Текст книги "Гистология человека: конспект лекций для вузов"
Автор книги: Александр Седов
Жанр: Справочная литература: прочее, Справочники
сообщить о неприемлемом содержимом
Текущая страница: 13 (всего у книги 20 страниц)
ЛЕКЦИЯ 14. Органы чувств
1. Типы органов чувств
2. Орган равновесия
3. Орган слуха
4. Гистофизиология слуха
5. Рецепторный аппарат глаза
6. Диоптрический аппарат глаза
7. Аккомодационный аппарат глаза
1. Сенсорная система обеспечивает восприятие организмом информации о состоянии внешней и внутренней среды, а также ее обработку и трансформацию в ощущения. Все эти функции осуществляются анализаторами и их периферическими отделами – органами чувств.
Анализаторы – это сложные структурно-функциональные системы, связывающие центральную нервную систему с внешней и внутренней средой. Они являются афферентной частью рефлекторных дуг. Каждый анализатор состоит из трех частей:
· периферической, в которой происходит восприятие раздражения;
· промежуточной или кондуктивной, представленной проводящими путями и подкорковыми образованиями;
· центральной, образованной участком коры головного мозга, где идет анализ информации и синтез ощущения.
Органы чувств являются периферическими частями анализаторов.
Выделяют три типа органов чувств:
· I тип образован органами, развивающимися из нейроэктодермы. Рецепторные клетки в этих органах являются нервными клетками и называются первичночувствующими (первичночувствующие рецепторы). Такими органами являются органы зрения и обоняния;
· II тип органов чувств представлен органами слуха, равновесия, вкуса. В этих органах раздражения воспринимают эпителиальные клетки, которые называются сенсоэпителиальными, развивающиеся из кожной эктодермы. Сенсоэпителиальные клетки называются вторичночувствующими (вторичночувствующие рецепторы). С ними контактируют дендриты чувствительных нервных клеток, которые передают воспринятое раздражение на свой нейрон;
· III тип органов чувств представлен инкапсулированными и неинкапсулированными нервными окончаниями. Их строение как правило не имеет органного принципа (исключениеинкапсулированные нервные окончания). Все они являются дендритами нейронов чувствительных ганглиев.
В состав органа слуха и равновесия входит наружное, среднее и внутреннее ухо, которые воспринимают звуковые, гравитационные, вибрационные стимулы, а также линейные и угловые ускорения.
Наружное ухо состоит из раковины, наружного слухового прохода и барабанной перепонки. Ушная раковина образована эластическим хрящом, покрытым кожей. Наружный слуховой проход также представлен эластической хрящевой тканью, являющейся продолжением хряща ушной раковины и переходящей в костную ткань височной кости. Он выстлан кожей со щетинистыми волосами и серными (церуминозными) железами, продуцирующими ушную серу. В коже слухового прохода содержатся также сальные железы. Барабанная перепонка состоит из двух слоев коллагеновых волокон, наружный слой радиальный, внутренний – циркулярный и расположенных между ними фибробластов. Снаружи покрыта тонким эпидермисом, изнутри – слизистой оболочкой с однослойным плоским эпителием. С барабанной перепонкой с помощью ручки сращен молоточек – одна из слуховых косточек.
Средне ухо состоит из барабанной полости, слуховых косточек и слуховой трубы. Барабанная полость покрыта однослойным плоским или кубическим эпителием. Эпителий лежит на базальной мембране, а последняя на тонкой собственной пластинке, плотно связанной с надкостницей. На медиальной стенке барабанной полости, образованной костной стенкой внутреннего уха, имеются 2 отверстия или окна: овальное и круглое. Овальное окно закрывается основанием стремечка. Оно отделяет барабанную полость от вестибулярной лестницы улитки. Круглое окно закрыто волокнистой мембраной и отделяет барабанную полость от барабанной лестницы улитки.
