Текст книги "Шелест гранаты"
Автор книги: Александр Прищепенко
Жанр: Военное дело; спецслужбы, Публицистика
сообщить о неприемлемом содержимом
Текущая страница: 14 (всего у книги 23 страниц)
После обдумывания полученных результатов, я рассказал о них: подробно – главному инженеру НИИВТ В. Голоскокову и конспективно – Тугому (существовали опасения, он был всеяден и пытался предстать главным автором везде и во всем). Ряд заявок на изобретения, касавшиеся нового устройства, был оформлен в отделе, где теперь работал А. Чепек.
Среди военных исследователей слухи распространяются быстро, несмотря на барьеры секретности. НИИВТ посетили полковники Ю. Абрамов из ведавшего ядерными боеприпасами 12-го управления министерства обороны, и С. Книна из ВМФ. Оба офицера хотели получить данные, необходимые для справок своему начальству не из слухов, а из первоисточника. Посетив МВТУ, я проинформировал о результатах и В. Соловьева.
…Отдел, где работал Чепек, неожиданно вышел на первое место по изобретательству в очередном квартале 1983 года. Последовала истерика Тугого (правда, не такая бурная, какие бывали у Затычкина). Вначале он заявил, что запрещает оформлять заявки на изобретения по взрывной тематике, потому что «в электронной промышленности[88]88
НИИВТ был подведомствен министерству электронной промышленности.
[Закрыть] такие устройства не разрабатываются». Потом потребовал, чтобы все заявки были отозваны и посланы от отдела, где он был начальником, «с измененным составом авторов». Услышав отказ, Тугой заявил, что категорически запрещает впредь проведение взрывных опытов. Через три дня в разговоре с главным инженером пришлось упомянуть об этом запрете. Решение Тугого было отменено и дано указание готовить докладную записку для оборонного отдела ЦК КПСС.
Голоскоков вернулся оттуда обескураженным: ему сказали, что буквально накануне «примерно то же докладывал товарищ Тугой из вашего же института». Особого интереса оба сообщения не вызвали, быть может, потому, что сделаны они были в отделе, ведавшем электронными отраслями оборонной промышленности.
4.8. Электронный отжиг кремниевых пластин
Тем временем для установки электронного отжига было, наконец, выделено оборудование и соответствующее помещение. Приходилось сомневаться в успехе: до планового срока окончания работы оставалось чуть больше трех месяцев (из отпущенных полутора лет). Отжиг кремниевых пластин – одна из технологических операций при производстве сверхбольших интегральных схем (СБИС). Существовавшая технология предусматривала отжиг лучом электронов, сканировавшим пластину – как луч развертки на телевизионном экране. Такой способ требовал управления лучом, да и равномерность не была идеальной (проявлялись «дорожки» отжига). Идея Тугого содержала рациональное зерно: отжигать пластину не лучом, а объемным зарядом электронов, заряд же этот – получать от хорошо знакомых искровых источников для нейтронных трубок. Отличие состояло лишь в полярности ускоряющего напряжения, да в том, что в установке отжига использовался не один источник, а пакет из нескольких десятков. Но времени практически не оставалось, а неудача следовала за неудачей: как только пакетом искровых источников формировалась плазма, следовал пробой на анод с кремниевой пластиной, которая от мощного стримера тока иногда даже раскалывалась. Ни о какой равномерности отжига и речи быть не могло. Тугой добился в министерстве решения об изъятии этой работы из перечня важнейших. Правда, не очень красиво выглядело, что «начальник отдела, начальник лаборатории и научный руководитель работы» за пару недель до ее предъявления, сославшись на личные обстоятельства, убыл на малую родину, под Свердловск. Перед отлетом он сказал: «Сделайте хоть что-нибудь, закройте работу, и я гарантирую, что не позднее осени вы будете начальником лаборатории!».
