Электронная библиотека » Алена Титаренко » » онлайн чтение - страница 8


  • Текст добавлен: 26 мая 2022, 23:23


Автор книги: Алена Титаренко


Жанр: Химия, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 10 страниц)

Шрифт:
- 100% +

64. Рибоза и дезоксирибоза

Известны углеводы с пятью углеродными атомами в молекуле – это пентозы.

Особенности рибозы и дезоксирибозы.

1. Рибоза С5H10O5 и дезоксирибоза С5H10O4 – кристаллические вещества сладкого вкуса, растворимые в воде.

2. Состав дезоксирибозы не отвечает формуле Сn(Н2О)m, считавшейся общей формулой всех углеводов.

3. Дезоксирибоза отличается от рибозы отсутствием в молекуле одной гидроксильной группы (оксигруппы), которая заменена атомом водорода. Отсюда и произошло название вещества (дезоксирибоза).

Структурные формулы:

СН2-СН-СН-СН-С-Н=О (рибоза).

4. Они точно указывают, при каком именно атоме углерода дезоксирибозы нет гидроксильной группы.

5. Подобно глюкозе молекулы пентоз существуют не только в альдегидной, но и в циклической форме.

Замыкание кольца в них можно представить аналогичным образом.

Отличие будет лишь в том, что карбонильная группа взаимодействует с гидроксилом не пятого, а четвертого атома углерода, и в результате перегруппировки атомов образуется не шестичленный, а пятичленный цикл.

Как и в случае глюкозы, пентозы известны в двух циклических формах (α и β); в водном растворе они находятся в подвижном равновесии с альдегидной формой.

Фруктоза как изомер глюкозы.

Известен ряд углеводов, состав которых отвечает формуле С6Н12O6.

Все они являются изомерами и как вещества, содержащие шесть атомов углерода в молекуле, называются гексозами.

Распространенный их представитель – фруктоза. По стоению фруктоза является кетоспиртом.

Свекловичный или тростниковый сахар: получается из сахарной свеклы или сахарного тростника; содержится также в соке березы, клена и некоторых фруктах, меде.

Химические свойства рибозы и дезоксирибозы.

1. При окислении по альдегидной группе они образуют соответствующие кислоты.

2. При восстановлении пентозы превращаются в многоатомные спирты.

3. Рибоза и дезоксирибоза имеют большое биологическое значение.

4. Они входят в состав нуклеиновых кислот, которые осуществляют в клетках организмов синтез белков и передачу наследственных признаков.

65. Сахароза, ее физические и химические свойства

Физические свойства и нахождение в природе.

1. Она представляет собой бесцветные кристаллы сладкого вкуса, хорошо растворима в воде.

2. Температура плавления сахарозы 160 °C.

3. При застывании расплавленной сахарозы образуется аморфная прозрачная масса – карамель.

4. Содержится во многих растениях: в соке березы, клена, в моркови, дыне, а также в сахарной свекле и сахарном тростнике.

Строение и химические свойства.

1. Молекулярная формула сахарозы – С12Н22О11.

2. Сахароза имеет более сложное строение, чем глюкоза.

3. Наличие гидроксильных групп в молекуле сахарозы легко подтверждается реакцией с гидроксидами металлов.

Если раствор сахарозы прилить к гидроксиду меди (II), образуется ярко-синий раствор сахарата меди.

4. Альдегидной группы в сахарозе нет: при нагревании с аммиачным раствором оксида серебра (I) она не дает «серебряного зеркала», при нагревании с гидроксидом меди (II) не образует красного оксида меди (I).

5. Сахароза, в отличие от глюкозы, не является альдегидом.

6. Сахароза является важнейшим из дисахаридов.

7. Она получается из сахарной свеклы (в ней содержится до 28 % сахарозы от сухого вещества) или из сахарного тростника.

Реакция сахарозы с водой.

Если прокипятить раствор сахарозы с несколькими каплями соляной или серной кислоты и нейтрализовать кислоту щелочью, а после этого нагреть раствор с гидроксидом меди (II), выпадает красный осадок.