Слуховые косточки – молоточек, наковальня и стремечко – образованы пластинчатой костной тканью, на суставных поверхностях покрытой гиалиновым хрящом. Снаружи косточки покрыты однослойным плоским эпителием. Они передают слуховые колебания от барабанной перепонки к овальному окну и барабанной лестнице. С косточками связаны мелкие поперечно-полосатые мышцы.
Слуховая (евстахиева) труба соединяет барабанную полость с носоглоткой. Образована костной стенкой, покрытой многорядным реснитчатым эпителием, лежащим на собственной пластинке. Собственная пластинка содержит простые слизистые железы, а также скопление лимфоидной ткани, образующей трубные миндалины. Через трубу регулируется давление воздуха в барабанной полости. Глоточное отверстие трубы закрыто и открывается только при глотании, что уравновешивает давление на барабанную перепонку.
Внутренне ухо располагается в пирамиде височной кости. Состоит из костного и расположенного в нем перепончатого лабиринта. Костный лабиринт – система полостей, которые включают в себя: преддверие, улитку, полукружные канальцы. В перепончатом лабиринте находятся рецепторные клетки органов слуха и равновесия. Они лежат в особых участках: рецепторные клетки органа слухав спиральном (кортиевом) органе (улитке), а рецепторные клетки органа равновесияв эллиптическом мешочке (маточке), сферическом мешочке (саккулюсе), а также в ампулярных гребешках полукружных канальцев. Перепончатый лабиринт содержит эндолимфу, а пространство между костным и перепончатым лабиринтами – перилимфу.
Перепончатый лабиринт, в котором находятся орган слуха и равновесия, образуется из эктодермы. При этом по бокам тела зародыша в области головы образуются парные утолщения эктодермы – плакоды. Они впячиваются в мезенхиму и превращаются в слуховые пузырьки. Каждый пузырек выстлан многорядным эпителием и заполнен эндолимфой. Затем пузырьки делятся на 2 части: вестибулярную (маточку с полукружными каналами) и мешочек с улитковым каналом. Позднее улитка увеличивается в размерах и отделяется от мешочка. Внутренняя выстилка пузырьков дифференцируется под влиянием слухового ганглия. Этот ганглий затем делится на 2 части: вестибулярный ганглий и спиральный (улитковый) ганглий. В определенных участках маточки, мешочка, ампул полукружных каналов, улитки образуются рецепторные зоны, содержащие чувствительные (сенсоэпителиальные) клетки. Эти клетки специализируются на выполнении рецепции звуковых, гравитационных, вибрационных раздражителей.
2. Орган равновесия состоит из сферического пузырька – мешочка или саккулюса, эллиптического пузырькаматочки или утрикулюса и трех полукружных каналов. В месте соединения этих каналов с маточкой образуются расширения – ампулы. Мешочек соединяется с каналом улитки. В ампуле находятся рецепторные участки в виде гребешков или крист. В маточке и мешочке рецепторные участки имеют вид пятен или макул. В этих участках эпителий имеет особое строение, а вся остальная часть вестибулярного перепончатого лабиринта выстлана однослойным плоским эпителием.
Эпителий макул состоит из 7000–9000 сенсорных волосковых эпителиоцитов и расположенных между ними опорных клеток. Над поверхностью эпителия находится имеющая студенистую консистенцию отолитовая мембрана, содержащая кристаллы углекислого кальция (отолиты или статоконии). В отолитовую мембрану вмонтированы волоски рецепторных клеток, которые при смещении мембраны изгибаются. При этом волосковые клетки возбуждаются и передают электрические импульсы на дендриты биполярных нейроцитов вестибулярного ганглия. Различают два вида волосковых клеток:
· грушевидные клетки имеют широкое основание и узкую апикальную часть. На апикальной поверхности имеется кутикула с 60–80 неподвижными волосками – стереоцилиями. Кроме того, на поверхности клеток имеется и подвижный волосок – киноцилия, представляющая собой эксцентрично расположенную ресничку. К основанию каждой грушевидной клетки подходит нервное окончание в виде чаши – чашеобразное нервное окончание;
· цилиндрические клетки имеют призматическую форму, и на них оканчиваются нервные окончания дендритов – биполярных клеток точечного типа. В остальном строение этих клеток похоже на строение грушевидных.