…Из раза в раз «отжиг» заканчивался вспышкой небольшой «молнии», изогнутый канал которой было видно в иллюминатор и которая била в одну точку пластины. Никаких задумок не было, просто пробовались самые различные варианты: приблизить источник и пластину; удалить источник от пластины; создать проводящий экран вокруг катода, чтобы выход электронов в ускоряющий промежуток происходил после того, как угаснет искровой разряд; включить в цепь анода насыщающийся дроссель в надежде задержать развитие разряда… Несколько десятков «загубленных» пластин уже валялись к коробке, когда пришло в голову изолировать анод и поверх укрепить пластину… На этот раз в иллюминаторе сверкнула не «молния», а «зарево». Режим явно изменился, установку разгерметизировали, подставили извлеченную пластину под струю холодного азота, выходившую из сосуда Дьюара а потом «дыхнули» на нее: конденсация влаги показала, что пластина отожжена, причем весьма равномерно! Конечно же, это был только предварительный «анализ», нужен был снимок структуры, полученный на электронном микроскопе, но такой вариант стоил обдумывания! Пластина и изолированный от нее металлический анод представляли плоский конденсатор, поэтому-то и не образовывался канал «молнии»: заряд просто растекался по пластине-обкладке и ток уменьшался по мере приобретения ею отрицательного потенциала. Для достаточно глубокого отжига энергии немного не хватало, что подтвердили и снимки структуры, но было несколько очевидных решений: уменьшить толщину изоляции, увеличив тем самым емкость, отжигать пластину несколькими быстро следующими импульсами. Удовлетворительные снимки были получены за три дня до 28 июня – даты заседания комиссии по приемке работы.
Все результаты были продемонстрированы главному инженеру. Видимо, получив по телефону сообщение о том, что в работе наметился успех, ранее, чем предполагалось, в НИИВТ объявился «начальник и руководитель всего», люто кручинясь, что работа была исключена из перечня важнейших. Впрочем, участия в заседаниях комиссии он избегал.
Комиссия в основном состояла из специалистов НИИВТ, но председателем ее был начальник отдела из НИИ «Полюс». Увидев устройство для отжига, которое выглядело ничтожным (рис. 4.21) на фоне вакуумной установки, он удивленно спросил: «И это – все?». Сюрпризом для него была и предельно простая схема питания источников. Вполне естественным выглядело недоверие к снимкам отожженных структур, но предусмотрительно были запасены кремниевые пластины и председатель принял личное участие в процедуре их отжига, а потом – придирчиво рассматривал, дул на охлажденные под струей азота образцы. Далее он изучил отчет, который, надо признаться, в спешке был оформлен небрежно. К исходу третьего дня работы комиссии, ее председатель подчеркнул несколько абзацев отчета, которые следовало переписать, сделал несколько исправлений в проекте протокола и отбыл в свой институт. Стало ясно, что работу примут, но не очень уважаемое в интеллигентном обществе тщеславие подтолкнуло лично поехать с необходимыми документами в НИИ «Полюс» и убедить поставить в протоколе приемки работы отличную оценку. «Начальник отдела, лаборатории и научный руководитель» чувствовал неловкость только пару дней, а потом уверенно приступил к пропаганде своих достижений.
Рис. 4.21
Устройство для электронного отжига кремниевых пластин.
На открытой крышке вакуумной установки – изолятор и кассета с пластиной, на другой крышке – источник электронов
Одним из членов комиссии от НИИВТ был начальник лаборатории ионной имплантации В. Слепцов, мой ровесник. Он пришел поздравить, рассказал и о своей работе, упомянув, что одной из задач является контроль пакетов имплантируемых ионов (Слепцов полагал, что в источнике образуются ионы не одного, а нескольких сортов). Опьяненный успехом, я не удержался от хвастовства, сказав, что легко бы решил эту проблему. Слепцов подмигнул и засмеялся, хлопнув меня по плечу. Пришлось ехать в МВТУ и просить взаймы зарядочувствительный усилитель. Внутри одной из установок Слепцова была наскоро сооружена отвратительно выглядевшая петля, чуть бо́льшая по размерам, чем в установке для измерения дисперсности, действовавшей в МВТУ. Импульсы, зарегистрированные осциллографом, показали, что Слепцов не ошибался: в ионных пакетах присутствовали по крайней мере две составляющие. За Слепцовым теперь числился «должок».