При кипячении раствора сахарозы появляются молекулы с альдегидными группами, которые и восстанавливают гидроксид меди (II) до оксида меди (I). Эта реакция показывает, что сахароза при каталитическом действии кислоты подвергается гидролизу, в результате чего образуются глюкоза и фруктоза:

С12Н22О11 + Н2О → С6Н12O6 + С6Н12O6.

6. Молекула сахарозы состоит из соединенных друг с другом остатков глюкозы и фруктозы.

Из числа изомеров сахарозы, имеющих молекулярную формулу С12Н22О11, можно выделить мальтозу и лактозу.

Особенности мальтозы:

1) мальтоза получается из крахмала под действием солода;

2) она называется еще солодовым сахаром;

3) при гидролизе она образует глюкозу:

С12Н22О11 (мальтоза) + Н2О → 2С6Н12O6 (глюкоза).

Особенности лактозы: 1) лактоза (молочный сахар) содержится в молоке; 2) она обладает высокой питательностью; 3) при гидролизе лактоза разлагается на глюкозу и галактозу – изомер глюкозы и фруктозы, что является важной особенностью.

66. Крахмал и его строение

Физические свойства и нахождение в природе.

1. Крахмал представляет собой белый порошок, не растворимый в воде.

2. В горячей воде он набухает и образует коллоидный раствор – клейстер.

3. Являясь продуктом усвоения оксида углерода (IV) зелеными (содержащими хлорофилл) клетками растений, крахмал распространен в растительном мире.

4. Клубни картофеля содержат около 20 % крахмала, зерна пшеницы и кукурузы – около 70 %, риса – около 80 %.

5. Крахмал – одно из важнейших питательных веществ для человека.

Строение крахмала.

1. Крахмал (С6H10O5)n – природный полимер.

2. Образуется он в результате фотосинтетической деятельности растений при поглощении энергии солнечного излучения.

3. Сначала из углекислого газа и воды в результате ряда процессов синтезируется глюкоза, что в общем виде может быть выражено уравнением: 6СO2 + 6Н2О = С6Н12O6 + 6O2.

4. Глюкоза далее превращается в крахмал: nС6Н12O6 = (С6H10O5)n + nН2О.

5. Макромолекулы крахмала неодинаковы по размерам: а) в них входит разное число звеньев С6H10O5 – от нескольких сотен до нескольких тысяч, при этом неодинакова и их молекулярная масса; б) различаются они и по строению: наряду с линейными молекулами с молекулярной массой в несколько сотен тысяч имеются молекулы разветвленного строения, молекулярная масса которых достигает нескольких миллионов.

Химические свойства крахмала.

1. Одно из свойств крахмала – это способность давать синюю окраску при взаимодействии с йодом. Эту окраску легко наблюдать, если поместить каплю раствора йода на срез картофеля или ломтик белого хлеба и нагреть крахмальный клейстер с гидроксидом меди (II), будет видно образование оксида меди (I).

2. Если прокипятить крахмальный клейстер с небольшим количеством серной кислоты, нейтрализовать раствор и провести реакцию с гидроксидом меди (II), образуется характерный осадок оксида меди (I). То есть при нагревании с водой в присутствии кислоты крахмал подвергается гидролизу, при этом образуется вещество, восстанавливающее гидроксид меди (II) в оксид меди (I).

3. Процесс расщепления макромолекул крахмала водой идет постепенно. Сначала образуются промежуточные продукты с меньшей молекулярной массой, чем у крахмала, – декстрины, затем изомер сахарозы – мальтоза, конечным продуктом гидролиза является глюкоза.

4. Реакцию превращения крахмала в глюкозу при каталитическом действии серной кислоты открыл в 1811 г. русский ученый К. Кирхгоф. Разработанный им способ получения глюкозы используется и в настоящее время.

5. Макромолекулы крахмала состоят из остатков молекул циклической L-глюкозы.

67. Крахмал как питательное вещество. Применение и получение крахмала

Крахмал как питательное вещество.

1. Крахмал является основным углеводом нашей пищи, но он не может самостоятельно усваиваться организмом.

2. Подобно жирам, крахмал сначала подвергается гидролизу.

3. Этот процесс начинается уже при пережевывании пищи во рту под действием фермента, содержащегося в слюне.