Также в макуле имеется третий вид клеток это опорные клетки, которые имеют призматическую форму и многочисленные микроворсинки на апикальной поверхности. Ее основной функцией является голокриновая секреция компонентов отолитовой мембраны.
Морфологически пятна маточки и мешочка мало отличаются друг от друга. Тем не менее функция их различна. Пятно сферического мешочка воспринимает вибрационные колебания и земное притяжение (рецептор гравитации). Пятно маточки воспринимает только изменения вертикального положения тела по отношению к гравитационному полю Земли, то есть только рецептор гравитации.
Гребешки в ампулах полукружных каналов принципиально построены так же, как и пятна. В их составе имеются рецепторные волосковые (цилиндрические и грушевидные) и опорные клетки. Общее число волосковых клеток равно 15 000-17 000. Вместо отолитовой мембраны здесь формируется желатинообразное вещество в виде купола. Купол является продуктом голокриновой секреции опорных клеток, он в отличии от отолитовой мембраны не содержит отолитов. В купол погружены киноцилии и стереоцилии. При движении головы и ускоренном движении тела купол отклоняется из-за перемещения эндолимфы в полукружных каналах.
Основная функция гребешков – восприятие угловых ускорений.
3. Орган слуха располагается в улитковом канале перепончатого лабиринта по всей его длине. На поперечном срезе этот канал имеет форму треугольника, обращенного к центральному костному стержню улитки. Улитковый канал имеет длину около 3,5 см, делает по спирали 2,5 витка вокруг центрального костного стержня (модиолуса) и слепо заканчивается на вершине. Канал заполнен эндолимфой. Снаружи от улиткового канала находятся пространства, заполненные перилимфой. Эти пространства называются лестницами. Сверху лежит вестибулярная лестница, снизубарабанная. Вестибулярная лестница отделяется от барабанной полости овальным окном, куда вставлено основание стремечка, а барабанная лестница отделяется от барабанной полости круглым окном. Обе лестницы и улитковый канал окружены костью костной улитки.
Стенка улиткового канала, обращенная к вестибулярной лестнице, называется вестибулярной мембраной. Эта мембрана состоит из соединительнотканной пластинки, покрытой с обеих сторон однослойным плоским эпителием. Боковая стенка улиткового канала образована спиральной связкой, на которой лежит сосудистая полоска – многорядный эпителий с кровеносными капиллярами. Сосудистая полоска продуцирует эндолимфу, обеспечивает транспорт к кортиеву органу питательных веществ и кислорода, поддерживает ионный состав эндолимфы, необходимый для нормальной функции волосковых клеток.
Стенка улиткового канала, лежащая над барабанной лестницей, имеет сложное строение. На ней находится рецепторный аппарат – кортиев орган. Основу этой стенки составляет базилярная мембрана, покрытая со стороны барабанной лестницы плоским эпителием. Базилярная мембрана состоит из тонких коллагеновых волоконслуховых струн. Эти струны натянуты между спиральной костной пластинкой, отходящей от модиолуса улитки, и спиральной связки, лежащей на наружной стенке улитки. Их длина неодинакова: у основания улитки они короче (100 мкм), а на вершине в 5 раз длиннее. Базилярная мембрана со стороны улиткового канала покрыта пограничной базальной мембраной, на которой лежит спиральный кортиев орган. Он образован рецепторными и опорными клетками разной формы.