Незаметно наступила осень, но никаких признаков того, что мне вскоре предстоит стать начальником лаборатории, не улавливалось. Между тем, у Тугого разгорелся аппетит: он требовал предложений по нескольким новым работам, в том числе – опытно-конструкторской (сам «начальник и автор всего» затруднялся сформулировать, какие именно это должны были быть работы). Для этого просто не было условий и сил: мне подчинялись всего четыре человека. На мои возражения было заявлено: «Так набирайте людей в вашу лабораторию», и последовал мой ответ: «Не понимаю, какая из моих лабораторий имеется в виду». В конце концов, в речи снедаемого жаждой научных побед Тугого стали звучать угрожающие нотки: «Не знаю, стоит ли планировать дальнейшую работу с вами, если вы так относитесь к делу!». «А, действительно, стоит ли?» – задал и я вопрос сам себе.
4.9. Опыты в МВТУ: вольфрамовые стрелочки, испаряющиеся в полете. Обманчивая простота спирального взрывомагнитного генератора
Профессор В. Соловьев с кафедры боеприпасов МГТУ попросил о помощи в реализации новой идеи. В то время правительство СССР было обеспокоено угрозой, исходящей от американских крылатых ракет, разворачиваемых в Западной Европе (рис. 4.22). Лететь они могли на небольшой высоте, «копируя» рельеф местности, так что обнаружить их было непросто. Но проблемы возникали и с уничтожением обнаруженной ракеты: если поражающие элементы пробивали ее корпус, чувствительные датчики формировали сигнал подрыва ядерного заряда, с которого при полете над территорией противника снимались все ступени предохранения. Взрыв с энерговыделением в пару сотен килотонн не оставлял шансов выжить тому пилоту или расчету, который попал бы в такую цель. Откуда-то возникла оценка (в ее правильности автор испытывал сильные сомнения), согласно которой поражающий элемент должен иметь скорость пять, а лучше – семь километров в секунду: тогда он пробьет корпус ракеты и вызовет детонацию взрывчатого вещества ядерного заряда в одной точке. Взрыв произойдет, но сборка с плутонием не будет обжата со всех сторон (автоматика ядерного заряда просто не успеет сработать за время, пока произойдут эти события). Вместо шара сборка в этом случае превратится в нечто, напоминающее хлебный каравай и цепная реакция из-за потерь нейтронов разовьется не полностью[89]89
Не стоит думать, что такие взрывы совсем уж безопасны: эксперимент с зарядом номинальной мощностью в сотни килотонн показал, что, при «одноточечном» его инициировании, энерговыделение понижается почти на четыре порядка (но и это – железнодорожный вагон взрывчатки!). Однако окажись поблизости другой заряд, также «заведенный» в одной точке – выход энергии существенно возрастет, потому что многие нейтроны от начального, «неполного» взрыва инициируют затухающие цепи деления. Подобное развитие событий в хранилище ядерных боеприпасов (рис. 4.23) может быть катастрофичным.
[Закрыть].
Рис. 4.23
Хранилище ядерных авиабомб В-61 Чем большая доля в энерговыделении зарядов приходится на термоядерные реакции, тем менее опасны они в этом отношении.
Рис. 4.22
Верхние снимки: дальность полета крылатой ракеты AGM-86A, (свыше 1500 км) позволяла ударной авиации применять ее вне зоны воздействия средств ПВО. Крылатая ракета BGM-109 морского базирования (на снимке – ее старт с подводной лодки) могла лететь более чем на 500 км дальше. Как AGM-86A, так и BGM-109 комплектовались зарядом W-80 mod.l. Даже если бы проблема формирования высокоскоростного поражающего элемента и была бы решена, за ней встала бы другая, не менее сложная: чтобы избежать ядерного взрыва, надо было попасть не в любой важный узел ракеты, а в определенную часть термоядерного заряда. На вооружении бомбардировщиков В-52 состояли также ракеты AGM-69A SRAM (Short Range Attack Missile, снимок в центре) – существенно меньшей дальности, но более скоростные. Эти ракеты комплектовались зарядами W-69 (ниже) с энерговыделением 170–200 кт
Однако поражающий элемент должен быть компактным телом, а не тонкой кумулятивной струей, потому что вероятность того, что струя инициирует детонацию малочувствительного ВВ, которым снаряжен заряд, невелика.