4. Далее гидролиз крахмала продолжается в кишечнике.

5. Образующаяся глюкоза всасывается через стенки кишечника в кровь и поступает в печень, а оттуда – во все ткани организма.

6. Избыток глюкозы отлагается в печени в виде высокомолекулярного углевода – гликогена.

Особенности гликогена: а) по строению гликоген отличается от крахмала большей разветвленностью своих молекул; б) этот запасный гликоген между приемами пищи снова превращается в глюкозу по мере расходования ее в клетках организма.

7. Промежуточные продукты гидролиза крахмала (декстрины) легче усваиваются организмом, чем сам крахмал, так как состоят из меньших по размерам молекул и лучше растворяются в воде.

8. Приготовление пищи часто связано именно с превращением крахмала в декстрины.

Применение крахмала и получение его из крахмалсодержащих продуктов.

1. Крахмал используется не только как продукт питания.

2. В пищевой промышленности из него готовят глюкозу и патоку.

3. Для получения глюкозы крахмал нагревают с разбавленной серной кислотой в течение нескольких часов.

4. Когда процесс гидролиза закончится, кислоту нейтрализуют мелом, образующийся осадок сульфата кальция отфильтровывается и раствор упаривается.

5. Если процесс гидролиза не доводить до конца, то в результате получается густая сладкая масса – смесь декстринов и глюкозы – патока.

Особенности патоки: а) она применяется в кондитерском деле для приготовления некоторых сортов конфет, мармелада, пряников и т. п.; б) с патокой кондитерские изделия не кажутся приторно-сладкими, как приготовленные на чистом сахаре, и долго остаются мягкими.

6. Декстрины, получаемые из крахмала, используются в качестве клея. Крахмал применяется для крахмаления белья: под действием нагревания горячим утюгом он превращается в декстрины, которые склеивают волокна ткани и образуют плотную пленку, предохраняющую ткань от быстрого загрязнения.

7. Крахмал получается чаще всего из картофеля. Картофель моется, затем измельчается на механических терках, измельченная масса промывается на ситах водой.

8. Освободившиеся из клеток клубня мелкие зерна крахмала проходят с водой через сито и оседают на дне чана. Крахмал тщательно промывается, отделяется от воды и сушится.

68. Целлюлоза, ее физические свойства

Нахождение в природе. Физические свойства.

1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.

2. Отсюда происходит и ее название (от лат. «целлула» – клетка).

3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.

4. Волокна хлопка содержат до 98 % целлюлозы.

5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.

6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы.

7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.

8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Строение целлюлозы:

1) целлюлоза, как и крахмал, является природным полимером;

2) эти вещества имеют даже одинаковые по составу структурные звенья – остатки молекул глюкозы, одну и ту же молекулярную формулу (С6H10O5)n;

3) значение n у целлюлозы обычно выше, чем у крахмала: средняя молекулярная масса ее достигает нескольких миллионов;

4) основное различие между крахмалом и целлюлозой – в структуре их молекул.

Нахождение целлюлозы в природе.

1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна.

2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон.

3. В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити.

4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении.

Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах:

1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может;

2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.

69. Химические свойства целлюлозы и ее применение

Химические свойства целлюлозы.

1. Из повседневной жизни известно, что целлюлоза хорошо горит.

2. При нагревании древесины без доступа воздуха происходит термическое разложение целлюлозы. При этом образуются летучие органические вещества, вода и древесный уголь.

3. В числе органических продуктов разложения древесины – метиловый спирт, уксусная кислота, ацетон.

4. Макромолекулы целлюлозы состоят из звеньев, аналогичных тем, которые образуют крахмал, она подвергается гидролизу, и продуктом ее гидролиза, как и у крахмала, будет глюкоза.

5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I). То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.

6. Суммарно гидролиз целлюлозы может быть выражен тем же уравнением, что и гидролиз крахмала: (С6H10O5)n + nН2О = nС6H12O6.

7. Структурные звенья целлюлозы (С6H10O5)n содержат гидроксильные группы.

8. За счет этих групп целлюлоза может давать простые и сложные эфиры.