Рецепторные клетки делятся на внутренние и наружные волосковые клетки. Внутренние клетки имеют грушевидную форму. Их ядра лежат в расширенной нижней части. На поверхности суженной апикальной части есть кутикула и проходящие через нее 30–60 коротких стереоцилий, расположенных линейно в три ряда. Волоски неподвижны. Общее количество внутренних волосковых клеток составляет около 3500. Они лежат в один ряд вдоль всего спирального органа. Внутренние волосковые клетки лежат в углублениях на поверхности внутренних опорных фаланговых клеток.
Наружные волосковые клетки имеют цилиндрическую форму. На апикальной поверхности этих клеток также имеется кутикула, через которую проходят стереоцилии. Они лежат в несколько рядов. Их количество на каждой клетке около 70. Своими вершинами стереоцилии прикрепляются к внутренней поверхности покровной (текториальной) мембраны. Эта мембрана нависает над спиральным органом и образуется путем голокриновой секреции клеток лимба, от которого она отходит. Наружные волосковые клетки лежат в виде трех параллельных рядов по всей длине спирального органа. В них обнаруживается большое количество актиновых и миозиновых филаментов, которые встроены в кутикулу. Хорошо развиты митохондрии, а также гладкая эндоплазматическая сеть.
Различна и иннервация двух видов волосковых клеток. Внутренние волосковые клетки получают в основном чувствительную иннервацию, тогда как к наружным подходят в основном эфферентные нервные волокна. Количество наружных волосковых клеток составляет 12 000-19 000. Они воспринимают звуки большей интенсивности, а внутренние могут воспринимать и слабые звуки. В вершине улитки волосковые клетки принимают низкие, а в основании ее – высокие звуки. К наружным и внутренним волосковым клеткам подходят дендриты биполярных нейронов спирального ганглия, который лежит между губами спиральной костной пластинки.
Опорные клетки спирального органа различаются по строению. Есть несколько разновидностей этих клеток: внутренние и наружные фаланговые, внутренние и наружные клетки – столбы, наружные и внутренние пограничные клетки Гензена, наружные поддерживающие клетки Клаудиуса и клетки Беттхера.
Название «фаланговые клетки» связано с тем, что они имеют тонкие пальцевидные отростки, которые отделяют друг от друга сенсорные клетки. Клетки-столбы имеют широкое основание, лежащее на базальной мембране, и узкие центральную и апикальную части. Последними наружные и внутренние клетки соединяются друг с другом, образуя треугольной формы туннель, через который к волосковым клеткам подходят дендриты чувствительных нейронов. Наружные и внутренние пограничные клетки Гензена лежат соответственно снаружи от наружных и кнутри от внутренних фаланговых клеток. Поддерживающие клетки Клаудиуса находятся снаружи от наружных пограничных клеток Гензена и лежат на клетках Беттхера. Все эти клетки выполняют опорные функции. Клетки Беттхера лежат под клетками Клаудиуса, между ними и базальной мембраной.
Спиральный ганглий находится в основании спиральной костной пластинки, отходящей от модиолуса, которая разделяется на две губы, образуя полость для ганглия. Ганглий построен по общему принципу чувствительных ганглиев. В отличие от спинальных ганглиев его образуют биполярные чувствительные нейроциты. Их дендриты через тоннель подходят к волосковым клеткам, образуя на них нейроэпителиальные синапсы. Аксоны биполярных клеток образуют улитковый нерв.
4. Гистофизиология слуха
Звуки определенной частоты воспринимаются наружным ухом и передаются через слуховые косточки и овальное окно перилимфе в барабанной и вестибулярной лестницах. При этом приходят в колебательные движения вестибулярная и базилярная мембраны, а следовательно, и эндолимфа. В результате движения эндолимфы смещаются волоски сенсорных клеток, так как они прикреплены к текториальной мембране. Это приводит к возбуждению волосковых клеток, а через них – биполярных нейронов спирального ганглия, которые передают возбуждение в слуховые ядра ствола мозга, а затем в слуховую зону коры больших полушарий.