…В то, что импульсное магнитное поле способно хорошо «нажать» на металлическое тело, читателю до сих пор приходилось «только верить», но желающие могут убедиться в этом, собрав простую установку (рис. 4.24).
Главный элемент – катушка. Ее наматывают эмалированным проводом (ПЭВ, ПЭВТЛ) диаметром 0,5–0,8 мм. Каркасом служит обрезок трубки из диэлектрика (подойдет та, что прилагается к пакету с соком или корпус шариковой ручки, главное – чтобы стенки были потоньше) и два диска-ограничителя из любого диэлектрика. Всего надо намотать примерно 500 витков, стараясь, чтобы обмотка была плотной (ее можно уместить в 12–15 слоев).
Другой важный элемент – конденсатор. Как и при намотке катушки, здесь возможна импровизация, но ориентир указать стоит: у автора под рукой оказался японский, полярный, емкостью 4700 мкФ. Допустимое напряжение зарядки должно быть не менее 400В.
Заряжать конденсатор можно и от сети – через диод. Не забудьте для ограничения тока включить последовательно резистор сопротивлением не менее килоОма, иначе «накроются» и диод и конденсатор. 220В – эффективное напряжение, а пиковое значение его в сети выше. До пикового значения в конечном итоге зарядится конденсатор, и этого должно хватить для удачного опыта, но всегда может потребоваться резерв, поэтому разумно предусмотреть зарядку по схеме удвоения напряжения.
Рис. 4.24
Схема домашней пушки Гаусса и ее элементы:
1– диод;
2 – резистор;
3 – конденсатор;
4 – катушка с расположенным на ее оси стволом из диэлектрика;
5 – центратор с насаженным кольцом и стальные кольца-снаряды на постоянном магните (см. также врезку слева);
6 – штанга для закорачивания контура.
Выдающийся германский физик и математик К. Гаусс (1777–1885) теоретически обосновал возможность достижения неограниченных скоростей метания проводящих тел магнитным полем (именно – теоретически, потому что на практике эти скорости всегда чем-нибудь да ограничиваются). Он показал, что в энергию метаемого тела может быть преобразовано около 7 % энергии тока, протекающего в катушке (что примерно впятеро ниже КПД выстрела заряженного порохом орудия крупного калибра). Но заставить вырвавшиеся из ствола пороховые газы дополнительно ускорить снаряд нельзя, а вот запитать «отработанным» токовым импульсом другую катушку – можно, поэтому идея Гаусса заключалась в разгоне тела при прохождении им последовательности катушек. Максимальная энергия передается метаемому телу, если ток заканчивается в момент достижения телом середины обмотки, но обеспечить синхронную запитку нескольких катушек в домашних условиях сложно: потребуется много конденсаторов, тиристоров для коммутации, линий задержки, а главное – осциллограф, без которого экспериментатор слеп. Так что воспроизведена всего лишь секция пушки Гаусса – одна из многих
Энергию накопителя коммутируйте на катушку пластмассовой штангой. При перерывах в работе штангу оставьте в положении, закорачивающем конденсатор (как на фотографии), иначе вас, вернувшегося полным идей за лабораторный стол, может для начала «дернуть» остаточным напряжением.
О метаемом теле. Подойдет и обрезок гвоздя, но большую энергию поле отдаст кольцу, поскольку на единицу массы дипольный момент кольца выше. Хорошо «летят» шайбы стального крепежа.