9. Большое значение имеют азотно-кислые эфиры целлюлозы.

Особенности азотно-кислых эфиров целлюлозы.

1. Они получаются при действии на целлюлозу азотной кислотой в присутствии серной кислоты.

2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например: [C6H7O2(OH)3]n + 3nHNO3 → [C6H7O2(ONO2)3]n + 3n H2O.

Общее свойство нитратов целлюлозы – их чрезвычайная горючесть.

Тринитрат целлюлозы, называемый пироксилином, – сильновзрывчатое вещество. Он применяется для производства бездымного пороха.

Очень важными являются также уксусно-кислые эфиры целлюлозы – диацетат и триацетат целлюлозы. Диацетат и триацетат целлюлозы по внешнему виду сходны с целлюлозой.

Применение целлюлозы.

1. Благодаря своей механической прочности в составе древесины используется в строительстве.

2. Из нее изготавливают разного рода столярные изделия.

3. В виде волокнистых материалов (хлопка, льна) используется для изготовления нитей, тканей, канатов.

4. Выделенная из древесины (освобожденная от сопутствующих веществ) целлюлоза идет на изготовление бумаги.

70. Получение ацетатного волокна

Характерные особенности ацетатного волокна.

1. С давних времен человек широко использует природные волокнистые материалы для изготовления одежды и различных изделий домашнего обихода.

2. Одни из этих материалов имеют растительное происхождение и состоят из целлюлозы, например лен, хлопок, другие – животного происхождения, состоят из белков – шерсть, шелк.

3. По мере увеличения потребностей населения и развивающейся техники в тканях стал возникать недостаток волокнистых материалов. Возникла необходимость получать волокна искусственным путем.

Так как они характеризуются упорядоченным, ориентированным вдоль оси волокна расположением цепных макромолекул, то появилась идея превратить природный полимер неупорядоченной структуры путем той или иной обработки в материал с упорядоченным расположением молекул.

4. В качестве исходного природного полимера для получения искусственных волокон берется целлюлоза, выделенная из древесины, или хлопковый пух, остающийся на семенах хлопчатника после того, как с него снимут волокна.

5. Чтобы линейные молекулы полимера расположить вдоль оси образуемого волокна, необходимо их отделить друг от друга, сделать подвижными, способными к перемещению.

Этого можно достичь расплавлением полимера или его растворением.

Расплавить целлюлозу невозможно: при нагревании она разрушается.

6. Целлюлозу необходимо обработать уксусным ангидридом в присутствии серной кислоты (уксусный ангидрид – более сильное этерифицирующее средство, чем уксусная кислота).

7. Продукт этерификации – триацетат целлюлозы – растворяется в смеси дихлорметана СН2Сl2 и этилового спирта.

8. Образуется вязкий раствор, в котором молекулы полимера уже могут перемещаться и принимать тот или иной нужный порядок.

9. С целью получения волокон раствор полимера продавливается через фильеры – металлические колпачки с многочисленными отверстиями.

Тонкие струи раствора опускаются в вертикальную шахту высотой примерно 3 м, через которую проходит нагретый воздух.

10. Под действием теплоты растворитель испаряется, и триацетат целлюлозы образует тонкие длинные волоконца, которые скручиваются затем в нити и идут на дальнейшую переработку.

11. При прохождении через отверстия фильеры макромолекулы, как бревна при сплаве по узкой реке, начинают выстраиваться вдоль струи раствора.

12. В процессе дальнейшей обработки расположение макромолекул в них становится еще более упорядоченным.

Это приводит к большой прочности волоконец и образуемых ими нитей.

71. Нитросоединения

Особенности нитросоединений: 1) это органические вещества, в молекулах которых содержится нитрогруппа – № 2 при атоме углерода; 2) нитросоединения можно рассматривать как производные углеводородов, которые получаются путем замещения атома водорода на нитрогруппу; 3) по числу нитрогрупп различаются моно-, ди– и полинитросоединения; 4) название углеводородов происходит от названий исходных углеводородов с добавлением приставки нитро-, например: а) нитрометан – СН3NO2; б) 2-нитропентан – СН3-СН2-СН2-СН (NO2) – СН3.