Нейронный состав анализаторов слуха и равновесия следующий:
· нейрон – биполярный нейрон спирального (орган слуха) или вестибулярного (орган равновесия) ганглиев;
· нейрон – вестибулярные ядра продолговатого мозга;
· нейрон в зрительном бугре, аксон его идет к нейронам коры полушарий.
5. Орган зрения представляет собой периферическую часть зрительного анализатора. Состоит из глазного яблока и вспомогательного аппарата (веки, слезные железы, глазодвигательные мышцы).
Глазное яблоко с морфологической точки зрения является органом слоистого типа. Оно состоит из трех оболочек:
· наружная оболочка – склера, которая на большем протяжении непрозрачна, но в переднем отделе глазного яблока переходит в прозрачную роговицу;
· средняя оболочка – сосудистая, в свою очередь, подразделяется на 3 части – собственно сосудистую оболочку, реснитчатое тело и радужную оболочку;
· внутренняя оболочка – сетчатка, зрительная часть и слепая часть.
Кроме того, в состав глазного яблока входит хрусталик, стекловидное тело, жидкость передней и задней камер глаза.
С физиологической точки зрения в глазу выделяют несколько функциональных аппаратов:
· рецепторный аппарат – сетчатка;
· диоптрический или светопреломляющий аппарат – роговица, хрусталик, стекловидное тело, жидкость камер глаза;
· аккомодационный аппарат – радужка, хрусталик, реснитчатое тело;
· вспомогательный аппарат – веки, ресницы, слезные железы, глазодвигательные мышцы.
Орган зрения развивается достаточно рано из нескольких источников. Сетчатка и зрительный нерв развиваются из выпячивания стенки переднего мозгового пузыря, которое имеет вид глазных пузырьков. Эти пузырьки путем впячивания превращаются в глазные бокалы. Из наружной стенки глазного бокала развивается пигментный эпителий сетчатки, из внутренней – собственно сетчатка. Края глазного бокала служат для образования гладких мышц радужки (мышцы, суживающие и расширяющие зрачок) и реснитчатого тела. Хрусталик развивается из эктодермы, которая образует вначале утолщение – хрусталиковую плакоду, а затем хрусталиковый пузырек. Хрусталиковый пузырек отпочковывается от остальной эктодермы и постепенно смещается в полость глазного бокала. Сросшаяся над ним эктодерма участвует в образовании переднего эпителия роговицы. Склера, сосудистая оболочка и ее производные (радужная оболочка, реснитчатое тело) развиваются из мезенхимы. Эпителий конъюнктивы глаза, слезные железы развиваются из кожной эктодермы.
Сетчатка состоит из задней (зрительной) и передней (слепой) частей. Слепая часть сетчатки состоит из двух пластов кубического глиального эпителия. Граница между слепой и зрительной частями неровная и называется зубчатым краем.
Зрительная (оптическая) часть имеет сложное слоистое строение, характерное для экранных нервных центров. Основной частью сетчатки является трехчленная нейронная цепь. Она состоит из фоторецепторного, биполярного и ганглионарного нейронов. Тела эти нейронов образуют три ядерных слоя сетчатки (наружный и внутренний зернистые и ганглионарный). Имеются также слои, образованные отростками нейронов, межнейронными связями и глиальными элементамислой палочек и колбочек, наружный и внутренний сетчатые слои, слой нервных волокон, две глиальные пограничные мембраны. Всего в сетчатке насчитывается 10 слоев.
Слой пигментного эпителия находится между базальной пластинкой сосудистой оболочки, с одной стороны, и слоем палочек и колбочек сетчатки, с другой. Пигментоциты, формирующие слой, лежат на базальной мембране. Их основания прилежат к сосудистой оболочке. От вершин клеток отходят отростки в виде «бороды», которые также содержат пигмент меланин, способный мигрировать сюда из тел клеток. На свету количество пигмента увеличивается, и он перемещается в отростки, которые окружают палочки и колбочки фоторецепторных нейронов, глубоко проникая между ними. При этом пигмент поглощает часть света и препятствует перевозбуждению фоторецепторных нейронов. В темноте отростки исчезают, а пигмент перемещается к телу клетки, что способствует большему возбуждению фоторецепторов.
Функции пигментного слоя:
· трофическая функция по отношению к фоторецепторным нейронам, обеспечение диффузии питательных веществ и кислорода из сосудистой оболочки;
· защитная функция – защита палочек и колбочек прежде всего от избыточного светового потока, участие в гематоофтальмическом барьере;
· фагоцитоз и переваривание подвергающихся постоянному разрушению наружных частей палочконесущих нейронов и, следовательно, участие в обновлении их дисков;
· биосинтез ретиналя (составной части зрительного пигмента родопсина) и транспорт его к фоторецепторным нейронам.
Слой палочек и колбочек образован дендритами фоторецепторных нейронов, имеющими форму или палочек, или колбочек. В палочке выделяют наружный и внутренний сегменты. В наружном сегменте находится большое количество сдвоенных поперечных мембран, расположенных в виде стопки плоских мембранных пузырьков. Их называют дисками. В дисках наружного сегмента содержится зрительный пигмент родопсин, состоящий из белка опсина и альдегида витамина А – ретиналя. Под действием энергии света родопсин распадается, что ведет к увеличению проницаемости мембраны клетки для ионов и возникновению электрического потенциала. В темноте происходит регенерация родопсина, сопровождающаяся затратой энергии АТФ. Диски палочек постоянно обновляются. Их новообразование происходит в проксимальных отделах, откуда новообразованные диски смещаются в дистальном направлении, «стареют» фагоцитируются клетками пигментного эпителия. Для новообразования мембран дисков необходим витамин А, при недостатке которого происходит их разрушение, и возникает «куриная слепота» – неспособность видеть в ночное время.
Палочки – рецепторы черно-белого ночного зрения. Их количество около 130 млн. Расположены палочки в периферических отделах сетчатки.
В колбочке строение наружного сегмента несколько отличается от палочки. Во-первых, наружные сегменты состоят не из изолированных дисков, а из полудисков, образованных глубокими инвагинациями цитолеммы, напоминающими гребенку. Во-вторых, они имеют не цилиндрическую, а коническую форму. В-третьих, во внутреннем сегменте имеется эллипсоидлипидное включение, окруженное митохондриями.
В-четвертых, в колбочках полудиски содержат зрительный пигмент йодопсин. Этот пигмент распадается под воздействием красного, синего или зеленого света. В-пятых, мембраны колбочек не подвергаются обновлению. Внутренний сегмент колбочек имеет такое же строение, как и в палочках, отличие заключается в том, что ядро колбочковых клеток более крупное, чем ядро палочковых. Общее число колбочковых нейронов составляет около 7 млн. Они лежат в центре сетчатки. Особенно велико их содержание в желтом пятне – области лучшего видения. Колбочковые клетки реагируют на свет высокой интенсивности, обеспечивая цветное дневное зрение.
Механизм фоторецепции связан с распадом молекул родопсина и йодопсина под воздействием световой энергии. Это запускает цепь реакций, изменяющих проницаемость мембран для ионов и вызывающих формирование нервного импульса.
Наружная глиальная мембрана находится между слоем палочек и колбочек и наружным зернистым слоем. Образована отростками глиальных клеток-волокон.
Наружный зернистый (ядерный) слой образован телами и ядрами фоторецепторных нейронов. Это наиболее выраженный из трех ядерных слоев сетчатки.
Наружный сетчатый слой сформирован аксонами фоторецепторных нейронов, дендритами биполярных нейронов и синапсами между ними.