Кольцо вставьте внутрь трубки на центраторе – подходящем по диаметру стержне из любого диэлектрика, заостренном на карандашной точилке. Не надо усердствовать, насаживая кольцо, иначе оно может вообще не полететь или «захватить» центратор с собой.
Ну вот и все. Напряжение зарядки будет возрастать достаточно медленно, и контролируя его тестером, вы сможете выбрать значение, при котором решили стрелять. Яркая вспышка, хлопок разряда, за которыми последуют частые щелчки укатившегося безвозвратно кольца, будут вашими первыми впечатлениями. Немного терпения – и вам удастся добиться того, на что не была способна установка «водяной» кумуляции: пробить метаемым телом алюминиевую фольгу…
…Скорости метания компактных тел, превышающие 5 км/с, получают с помощью легкогазовых пушек и рельсотронов.
Когда необходимо достичь скоростей, сравнимых с первой космической, бесполезно дополнительными пороховыми зарядами «подкачивать» в ствол газы, потому что тепловая скорость их молекул становится сравнимой со скоростью снаряда и при соударениях с его дном они уже не сообщают сколь-нибудь значительный импульс. В легкогазовой пушке продукты сгорания пороха не воздействуют непосредственно на метаемое тело, а толкают перед собой слой более легкого газа (водорода или гелия), в котором скорость молекул выше, что дает возможность разогнать метаемое тело (правда, очень и очень легкое – доли грамма) до скоростей порядка 10 км/с. Но и сверхлегкий снаряд приходится разгонять долго, поэтому длина легкогазовых пушек достигает десятков метров и место им – в лабораториях, а не на поле боя.
Рельсотрон также весьма громоздок (рис. 4.25), так что в боеприпасах, где экономят каждый грамм и каждый миллиметр, необходим разгон поражающего элемента с куда большим ускорением. Идея Соловьева заключалась в том, чтобы обойти газокинетический барьер, обусловленный недостаточной тепловой скоростью молекул в газах взрыва, применив магнитное поле для разгона, значительно более «жесткого», чем в рельсотроне.
Если внутрь сжимаемого лайнера (см. рис. 4.9) поместить хорошо проводящее тело, то и оно испытает действие огромных пондерромоторных сил магнитного поля – совсем другого порядка по сравнению не только с «домашней» пушкой Гаусса, но и рельсотроном – и может приобрести значительную скорость. Причем, если в выстреле «домашней» пушки существенную роль играют ферромагнитные свойства метаемого тела, то в ИВМГ плотности энергии такие, что ферромагнетизмом можно пренебречь. Для тех ИВМГ, которые можно было собрать в МВТУ, оценки давали массу метаемого тела (его стали называть «стрелочкой», хотя по форме оно напоминало капельку) чуть более грамма. Были идеи и как подавить нестабильности – до радиусов сжатия в несколько миллиметров, чего для метания было вполне достаточно.
Стрелочки изготовили из самого тугоплавкого металла – вольфрама. Это мало повлияло на результат: на блоке из алюминия, служившим мишенью, осталась лишь неглубокая вмятина от близкой детонации заряда ИВМГ. Напрашивалось предположение, что стрелочка еще в процессе метания испарилась, будучи нагрета вихревыми токами, индуцированными сильным магнитным полем (проводимость вольфрама втрое ниже, чем меди, и глубина проникновения поля (скин-слоя) для микросекундного времени сжатия превышает сотню микрон).