Введение в органическое вещество нитрогруппы называется нитрованием.

Способы нитрования:

1) нитрование ароматических соединений легко осуществимо при действии смесью концентрированных азотной и серной кислот (первая – нитрирующий агент, вторая – водоотнимающий):

а) тринитротолуол является хорошим взрывчатым веществом; б) взрывается только от детонации, горит коптящим пламенем без взрыва;

2) впервые реакцию нитрования алканов осуществил М.И. Коновалов в 1888 г. Эта реакция носит его имя. Действие на алканы разбавленной HNO при t = 110–140 °C.

3) нитросоединения также получаются взаимодействием алкилгалогенидов с нитритом серебра: С3Н7I (пропилиодид) + АgNO2 = С3Н7NO2 (нитропропан) + АgI;

4) при восстановлении нитросоединений образуются амины.

Нитросоединения представляют собой бесцветные малорастворимые в воде и хорошо растворимые в органических растворителях жидкости, обладающие характерным миндальным запахом. Все нитросоединения являются довольно сильными ядами для центральной нервной системы. Некоторые из них обладают раздражающим действием (СCl3NO2 – хлорпикрин). Благодаря высокой полярности нитросоединения могут растворять такие вещества, которые не растворяются в обычных растворителях. Полинитросоединения обычно слабо окрашены, взрывчаты при ударе и детонации. Некоторые нитроалканы применяют в качестве окислителей в ракетном топливе. Многие из полинитросоединений обладают взрывчатыми свойствами, так, тетранирометан С(NO2)4 является сильным взрывчатым веществом. Галогенсодержащие нитросоединения, например СCl3NO2 (хлорпикрин) обладает раздражающим действием на слизистые оболочки. Применяется в качестве учебно-боевого ОВ, для проверки средств защиты на герметичность и в сельском хозяйстве для борьбы с насекомыми и вредителями.

72. Амины

Амины – это производные аммиака, в котором один, два или все три атома водорода замещены органическими радикалами.

Строение и свойства аминов.

Известно много органических соединений, в которые азот входит в виде остатка аммиака, например: 1) метиламин СН3-NН2; 2) диметиламин СН3-NH-СН3; 3) фениламин (анилин) С6Н5-NН2; 4) метилэтиамин СН3-NН-C2H5.

Все эти соединения относятся к классу аминов.

Сходство аминов с аммиаком не только формальное. Они имеют и некоторые общие свойства.

1. Низшие представители аминов предельного ряда газообразны и имеют запах аммиака.

4СН3-NH2 + 9O2 → 4СO2 + 10Н2О + 2N2.

2. Если амин растворить в воде и раствор испытать лакмусом, то появится щелочная реакция, как и в случае аммиака.

3. Амины имеют характерные свойства оснований.

4. Сходство свойств аминов и аммиака находит объяснение в их электронном строении.

5. В молекуле аммиака из пяти валентных электронов атома азота три участвуют в образовании ковалентных связей с атомами водорода, одна электронная пара остается свободной.

6. Электронное строение аминов аналогично строению аммиака.

7. У атома азота в них имеется также неподеленная пара электронов. В неорганической химии к основаниям относятся вещества, в которых атомы металла соединены с одной или несколькими гидроксильными группами. Но основания – понятие более широкое. Свойства их противоположны свойствам кислот.

8. Амины называются еще органическими основаниями.

9. Являясь основаниями, амины взаимодействуют с кислотами, при этом образуются соли.

Эта реакция аналогична реакциям аммиака и также заключается в присоединении протона.

Но при сходстве свойств этих веществ как оснований между ними имеются и различия:

а) амины – производные предельных углеводородов – оказываются более сильными основаниями, чем аммиак;

б) они отличаются от аммиака лишь наличием в молекулах углеводородных радикалов, поэтому видно влияние этих радикалов на атом азота;

в) в аминах под влиянием радикала – СН3 электронное облако связи С-N смещается несколько к азоту, электронная плотность на азоте возрастает, и он прочнее удерживает присоединенный ион водорода;

г) гидроксильные группы воды от этого становятся более свободными, щелочные свойства раствора усиливаются.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации