческим творением».


Тритий же, подобно Pu239, не существует в природе в ощутимых количествах[46]46
  Здесь Настырный может «схватить автора за язык»: в 1980-х годах в Габоне, на месторождении Окло (где руды очень богаты изотопом U235) были обнаружены следы природный цепной реакции (замедлителем служила вода, рис. 2.17), происходившей 2,6 миллионов лет назад. Образовались там и плутоний и тритий, но за миллионы лет последний распался без следа.


[Закрыть]
и его получают, воздействуя в ядерном реакторе мощными нейтронными потоками на изотоп литий-6, в результате чего в две стадии протекает реакция:


Li6 + n → Li7 → T + Не4.


Дейтерий и тритий были изучены медиками. Не только радиоактивный тритий, но и стабильный дейтерий оказались опасными веществами. Например, подопытные животные, которым вводились соединения дейтерия, умирали с симптомами, характерными для старости (охрупчивание костей, потеря интеллекта, памяти и пр.). Этот факт послужил основой теории долголетия, в соответствии с которой смерть от старости и в естественных условиях наступает при накоплении дейтерия: через организм в процессе жизнедеятельности «проходят» многие тонны воды, других соединений водорода и более тяжелые дейтериевые компоненты задерживаются при этом в многочисленных мембранах и капиллярах, накапливаясь к старости. Теория объясняла и долгожительство горцев: в поле земного притяжения концентрация дейтерия действительно убывает с высотой. Об этих фактах упоминал читавший в МИФИ лекции по курсу разделения изотопов известный специалист В. Нещименко. Он понимал, что студент теряет способность воспринимать информацию, переписывая час за часом сложные математические выражения, и часто делал такие отступления.

«Дейтериевая» теория долголетия интересна еще и тем, что на ее примере можно иллюстрировать требования, предъявляемые ко всем научным гипотезам: они могут считаться верными, пока непротиворечиво объясняют все относящиеся к их «компетенции» объективные факты. По-другому это можно сформулировать так:

«Утверждение верно только тогда, когда верны все следствия из него» (как нетрудно заметить, этот критерий был использован в дискуссии о «пулях синтеза»). Тем из читателей, кто в подобной ситуации услышит вещаемое солидным, бархатным голосом: «Исключения лишь подтверждают общее правило…», автор рекомендует не стучать костяшками пальцев по лбу изрекшего, сравнивая звук от аналогичного процесса, проделываемого с деревом – это невежливо. Культурный человек только поинтересуется, какое число «исключений» следует считать допустимым и что делать, если таковых станет больше, чем фактов, данной теорией объясняемых.

Некоторые соматические эффекты оказались вне рамок «дейтериевой» теории и потому она была отвергнута медициной.

…Итак, помимо сборки с делящимся веществом и заряда взрывчатки, боеголовка (рис. 2.18) должна быть оснащена высоковольтной системой инициирования детонаторов и системой нейтронного инициирования сборки, а программное устройство должно обеспечить срабатывание систем в определенной последовательности, в точно назначенные моменты времени (рис. 2.19). Читатель и сам догадывается, что электронным устройствам сильные удары противопоказаны, а уж какой удар ожидал бы их при встрече летящего с гиперзвуковой скоростью блока с землей… Для того, чтобы вся сложная электроника сработала прежде, чем превратится в подобие жижи, датчики давления, расположенные в головной части хорошо видной на макете (рис. 2.20) трубы, подают сигнал на подрыв (в боеголовке на рис. 2.18 для этой же цели используется не труба, а телескопический шток, в сложенном виде размещенный в серебристом контейнере и «надуваемый» пороховым зарядом при подлете к цели). Выбор головного зазора летящей боеголовкой занимает несколько сотен микросекунд, чего достаточно для срабатывания автоматики.