Рис. 4.25
Верхний ряд: слева – схема рельсотрона (рэйлгана). Пондерромоторные силы действуют в течение всего времени разгона и «выталкивают» скользящий по шинам и сохраняющий с ними контакт поддон со снарядом. Сооружение «домашнего» рэйлгана (правее) вполне доступно читателю и можно рассчитывать на достижение скоростей в десятки метров в секунду для тела массой в граммы. В рекордной же установке 31 января 2008 года достигнута скорость 2,5 км/с для снаряда массой чуть более трех килограммов. Учитывая, что энергия зависит от квадрата скорости, а энергоемкости «домашних» и «специальных» конденсаторов – одного порядка, нетрудно понять, почему размеры такого сооружения – циклопические (в центре). Выстрел рейлгана – феерическое зрелище (на нижнем левом снимке – полет его снаряда, видна носовая ударная волна), но близки к истине авторы книги «Артиллерия» (М.; Воениздат, 1938 г.), подсчитавшие, что для энергообеспечения тактически значимого режима огня «электропушки» необходима небольшая электростанция
Тогда в приповерхностный слой вольфрама с помощью установки ионной имплантации внедрили частицы углерода, а поверх – еще и десятимикронный слой очень хорошо проводящего серебра. Это позволяло надеяться, что почти все магнитное поле и ток будут сосредоточены в слое серебра. Серебро, конечно, должно было испариться, а углерод – хоть как-то воспрепятствовать теплопередаче в вольфрам. Участники опытов с восхищением рассматривали блестящие, высокотехнологичные стрелочки. Потом прогремел взрыв и в алюминиевом блоке было, наконец, обнаружено долгожданное отверстие. В него радостно тыкали иголками, наивно пытаясь что-то нащупать, но полученный в лаборатории Чепека рентгеновский снимок мишени (рис. 4.26) показал, что кратер «чист». Даже небольшой кусочек вольфрама должен контрастно выделяться на фоне алюминия, но на рентгенограмме было изображение полого канала, да еще чуть искривленного, что указывало на потерю устойчивости образовавшего его тела. Стрелочка летела, расходуя себя, испарения не удалось избежать, его только замедлили. Провели еще один опыт: стрелочкой выстрелили в блок оргстекла, снимая ее полет скоростной камерой. На проявленной пленке увидели, как нечто оставляет за собой конус из помутневшего от ударной волны оргстекла, а потом все поле съемки закрывали трещины. И эти снимки сохранились, но разобраться в них, не являясь специалистом, непросто; они позволили определить скорость того, что поначалу оставалось от стрелочки, – 4,5 км/с и дистанцию, на которой от нее не оставалось ничего – несколько сантиметров. Дальнейшее «дожимание» конструкции привело к тому, что эффект высокоскоростного удара стал существенным даже в броне, но стрелочки все равно испарялись в преграде без остатка. Газокинетический барьер вроде и удалось обойти, но за ним стоял другой, «выстроенный» вихревыми токами.
Рис. 4.26
Слева – рентгенограмма алюминиевой мишени. Кратер образовала летящая с высокой скоростью вольфрамовая стрелочка, без остатка испарившаяся в полете. В центре – срез броневого листа с кратером от попавшей в него, летевшей под углом и с высокой скоростью стрелочки. Мишень не пробита, но высокоскоростной удар вызвал откол элементов брони (также обладающих определенным поражающим действием). Справа – образование кратера в жидкости. При высокоскоростном ударе броня течет как жидкость, и вокруг кратера образуется «валик», который виден и на срезе броневого листа
Следует быть корректным и отметить, что подобные опыты были проведены за пару десятков лет до описываемых событий группой А. Сахарова – и с тем же результатом: алюминиевое кольцо испарилось спустя пару микросекунд после метания. Правда, ВМГ, использовавшийся в тех опытах для ускорения кольца, был другого типа…
…Предложенный в 50-х годах спиральный ВМГ (СВМГ) выглядит примитивным устройством (рис. 4.27): труба со взрывчаткой внутри да установленная соосно проволочная спираль. При взрыве труба растягивается в конус и, последовательно закорачивая при расширении виток за витком, уменьшает индуктивность спирали.
Как и в случае кумулятивного заряда, простота СВМГ обманчива. Ну, взять хотя бы ту же трубу: при взрывном расширении в ней не только не допустима ни единая трещинка (иначе магнитный поток «упорхнет»), но и поверхность ее должна оставаться достаточно ровной (иначе поток хоть и не «упорхнет» весь, но в каждой ложбинке будет помалу отсекаться). «А как же нестабильности?» – слышится вопрос Настырного. Они, конечно, не могут не появиться (присмотритесь к трубе на рис. 4.17 – ее изображение заимствовано из подлинной фотографии), но начальные диаметры спирали и трубы различаются примерно вдвое и нестабильности не успевают достаточно развиться, пока расширяющаяся часть трубы достигает витка.
Рис. 4.27
Схема спирального взрывомагнитного генератора. Металлическая труба 1, заполненная взрывчатым веществом 2, окружена обмоткой 3. При подрыве газы растягивают трубу в конус, основание которого движется по виткам обмотки, замыкая их и приближая точку контакта к индуктивной нагрузке 4, куда и вытесняется магнитный поток. В растянутой взрывом части трубы видны продольные канавки. Это – зарождающиеся нестабильности
Поскольку усиление тока пропорционально отношению начальной и нагрузочной индуктивностей, казалось бы, естественно наматывать всю обмотку с наименьшим возможным шагом. Это – простое, но ложное представление: для устройств с большими временами работы и значительными отношениями начальной и нагрузочной индуктивностей роль сохранения магнитного потока в усилении превалирует и приходится жертвовать индуктивностью обмотки (рис. 4.28).
Теоретическое рассмотрение приводит к экспоненциальным законам возрастания шага и уменьшения индуктивности генератора с длиной спирали. Обычно изоляция провода постоянна по толщине, а значит, и рабочее напряжение рационально делать постоянным. В СВМГ с правильно подобранными обмоточными данными экспонециально возрастает и ток, а экспонента как функция замечательна тем, что и ее производная – тоже экспонента, так что осциллограммы как тока, так и его производной (приводимые далее) будут выглядеть подобно, пока происходит усиление.
Рис. 4.28
Схема работы спирального ВМГ с постоянным шагом намотки (сверху) и намоткой, шаг которой увеличивается по мере приближения к нагрузке (начальный шаг – тот же).
Пусть ток запитки одинаков. Для «верхнего» СВМГ это означает, что энергия запитки у него больше, поскольку индуктивность обмотки выше. Но вот преимущество в усилении тока – за «нижним» вариантом: за равный промежуток времени труба «отсечет» (показано синим пунктиром) то же число витков (начальные шаги намотки равны), но нагрузки, при примерно равных наведенных ЭДС, будут существенно различаться: в «нижнем» случае остаточная индуктивность меньше. К тому же, в «нижней» обмотке меньше потери потока, так как меньше длина провода остатка сжатого контура.
Если для энергии в контуре прибавка от «повышенного» тока превалирует над убылью индуктивности вследствие «разрежения» ее витков, то, по мере дальнейшего движения конуса, преимущество «нижнего варианта» возрастает (каждый из последующих его участков будет начинать с большего начального тока и лучше его усиливать) и он имеет все предпосылки не только компенсировать начальное энергетическое преимущество «верхнего», но и многократно превзойти его. Это вполне возможно, ведь энергия пропорциональна первой степени индуктивности, но квадрату – тока. Главное – не «переборщить», все более «круто» профилируя обмотку (и уменьшая при этом индуктивность), иначе можно «добиться», что ВМГ вообще перестанет усиливать энергию и даже начнет терять ее, несмотря на значительный генерируемый ток
Из экспоненциального закона изменения индуктивности следует, что в любой момент работы СВМГ (хоть в первую, хоть в последнюю микросекунду) суммарная индуктивности спирали и нагрузки должна уменьшаться на определенную и одинаковую долю за одинаковое время (например, на 10 % за микросекунду). Нагрузка упомянута не случайно: в начале работы, когда индуктивность спирали еще велика, вклад нагрузки в общую индуктивность генератора незаметен. Положение меняется к концу работы: если индуктивность нагрузки недостаточна (или чрезмерна), то ее наличие существенно «отклонит» закон изменения индуктивности от оптимального. Удобно рассматривать зависимость логарифма индуктивности от длины – это будет отрезок прямой (рис. 4.29). Если нагрузка «встроена в закон» (согласована), усиление продолжается вплоть до закорачивания расширяющейся трубой последнего витка…