Внутренний зернистый слой образован телами нескольких нейронов: биполярных, горизонтальных, амакриновых, интерплексиформных, а также ядрами глиальных клеток-волокон Мюллера. Дендриты биполярных нейронов образуют синапсы с аксонами фоторецепторных нейронов в наружном сетчатом слое, а их аксоны формируют синапсы с дендритами ганглионарных нейронов во внутреннем сетчатом слое. Горизонтальные нейроны имеют множество горизонтально идущих дендритов, которые образуют синапсы с несколькими фоторецепторными нейронами. Аксон горизонтального нейрона формирует синапс на границе между биполярной и фоторецепторной клетками. Через такие синапсы может проходить торможение, что увеличивает контрастность изображения. Амакриновые нейроны не имеют дендритов, их заменяет тело клетки, выполняющее роль синаптической поверхности. Аксон ветвится и образует связи с несколькими ганглионарными, а также биполярными нейронами. Функция амакриновых нейронов та же, что и у горизонтальных клеток. Интерплексиформные нейроны выполняют ассоциативную функцию. Глиальные клетки-волокна Мюллера имеют протяженные отростки, которые идут вверх и вниз, соединяясь между собой на уровне 2 и 3 слоями. Эти соединения формируют наружную глиальную пограничную мембрану. Внутренняя глиальная мембрана образована основаниями клеток-волокон Мюллера и их базальной мембраной. Она находится за слоем нервных волокон, отделяя его от стекловидного тела. От основных отростков клеток Мюллера отходит многочисленные вторичные отростки, которые окружают тела нейронов сетчатки и их синапсы, выполняя опорную функцию. Кроме того, отростки окружают стенки ретинальных капилляров, участвуя в формировании гематоретинального барьера. Несмотря на такое разнообразие клеток его формирующих, внутренний ядерный слой заметно тоньше, чем наружный.
Внутренний сетчатый слой образован аксонами биполярных нейронов и дендритами ганглионарных нейронов. Здесь же находятся синапсы между этими отростками.
Ганглионарный слой образован ядрами ганглионарных нейронов. Эти нейроны самые крупные в сетчатке, но их меньше всего. В результате убывания клеток от наружных слоев к внутренним происходит конвергенция нервных импульсов в сетчатке. Так, на одном биполярном нейроне образуются синапсы нескольких фоторецепторных клеток. В свою очередь, несколько биполярных клеток контактируют с одним ганглионарным нейроном. В результате число нервных волокон в зрительном нерве примерно в 100 раз меньше числа фоторецепторных нейронов. Конвергенция отсутствует в области желтого пятна, где каждому фоторецепторному соответствует отдельный биполярный нейрон.
Слой нервных волокон образован аксонами ганглионарных нейронов. Нервные волокна сетчатки находятся в слепом пятне, окружаются миелиновой оболочкой, проходят через всю сетчатку и формируют зрительный нерв, в котором волокна перекрещиваются и идут в таламус.
Внутренняя глиальная пограничная мембрана находится ниже слоя нервных волокон. Образована соединением оснований и отростков клеток-волокон Мюллера и их базальной мембраной.
6. Диоптрический аппарат глаза
Роговица – прозрачная часть наружной фиброзной оболочки глаза склеры. Она состоит из пяти слоев:
· наружный эпителий является многослойным плоским неороговевающим эпителием, который состоит из трех слоев – базального, шиповатого и слоя плоских клеток. В эпителии содержится большое количество свободных нервных окончаний, обусловливающих высокую чувствительность роговицы. Передний эпителий роговицы в области лимба переходит в эпителий конъюнктивы глаза;
· передняя пограничная (боуменова) мембрана. Образована упорядочено, в виде трехмерной сети, расположенными коллагеновыми волокнами. Играет роль базальной мембраны;
· собственное вещество роговицы. Образовано оформленной плотной волокнистой соединительной тканью. Оно состоит из параллельно лежащих коллагеновых волокон, основного вещества и расположенных между волокнами фиброцитов. Собственное вещество роговицы продолжается в склеруплотную непрозрачную оболочку. Место перехода называется лимбом. Здесь содержится большое количество сосудов, из которых питаются наружные отделы роговицы. Питание ее центральных отделов происходит за счет веществ, содержащихся в жидкости передней камеры глаза;
· задняя пограничная (десцеметова) мембрана имеет такое же строение, как и наружная мембрана;
· задний эпителий – однослойный плоский эпителий (часто называется эндотелием).