Рис. 2.18


Схема ядерной боеголовки, устройства автоматики которой размещены в отдельных блоках. Блок инициирования детонаторов – красного цвета, блок нейтронного инициирования реакции деления – белого. Советские блоки автоматики окрашивались в зеленый цвет и на жаргоне зарядчиков назывались «бочками». На врезке – «бочка» из экспозиции музея Академии ракетных войск

Блок нейтронного инициирования должен быть расположен поближе к заряду: в этом случае больше разлетающихся во все стороны нейтронов поучаствуют в зажигании реакции деления. Кроме того, блок нейтронного инициирования должен быть по размерам больше, чем блок инициирования детонаторов, потому что к нейтронной трубке прикладывается напряжение в сотню с лишним киловольт – большее на два порядка, чем к детонаторам. Ну а снизить габариты высоковольтного устройства сложно – об этом факте читателю еще напомнят в следующей главе.


Рис. 2.19


Временная эпюра наиболее важных событий в ядерном заряде и блоках его автоматики. Рассмотрев рисунок справа, коллега автора ехидно спросил: «Получается, что остатки головной части летят с той же скоростью, с какой расширяется шар?» По мнению автора, рисунок основания для подобного заключения не дает, но, коль скоро такое мнение высказано, следует пояснить: скорость расширения молодого шара на порядки больше, он «вбирает» в себя остатки конструкции и через пару десятков наносекунд становится похожим на свою фотографию рис. 2.13а

Еще одна важная функция блока нейтронного инициирования – изменение энерговыделения ядерного взрыва. Понятно, что, получив боевую задачу, при постановке которой обязательно указывается мощность ядерного удара («перебор» может привести и к поражению своих войск), не начинают лихорадочно разбирать ядерный заряд на ракете или бомбе, чтобы оснастить его плутониевой сборкой, оптимальной для заданной мощности. В боеприпасах с переключаемым тротиловым эквивалентом просто изменяют напряжение питания нейтронной трубки. Соответственно, изменяется выход нейтронов и выделение энергии. Ясно, что при снижении мощности таким способом «пропадает зря» много дорогого плутония.



Рис. 2.20


Вверху: на полноразмерном демонстрационном макете малогабаритной МБР «Миджетмен» (не производившейся серийно) видна конструкция головного зазора ее моноблочной боевой части, тротиловый эквивалент которой должен был составить 600 кт. Внизу: боеголовка 9Н32М советской оперативно-тактической ракеты сухопутных войск «Луна-М» также снабжена устройством, обеспечивающим подрыв до того момента, когда ударные перегрузки могут повредить конструкцию ее ядерного заряда


В серийном американском боеприпасе Мк-18 энерговыделение довели до 500 кт – только за счет реакции деления. В МК-18 был применен U235, которого в до критической сборке можно разместить больше, чем плутония. У сборки при этом будет выше инерционность, а значит, и актов деления в ней произойдет больше, чем в плутониевой. Мощность заряда деления можно и еще повысить, но ненамного: существуют ядерно-физические и гидродинамические ограничения допустимых размеров сжимаемой сферы.

…Все это считалось невероятно секретным. Лишь 20 октября 2004 г. газета «Военнно-промышленный курьер» написала об институте и его основателе:

«С 1954 г. Николай Леонидович стал директором, главным конструктором и научным руководителем филиала № 1 КБ-11 (в настоящее время ВНИИА им. Н.Л. Духова), которым руководил до 1964 г. Духов определил основные направления тематики института – создание ядерных боеприпасов для стратегических и тактических комплексов ядерного оружия, систем электрического и нейтронного инициирования ядерных зарядов, приборов автоматики ядерных боеприпасов, унифицированной контрольно-измерительной аппаратуры. За десять лет под его руководством разработаны три поколения блоков автоматики, первое поколение ядерных боеприпасов для семнадцати различных носителей – баллистической ракеты Р-7, торпеды Т-5, первых крылатых ракет для ВВС, ВМФ, ПВО».

…Нельзя сказать, что распределение в лабораторию нейтронных генераторов обрадовало: мне не очень нравились электроника и электротехника. Но порядки в учреждениях МСМ были строгие и с личными пожеланиями молодых специалистов не считались. Руководитель дипломной работы Е. Боголюбов сформулировал первое задание: разработать схему поджига нейтронной трубки. Он придумал использовать для этого коммутатор на основе насыщающегося[47]47
  Подобно тому, как постоянный ток ограничивается сопротивлением, переменный или импульсный ток ограничивается индуктивностью – тем более, чем короче длительность импульса или выше частота. Но индуктивность может и сама зависеть от тока. Например, если ток протекает по обмотке дросселя, охватывающей ферромагнитный (то есть – изготовленный из вещества, элементы которого обладают собственной намагниченностью) сердечник, то такой дроссель ограничивает ток очень существенно. Но так происходит до момента, когда все микроскопические элементы сердечника будут «выстроены» полем тока (сердечник намагничен до насыщения) и тогда индуктивность намотанной на нем обмотки скачком снижается, а значит, возрастет и протекающий через дроссель ток. Если к такому коммутатору последовательно подключить трансформатор, то на вторичной обмотке будет сформирован импульс, который и «подожжет» разряд в ионном источнике.


[Закрыть]
дросселя. Время насыщения дросселя протекающим через него током и определяло ту задержку относительно начала импульса ускоряющего напряжения, которую требовалось обеспечить для оптимального режима работы трубки.

Пара месяцев прошла в изучении осциллографов, средств регистрации больших токов, характеристик магнитных материалов. Потом был получен и нужный результат. Однако похвалы за него были произнесены вскользь: всех захватила к этому времени другая работа, которая считалась важнейшей – датчик приземного срабатывания.

2.3. Датчик приземного срабатывания: завалить всю «компактную группу»!

Требовалось оптимизировать режим поражения ракетных шахт противника. Конечно, ядерный взрыв может испарить шахту, но для этого нужен либо очень мощный заряд, либо очень точное попадание. Мощность боевых блоков советских ракет того времени была больше, чем американских, но, понятно, не беспредельна, а вот с точностью попадания дело обстояло намного хуже. Расстояние между соседними шахтами противник выбрал достаточно большим, так что первый блок мог поразить только одну. Но все же, это расстояние не было слишком велико (такое базирование называется «компактная группа»). Расчет был на то, что чудовищные излучения первого взрыва сделают небоеспособными ничем не защищенные от них другие блоки той же ракеты (произойдет «фратрицид» – «пожирание братьев», как окрестили это явление склонные к заимствованиям из древних языков американские специалисты). Летящие блоки (рис. 2.21), конечно, нельзя задержать, чтобы они переждали ад первого взрыва, их можно было только развести на цели, расположенные подальше. Остальные шахты необходимо было добивать блоками следующих ракет, причем через небольшое время, чтобы оставшиеся «в живых» «Ми́нитмэны»[48]48
  «Ми́нитмэн» – межконтинентальная баллистическая ракета (МБР). Боевое оснащение модификации LGM-30G, принятой на вооружение в 1970 году, состояло из трех боевых блоков индивидуального наведения, с энерговыделением по 330 килотонн.


[Закрыть]
не успели взлететь.

Поразить всю группу шахт серией даже быстро следующих один за другим ядерных ударов представлялось маловероятным.






Рис. 2.21


На верхнем левом снимке – боевая ступень советской ракеты средней дальности 15Ж53 «Пионер УТТХ». Из трех боевых блоков 15Ф542 (индекс их ядерного заряда – АА-74) установлен только один и его плохо видно, зато хорошо видны сопла двигателей, обеспечивающих маневры «автобуса» (ступени разведения). Ракеты 15Ж53 уничтожены в соответствии с договором между СССР и США, однако у российской МБР 15Ж65 «Тополь М» боевая ступень во многом аналогична «пионерской». Боевой блок входит в атмосферу с такой скоростью, что не просто образует ударную волну: температура сжатого воздуха столь высока, что происходит ионизация. Благодаря свечению плазмы, маневры разведения боевых блоков хорошо видны на левом нижнем снимке, сделанном камерой с открытым затвором (правее – результат компьютерного моделирования течения воздуха при движении блока). Понятно, что сфотографированы макеты боевых блоков, но и холостая болванка, летящая с гиперзвуковой скоростью, при прямом попадании поразила бы точечную цель вроде ракетной шахты. Однако подобное завершение полетного задания крайне маловероятно, современные системы наведения такую точность не обеспечивают, и ядерный заряд служит для компенсации промаха, который тем значительнее, чем больше дальность стрельбы. Представить «компенсацию» поможет аналогия: внизу справа – сделанный с экрана микроскопа снимок проросших на травленой подложке структур CoFeB.