…Соловьев попросил помочь в составлении докладной записки: формально скорость метания компактного тела, близкая к требуемой, была достигнута и это позволяло надеяться на финансирование дальнейших исследований в этой области. Момент был подходящим для обсуждения возможности моей дальнейшей работы уже в МВТУ. Соловьев выслушал молча и сказал со снисходительной усмешкой: «Ну, допустим, я помогу тебе. Но на какую должность ты здесь рассчитываешь? Заведующим кафедрой тебе не стать: ты – не свой (не выпускник МВТУ), не родственник члена ЦК, не космонавт и даже не доктор. Надеюсь, ты не считаешь, что докторские здесь раздают всем желающим? За них идет такая грызня, какая тебе не снилась. За твоими изобретениями тут выстроится очередь страждущих и попробуй их не включить – тебя затопчут. В НИИВТ начальник нуждается в научных результатах, у тебя сильные позиции, но ты не смог их реализовать. В учебном институте научный результат – не главное, неужели ты наивно полагаешь, что, ослабив свои позиции, ты скорее добьешься успеха? Пройдет немного времени и тебе снова придется менять место работы, это – лишний ход, а тот, кто делает лишние ходы, не выигрывает ни в жизни, ни в шахматах. И не бросайся в свой МИФИ: обстановка там такая же. Я часто бываю в министерстве и назову там твою фамилию в подходящий момент. Но случиться это может через месяц, а может – через год. А пока мы с удовольствием будем принимать тебя здесь. Ты, может, сам не замечаешь, сколько всего перенимают у тебя ребята: с высоким напряжением теперь вовсю работают, стеклянные шары то и дело хлопают, весь подвал мочой провонял (ВВ, которое я синтезировал, вспомнив детство, действительно попахивало мочой)». Возразить на эти слова было нечего.
Рис. 4.29
СВМГ и в самый последний момент своей работы «не должен знать», что впереди уже не осталось ни одного витка, а только нагрузка (осциллограмма справа внизу, производная тока в этот момент резко падает до нуля). Но, когда «очень нужно», нагрузку все же меняют. На начальных стадиях работы, пока индуктивность спирали велика, это не сказывается, но в конце отклонения от выбранного закона становятся заметны и СВМГ начинает быстрее терять поток и снижать усиление (осциллограмма справа вверху)
Соловьев сдержал обещание, потому что в середине ноября он пригласил меня в МВТУ на разговор с начальником лаборатории лазерной техники ЦНИИХМ. Фамилия начальника на двух различных языках уверяла, что ее носитель – принц, да еще «двойной». Началось обсуждение результатов, по завершению которого Бипринц заявил, что «готов поддерживать эти работы на любом уровне». Правда, было не очень понятно, какое отношение источники РЧЭМИ и скоростное метание имеют к лазерам. Сразу после новогодних праздников мне позвонил и попросил приехать в ЦНИИХМ заместитель директора К. Шамшев (Бипринц был подчинен другому заместителю директора – В. Морозову). Шамшев стал обсуждать новую сессию испытаний источников РЧЭМИ, уверяя, что не позже марта я стану сотрудником ЦНИИХМ.
Хотелось основательно подготовиться к испытаниям и к смене места работы. Конструкция приборов, необходимых для испытаний, была тщательно продумана. Все было сделано своими руками, «на всю оставшуюся жизнь». В устройствах элементы, находившиеся при работе под высоким напряжением, располагались так, чтобы разность потенциалов между соседними элементами была как можно меньшей. Кроме того, каждый элемент схемы тщательно изолировался и механически закреплялся. Подвигом была намотка вручную трансформаторов в преобразователе напряжения: их вторичная обмотка насчитывала двенадцать тысяч витков провода диаметром 0,06 мм. Для блокирования возможных перенапряжений, в схемы были включены защитные разрядники (к полупроводниковым стабилитронам доверия не было). Все устройства были выполнены плоскими, «удобовыносимыми». Они нормально функционируют вот уже спустя более четверти века после их изготовления.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.