В роговице нет собственных сосудов, питание идет за счет диффузии веществ из передней камеры глаза и кровеносных сосудов лимба. При воспалении сосуды из лимба могут проникать в собственное вещество роговицы, что создает ее непрозрачность (катаракта). Роговица богато иннервируется, нервы лежат не только в собственном веществе, но и в переднем эпителии.
Факторы, обеспечивающие прозрачность роговицы:
· идеально ровная поверхность переднего эпителия, при травмах, образовании язв роговицы эта ровная поверхность нарушается, что ведет к появлению непрозрачных участков;
· отсутствие в собственном веществе сосудов, при воспалении они могут врастать в него из лимба, что нарушает прозрачность;
· низкое содержание в собственном веществе роговицы воды, при воспалениях роговицы (кератитах) происходит увеличение содержания воды, и прозрачность роговицы теряется (катаракта);
· высокая степень упорядоченности расположения коллагеновых волокон в пограничных мембранах и собственном веществе роговицы.
Хрусталик развивается из материала эктодермы, превращающейся под влиянием глазного бокала в хрусталиковый пузырек. Этот пузырек отделяется от эктодермы и погружается в полость глазного бокала. Передняя стенка хрусталикового пузырька состоит из однослойного кубического эпителия, а заднюю стенку образуют удлиненные клетки, которые называются хрусталиковыми волокнами. По мере их роста полость пузырька исчезает. В центре хрусталика из первичных хрусталиковых волокон образуется ядро хрусталика. В дальнейшем за счет пролиферации клеток, находящихся в экваториальной части, образуются вторичные хрусталиковые волокна.
Хрусталик снаружи покрыт капсулой – утолщенной базальной мембраной. Капсула содержит гликопротеины и сеть микрофиламентов, обеспечивающие эластичность хрусталика. На передней поверхности хрусталика под его капсулой сохраняется однослойный эпителий. На экваторе его клетки способны к митотическому делению (ростковая зона). После его завершения эти клетки формируют новые хрусталиковые волокна. Клетки заднего эпителия также формируют хрусталиковые волокна. Цитоплазма хрусталиковых волокон содержит прозрачное вещество кристаллин. В центре хрусталиковые волокна уплотняются, теряют ядра, наслаиваются друг на друга и формируют ядро хрусталика.
Внутри хрусталика отсутствуют нервы и кровеносные сосуды, что обеспечивает его прозрачность. Внутри глаза хрусталик поддерживается с помощью нитей цилиарной (цинновой) связки, которая прикрепляется к капсуле. Изменение степени натяжения нитей меняет кривизну хрусталика, при этом изменяется и его преломляющая способность. Благодаря этому возможна аккомодация – способность четкого видения различно удаленных предметов. У молодых людей хрусталик обладает высокой эластичностью, которая постепенно теряется с возрастом. Это ведет к нарушению восприятия близко расположенных объектов (пресбиопия). При старении также может нарушаться прозрачность хрусталика и его капсулы – возникает хрусталиковая катаракта.
Стекловидное тело – это основная преломляющая среда глаза. Помимо этой наиболее важной функции стекловидное тело участвует в обменных процессах сетчатки, а также фиксирует хрусталик и препятствует (в норме) отслоению сетчатки от пигментного эпителия. Оно представлено межклеточным веществом (99 % воды и белок витреин), которое преобладает, и единичными клетками (фиброциты, макрофаги и лимфоциты).
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.