Точность характеризуется круговым вероятным отклонением (КВО) – радиусом круга, в который, при стрельбе на максимальную дальность, боевой блок попадет с вероятностью 50 %. Поражение цели – также задача, описываемая теорией вероятностей: например, при наземном подрыве боевого блока с энерговыделением около 500 кт на расстоянии 160 м от шахты, выдерживающей давление ударной волны в 70 атмосфер, вероятность поражения – 90 %.

Максимальные дальности стрельбы МБР 15Ж65 и морской ракеты UGM 133А «Трайдент» D5 (ее боевая ступень – на правом верхнем снимке) одинаковы (10500 км), однако D5, стартовый вес которой – 59 т (на 25 % больший, чем у «Тополя»), несет восемь блоков, в то время как «Тополь» – один. Правда, мощность боевого блока «Тополя» (550 кт) выше, чем у «Трайдента» (475 кт для заряда W-88). Поскольку плотность энергии в ударной волне убывает пропорционально квадрату расстояния, такое соотношение обеспечивает «Тополю» выигрыш 8 % в дальности компенсации промаха по цели равной стойкости. Однако зарядам W-88 требуется компенсировать куда меньшие промахи (КВО каждого из блоков «Трайдента» – 90 м, в то время как блока «Тополя» – 400 м) и это придает ракете D5 способность поражать намного лучше защищенные цели


«Испарение» одной шахты одним боевым блоком было, конечно, надежнее, но представлялось ненужным излишеством: вполне достаточно «встряхнуть» шахту и «обдуть» ее, тогда поражение можно было обеспечить на большей площади и существенно возрастала вероятность выведения из строя одним боевым блоком двух-трех шахт. Для «размазывания» эффекта взрыва на большей площади требовался низковысотный (в десятках метров от земли) подрыв боевого блока.

Подорвать ядерный заряд на нужной высоте собирались с помощью нейтронов, потому что для них не являлся препятствием (как для радиоволн) плазменный чехол, образующийся вокруг боевого блока, летящего с гиперзвуковой скоростью. Надо было, чтобы генератор нейтронов работал в частотном режиме. Нейтроны от каждого импульса частично отражалась бы от грунта. Их предполагалось регистрировать детектором на боевом блоке и, по достижению нужной амплитуды сигнала – производить подрыв.

Конечно, никто не думал делиться всеми этими соображениями, слишком ничтожным было положение дипломника в институтской иерархии. Все складывалось, подобно мозаике, из отдельных разговоров, причем собеседники вовсе не собирались нарушать режим секретности. Просто, когда от исполнителя какой-то части работы требуют, чтобы он превысил уже достигнутый уровень, это надо как-то обосновать. Можно, конечно, сказать, что-то, подобное ювеналову: «Нос volo, sic jubeo, sit pro ratione voluntas!» («Я так хочу, так приказываю, да будет вместо довода воля моя!»), но тогда можно быть уверенным, что прилагать сверхусилий человек не станет. Меня тоже не оставили в стороне, поручив намотку импульсных трансформаторов. Навивать провода виток к витку, видя, как они образуют золотистую поверхность, понравилось. Через некоторое время трансформаторы стали получаться не хуже, чем у профессиональных рабочих: плотные, красивые, с хорошими характеристиками. Их требовалось много для испытаний в перегрузочных режимах: часты были пробои. Однажды, принимая только что изготовленный трансформатор, начальник лаборатории (он участвовал в работе наравне со всеми) дал лаконичную оценку: «Восторг!».

Восторга же по поводу перспектив своей дипломной работы я не испытывал: результатов исследования схемы, состоявшей всего-то из четырех элементов, было маловато. Боголюбов отмел сомнения: «Напишешь о разработке схемы всего генератора, материалы возьмешь из отчетов, а если комиссия узнает, что твои результаты использованы при успешных испытаниях датчика приземного срабатывания, то пусть хоть сам Эйнштейн будет читать рядом свой доклад – отличную оценку поставят тебе, а не ему». Было понятно, что лучше не спрашивать, как будешь выглядеть рядом с Эйнштейном, если испытания не удадутся. Их подготовка продолжалась. Между институтскими зданиями протянули трос и на высоте в нескольких десятков метров тягали туда-сюда платформу с нейтронным генератором и приборами регистрации. Группы людей на крышах зданий орали друг другу команды, обильно сдабриваемые матерными ругательствами. Пользоваться рациями категорически запрещалось службой безопасности, ведь шпионы могли прослушивать эфир! Услышать то же самое, проходя мимо по близлежащим улицам, шпионы, конечно, были не в силах.

Ситуация с датчиком приземного срабатывания обострялась конкуренцией: аналогичная задача, но с применением генератора рентгеновского излучения[49]49
  Рентгеновское излучение генерируется в трубке, напоминающей нейтронную. Только ускоряются в ней не дейтоны, а электроны: достигнув мишени, они тормозятся электронами, составляющими оболочки ее ядер. Движущийся с ускорением или замедлением заряд излучает – этот факт будет упомянут еще много раз. Энергия квантов открытого В. Рентгеном электромагнитного излучения – десятки – сотни кЭв. Излучение рентгеновской трубки, в отличие от нейтронной, – направленное.


[Закрыть]
, была поставлена перед другой лабораторией. Вопрос о том, как дезавуировать конкурентное направление многократно обсуждался. У нейтронного варианта было два козыря:

– в отличие от рентгеновского, генератор нейтронов мог быть использован не только в датчике, но и для инициирования ядерного заряда боевого блока;

– детектор нейтронов малочувствителен к остаточному гамма-излучению ядерного взрыва, а вот насчет рентгеновского детектора на этот счет были большие сомнения.

Последнему аргументу можно было противопоставить «зеркальный» контраргумент. В ходе одного из обсуждений зашла речь о запаздывающих нейтронах и я прикинул их количество. Не так уж их было мало, но хватало и того, что каждая килотонна тротилового эквивалента «выпускала» 1024 мгновенных нейтронов, так что после взрыва их общий вес приближался к килограмму[50]50
  Настырному стоит, припомнив значение числа Авогадро, проверить это.


[Закрыть]
. Свободные нейтроны, конечно, распадаются «сами по себе», но число их уменьшается всего лишь вдвое за целые 12 минут[51]51
  Это время так и называется – период полураспада: через 12 минут распадается половина частиц, через следующие 12 минут – половина оставшихся и т. д.


[Закрыть]
– слишком медленно, чтобы датчик на следующем боевом блоке успел «прозреть» и дать сигнал: превратить в ничто успевшего выпрыгнуть из шахты «человека-минуту[52]52
  Буквальный перевод названия МБР «Минитмэн». Время приведения модификации LGM-30G из режима дежурства в техническую готовность к пуску – 32 секунды. Минитмэны – персонажи американской истории, партизаны времен войны за независимость от Британии.


[Закрыть]
»! Последовал совет заткнуться и никому не рассказывать о своих оценках.

Наконец, наступил день испытаний. Шутки не звучали, разговоры были скупыми. Шифротелеграмма о триумфе пришла к концу дня: телеметрия зафиксировала срабатывание сброшенного с бомбардировщика Ту-16 нейтронного варианта устройства (конечно же – без ядерного заряда) на высоте, довольно близкой к заданной. В лаборатории в тот вечер был израсходован запас спирта. Еще через пару дней стало известно, что рентгеновский датчик «отказал» – не сработал. Начальник конкурирующей лаборатории слег с инфарктом.

Когда он вышел из больницы, его направили на работу в отдел, связанный со снабжением производства металлом.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации