Электронная библиотека » Анатолий Левшанков » » онлайн чтение - страница 2


  • Текст добавлен: 30 июня 2016, 22:00


Автор книги: Анатолий Левшанков


Жанр: Медицина, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 16 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +

Количество растворенного в плазме кислорода прямо пропорционально его парциальному давлению и коэффициенту растворимости. В артериальной крови в растворенном состоянии кислорода переносится всего лишь 14 мл: РаО2 × коэф. растворимости =95⋅0,00003 ⋅5000 = 14 мл. Коэффициент растворимости зависит от температуры: приТ=20 °C – 0,0031 мл/100 мл и Т = 38 °C – 0,0023 мл/100 мл. При гипербарической оксигенации (ГБО) в связи со значительным увеличением парциального давления О2количество растворенного кислорода в плазме резко повышается. Каждый грамм гемоглобина при полном насыщении переносит 1,31 – 1,39 мл кислорода.

Максимальное количество кислорода, соединенное с гемоглобином, называют кислородной емкостью, которая равна примерно 21 об.% (21 мл О2 в 100 мл крови).

Количество транспортируемого кислорода (ТкО2) в связанном с гемоглобином состоянии можно определить по следующей формуле:



В норме SaO2=97%иSvO2= 72 %, (a-v)SO2 = 25 %. Человек в покое потребляет около 250 мл О2 в минуту (1000 – 750), т. е. около 25 % кислорода артериальной крови. При повышении метаболизма (например, при неадекватной анестезии) количество потребляемого кислорода возрастает.

Связь кислорода с гемоглобином артериальной крови в легких и отдача его тканям изображается в виде кривой диссоциации оксигемоглобина (КДО). Положение КДО можно определить по величине Р50 – уровень РО2, при котором SO2 составит 50 %. В норме Р50 равен 26,7 мм рт. ст. Если эта величина меньше 27, КДО сдвигается влево, т. е. гемоглобин имеет большое сродство к кислороду и больше им насыщен. Причина сдвига КДО влево: алкалоз, гипотермия, гипокапния, уменьшение содержания 2 – 3 дифосфоглицерата (ДФГ). При значении Р50 более 27 мм рт. ст. КДО смещается вправо и гемоглобин имеет более низкое сродство к кислороду и отдача его тканям может быть при более низкой перфузии. Причины сдвига КДО вправо: ацидоз метаболический, гиперкапния, гипертермия, увеличение 2 – 3 – ДФГ.

Различают следующие нарушения транспорта газов кровью: гемодинамические (снижение сердечного индекса) и гемические (уменьшение количества циркулирующего гемоглобина, ухудшение связывания кислорода с гемоглобином в легких или отдачи его тканям). Дыхательная функция крови нарушается при отравлении окисью углерода (угарным газом), когда образуется прочная связь СО с гемоглобином – карбооксигемоглобин (сродство СО с гемоглобином в 240 раз выше, чем у О2).

Наиболее информативными показателями, характеризующими транспорт газов кровью, являются:

• P50;

• количество циркулирующего гемоглобина;

• минутный объем кровообращения (или сердечный индекс);

• степень насыщения гемоглобина кислородом артериальной и венозной крови и их разница;

• парциальное давление кислорода в артериальной и венозной крови, их разница.

На основании этих показателей можно рассчитать количество транспортируемого и потребляемого организмом кислорода.

Газообменмеждукровьюитканями.Транспортгазовмежду кровью тканевых капилляров и клетками тканей осуществляется путем диффузии. Скорость ее прямо пропорциональна площади диффузионной поверхности, разнице парциальных давлений газа по обе стороны диффузионного барьера и обратно пропорциональна его толщине (в норме около 0,5 мкм, авмышцах около 50 мкм). Доставка кислорода тканям определяется отношением между его потреблением и поступлением. Кислород перемещается по градиенту парциальных давлений. и в клетке РО2 достигает минимального уровня (до 4 – 20 мм рт. ст.).

Если доставка кислорода недостаточна для обеспечения потребностей тканей, клетки переходят на анаэробный гликолиз с образованием молочной кислоты. При гипоксии вследствие тяжелых нарушений газообмена на любом из рассмотренных этапов развивается метаболический ацидоз.

Наиболее информативными показателями для оценки газообмена в тканях являются: ӟjсодержание лактата и отношение лактат/пируват в крови;

• показатели КОС, в частности избыток оснований (BE);

• PvO2, (a-v)PO2, (a-v)SO2.

Запасы кислорода в организме незначительные (около 1550 мл при дыхании воздухом и 4250 мл – при вдыхании 100%О2) (25 мл/кг), их хватает всего лишь на несколько минут (не более 5 при внезапной остановке сердца), после чего наступают необратимые изменения, прежде всего со стороны ЦНС. Запасы углекислоты – 122,9 л (1,8 л/кг), в основном в связанном состоянии. Она является физиологическим стимулятором кровообращения.

(!) Поэтому следует остерегаться не гиперкапнии, а гипоксемии. В связи с чем важно не допускать и быстро устранять гипоксемию (контроль оксигенации!), а ИВЛ проводить в режиме нормовентиляции (контроль вентиляции!).

Регуляция дыхания осуществляется:

1) центральными хеморецепторами, которые находятся в продолговатом мозге;

2) периферическими хеморецепторами в каротидных тельцах, бифуркации сонных артерий, в аортальных тельцах верхней и нижней поверхностях дуги аорты;

3) рецепторами легких (растяжения, ирритантными, юкстакапиллярными альвеолярных стенок) и прочими рецепторами (верхних дыхательных путей, суставов и мышц, артериальными барорецепторами, болевыми и температурными);

4) центральными регуляторами (варолиев мост и продолговатый мозг);

5) эффекторами (РаСО2, РаО2, рН).

Экспресс-оценка и контроль газообмена

Дыхание внешнее можно оценить ориентировочно по следующим клиническим признакам: частоте, объему и ритму дыхания, наличию или отсутствию цианоза, степени участия в дыхании вспомогательных мышц.

Частота дыхания у новорожденного в среднем составляет 40 в минуту, у взрослого человека – 12. Учащение дыхания у взрослого более 24 – показатель неблагополучия газообмена в легких. Частота дыхания может быть снижена при депрессии ЦНС и нарушении проходимости дыхательных путей.

Дыхательный объем составляет около 7 мл/кг, у новорожденного – 12 – 15 мл/кг. У взрослого человека с массой тела 70 кг дыхательный объем составлет около 500 мл, но он может колебаться от 170 до 1000 мл. Поверхностное дыхание даже при увеличенном минутном объеме дыхания может резко уменьшить объем альвеолярной вентиляции в связи с увеличением объема мертвого пространства. Дыхательный объем можно ориентировочно определить по экскурсии грудной клетки, а более точно – с помощью волюмоспирометра (вентилометра).

Ритм дыхания. В норме вдох в 1,5 раза короче выдоха, и дыхательные циклы примерно равны между собой. При выраженном нарушении дыхания появляется периодическое (патологическое) дыхание типа Куссмауля (шумное, учащенное глубокое дыхание без субъективного ощущения удушья), Чейна – Стокса (глубина дыхательных движений постепенно возрастает, затем – снижаетсяиследуетпаузаразличнойпродолжительности),Биота (дыхательные движения постоянной амплитуды внезапно начинаются и внезапно прекращаются).

Минутный объем дыхания () получают путем умножения дыхательного объема на частоту дыхания или измеряют в течение минуты с помощью волюмоспирометра (вентилометра).

Полученный результат сравнивают с должной величиной.

(!) Наиболее объективную оценку о вентиляции, оксигенации и газообмене в легких можно получить с помощью капнографии, пульсокcиметрии и определения газов в крови.

Капнография – один из методов стандарта минимального мониторинга во время анестезии и интенсивной терапии.

О вентиляции можно судить на основании показателей капнограммы:

1) концентрации (напряжения) углекислого газа в конечно-выдыхаемом воздухе – FETCO2 (PETCO2) (в норме 4,9 – 6,4 об. % или 34 – 44 мм рт. ст.), при гиповентиляции (сниженном объеме альвеолярной вентиляции) увеличивается (гиперкапния) и при гипервентиляции (увеличенном объеме альвеолярной вентиляции) – уменьшается (гипокапния);

2) угла наклона альвеолярного плато – ∠ СО2 (в норме он составляет 3 – 7°, увеличение его свидетельствует об увеличении неравномерности вентиляции).

Пульсоксиметрия – один из методов стандарта минимального мониторинга во время анестезии и интенсивной терапии.

Для оценки биомеханики внешнего дыхания с помощью пневмотахографа определяют растяжимость легких и грудной клетки (в норме 0,1 л/см вод. ст.) и резистентность дыхательных путей (в норме у взрослых 1 – 4 см/л ⋅с– 1, у детей – 5,5).

Оксигенацию в легких можно оценить с помощью пульсоксиметра наосновании степени насыщения гемоглобина артериальной крови кислородом (SaO2): в норме 94 – 97 % при дыхании воздухом, снижение ниже 94 % свидетельствует о гипоксемии.

О степени нарушения газообмена в легких судят по величине альвеоло-артериальной разнице напряжения кислорода – (А-а)РО2 или индексу оксигенации – PaO2/SaO2. В норме (А-а)РО2 при дыхании воздухом равна 10 – 20 мм рт. ст., а при вдыхании чистого кислорода – не более 100. Чем больше нарушен газообмен в легких, тем больше (А-а)РО2. Для расчета (А-а)РО2 необходимо знать FiО2и РаО2, первую величину определяют с помощью газоанализатора или рассчитывают на основании потока кислорода во вдыхаемой смеси, а вторую определяют при исследовании газов крови с помощью газоанализатора типа микро-Аструпа.

Альвеолярно-артериальная разность РО2 и РСО2 зависит от трех факторов: отношения вентиляция – кровоток в легких (вентиляционно-перфузионного отношения), шунта (венозного примешивания) и диффузии газов через альвеолокапиллярную мембрану.

Индекс оксигенации по мере ухудшения газообмена в легких уменьшается. В норме у взрослого человека он более 300 (90/0,21 = 428), при синдроме острого повреждения легких (СОПЛ) – менее 300, а при респираторном дистресс-синдроме взрослых (РДСВ) – менее 200.

Транспорт газов кровью оценивают на основании:

1) количества циркулирующего гемоглобина (определяют по содержанию гемоглобина в крови – в норме 114 – 164 г/л и ОЦК);

2) формыкривойдиссоциацииоксигемоглобина(Р50=26,5мм рт. ст.);

3) минутного объема кровообращения;

4) количества транспортируемых кровью кислорода и углекислого газа.

Газообмен в тканях оценивают на основании отношения лактат/пируват (в норме оно равно 10 – 14, увеличение свидетельствует о нарушении обмена кислорода в тканях), степени увеличения дефицита оснований (ВЕ, в норме ±2,3 ммоль/л) и увеличения PvO2 (в норме 40 мм рт. ст.).

О газообмене в организме в целом можно судить на основании величин: поглощениякислородатканями(O2– в норме равно 250 мл/мин); выделения СО2 (СО2 – в норме 200 мл/мин); дыхательного коэффициента (R – в норме 0,7 – 0,9) и энергозатрат (в норме в состоянии покоя около 40 ккал/кг в сутки). Эти показатели можно определить с помощью метаболографа.СовременныеаппаратыИВЛ,имеявсвоемкомплектеметаболограф, позволяют осуществлять мониторинг за этими показателями.

Для контроля газообмена у тяжелых больных необходимо строго соблюдать стандарт минимального мониторинга во время анестезии, реанимации и интенсивной терапии.

Методика забора крови на исследование

Для оценки состояния газообмена исследуют содержание газов артериальной и венозной крови. При этом необходимо строго соблюдать методику забора крови. Кровь должна забираться из артерии при оценке газообмена в легких и дополнительно из вены – в случае наличия нарушения транспорта газов кровью и (или) тканевого газообмена. Игла и шприц для забора крови должны быть гепаринизированы, после забора кровь следует помещать во флакон под слой жидкого вазелинового масла или забирать в специальный гепаринизированный капилляр (или шприц). При этом не должно быть контакта крови с воздухом. Поэтому концы капилляра заклеивают специальной пастой, а иглу шприца закрывают, например, резиновой пробкой. Кровь должны исследовать сразу же после забора. Если это невозможно, она должна помещаться в ледяную воду и исследовать ее нужно не позже, чем через 10 мин. При заборе крови на исследование следует отмечать время забора и концентрацию кислорода во вдыхаемой смеси.

ЗНАНИЯ И УМЕНИЯ

Студенты должны знать сущность газообмена, основные механизмы поддержания газообмена организма на его различных этапах, методы и критерии экспресс-оценки и контроля его, методику забора крови на исследование газов крови.

Студенты должны уметь оценивать и осуществлять мониторинг газообмена, регистрировать в анестезиологической карте и карте интенсивной терапии необходимые показатели, проводить профилактику нарушений во время анестезии и интенсивной терапии в объеме своих обязанностей, осуществлять забор проб на исследование газов крови.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Избранные вопросы клинической физиологии: Учебное пособие .

Под ред. проф. А. И. Левшанкова и Б. С. Уварова. – СПб.: ВМедА, 1998. – С. 33 – 69.

Оценка лабораторных данных при проведении анестезии и интенсивной послеоперационной терапии: Учебное пособие / Б. С. Уваров и др. – Л.: ВМедА, 1986. – С. 34 – 50.

Глава 2
КИСЛОТНО-ОСНОВНОЕ СОСТОЯНИЕ

Кислотно-основное состояние (КОС) всех биологических сред – один из важных компонентов гомеостаза организма, характеризующийся концентрацией водородных ионов [Н+]. Оно определяет стабильность протекания основных физиологических процессов в организме. Основные биохимические реакции в клеткахивихокружении достигают максимума при определенных значениях активной реакции среды. Концентрация иона Н++] поддерживается в очень узком диапазоне (36 – 43нмоль/л, всреднем40нмоль/л, или0,00004ммольН+/л). При выходе за пределы ниже 10 и выше 100 нмоль/л происходит необратимая денатурация белковых структур ферментов.

Концепция кислотно-основного состояния, механизмы его поддержания, буферные и физиологические системы

История развития концепции КОС.

И. Соренсен (Sorensen I., 1912) предложил обозначить отрицательный десятичный логарифм концентрации ионов водорода как водородный показатель рН. Его можно определить по уравнению Гендерсон – Гессельбах (Henderson – Hasselbalch): рН = log [Ка (логарифм константы диссоциации угольной кислоты при 38 °C) + log [Н2СО3] / [НСО3] = 6,1 + log 25,0/1,25 = = 6,1 + 1,3 = 7,4. Изменение в любой буферной системе крови связано с превращениями угольной кислоты и иона гидрокарбоната.

Датский ученый О. Зигаард-Андерсен (Sigaard-Andersen) сформулировал оперативный метод контроля КОС циркулирующей крови на основании определения рН в пробах крови, насыщенных двумя кислородно-углекислыми смесями (обычно с концентрацией СО2 около4%и8 %)иактуального значения рН данного образца крови.

К концу 1950-х гг. глава центральной больничной лаборатории в Копенгагене Пол Аструп (Paul Astrup) ввел в практику быстродействующие рН-метры фирмы «Radiometer», получившие название «Astrup MicroEguipment» (микрометод Аструпа). Определив три величины рН в одной пробе и построив график на специальной номограмме Зигаарда-Андерсена, можно получить истинную концентрацию аниона гидрокарбоната (АВ) в плазме крови и производные показатели:

1) сумму буферных оснований (ВВ) – концентрацию всех оснований крови;

2) избыток оснований (ВЕ) – расчетное количество ммоль НСО3, которое необходимо ввести в каждый литр внеклеточной жидкости или вытеснить из нее кислотой для нормализации КОС;

3) стандартныйбикарбонат(SB) – концентрациюанионагидрокарбоната в плазме крови при 100 % насыщении гемоглобина даннойпробыкровикислородом, температуреее38 °Cинапряжении СО2 в ней 40 мм рт. ст. (5,32 кРа). Этот показатель позволяет дифференцироватьдыхательныеинедыхательныерасстройства.

В 1954 г. американский физиолог Ричард Сноу (R. Сnow) сообщил о создании полярографического электрода для прямого измерения РСО2, который был усовершенствован в 1958 г. американским анестезиологом и инженером Джоном Северингхаусом (J. Severinghause). О. Зигаард-Андерсен разработал другую линейную номограмму, с помощью которой, проведя прямое определение рН и РСО2, можно определить показатели КОС. В дальнейшем, используя компьютерную технику, можно было получить показатели КОС, исключив не только эквилибрирование крови эталонными газовыми смесями, но и номограммы.

В 1956 г. американский биохимик и физиолог Л. Кларк (L. Clark) разработал полярографический электрод для определения РО2. К 1960 г. появились первые приборы для клинического мониторинга газов крови и КОС.

В 1970-е гг. были внедрены в практику оптодные технологии измеренияирегистрациирН,РСО2иРО2.Высокаяточностьизмерения и небольшой диаметр датчика позволяли вводить его в сосудистое русло и получать непрерывную информацию о КОС.

В начале 1980-х гг. Питер Стюарт (P. Stewart) опубликовал новую концепцию КОС, физико-химический подход к физиологии КОС. Она предпочтительна в современной клинической физиологии, так как ни избыток оснований, ни концентрация бикарбоната в плазме крови, в том числе и стандартного, не всегда могут объяснить природу нарушений КОС у больного. Концепция Стюарта позволяет выявить причины многих расстройств КОС и более рационально подойти к их устранению. Лишь немногие используют пока подход Стюарта.

Буферные и физиологические системы.

(!) Постоянство КОС поддерживается буферными и физиологическими системами, связанными с дезинтоксикацией промежуточных и выделением конечных продуктов обмена.

Основными буферными системами организма, которые находятся во всех жидкостных секторах организма, являются:

1) гидрокарбонатная – NaHCO3/H2CO3 (около 35 % общей буферной емкости);

2) гемоглобиновая – KHb/HHb (около 35 %);

3) белковая – Вбелок/Нбелок;

4) фосфатная – Na2HPO4/NaH2PO4.

Они представлены в виде слабой кислоты и солью этой кислоты.

При истощении буферных систем для поддержания КОС начинают активизироваться физиологические системы организма: легкие, почки, печень, ЖКТ и др.

У взрослого человека за сутки образуется около 15 000 ммоль (0,13 ммоль/кг · сут.– 1) летучей (угольной) кислоты и 30 – 80 ммоль (1 ммоль/кг · сут.– 1) нелетучих.

Методика забора крови для исследования кислотно-основного состояния и характеризующие его показатели

Кровь должна забираться из артерии при оценке КОС. Игла и шприц для забора крови должны быть гепаринизированы, не должно быть контакта крови с воздухом. Кровь должны исследовать сразу же после забора. Если это невозможно, она должна помещаться в ледяную воду. Исследовать ее целесообразно не позже чем через 10 мин.

Клиническая оценка КОС организма проводится на основании степени изменения величин показателей рН, РаСО2, [НСО3] плазмы крови и клинических данных.

рН – это обратный десятичный логарифм концентрации водородных ионов. Этот показатель изменяется при наличии декомпенсированных нарушений КОС и может свидетельствовать только о сдвигах в сторону ацидоза или алкалоза. В норме рН артериальной крови (pHa) находится в пределах 7,35 – 7,45 и рН венозной крови (рНv) – 7,32 – 7,42, рН внутриклеточный равен 6,8 – 7,0. Границы колебаний рНa, совместимые с жизнью – 6,8 – 8,0.

РаСО2 дыхательный компонент КОС, свидетельствует о дыхательных нарушениях КОС или о компенсаторных изменениях этого показателя при недыхательных расстройствах. В норме этот показатель составляет 35 – 45 мм рт. ст. (4,7 – 6,0 кПа), при совместимых с жизнью колебаниями от 10 до 150 мм рт. ст. (1,3 – 20,3 кПа). Уменьшение РаСО2 менее 35 мм рт. ст. свидетельствует о гипокапнии вследствие гипервентиляции, которая приводит к дыхательному алкалозу. Увеличение РаСО2 выше 45 мм рт. ст. наблюдается при гиповентиляции и гиперкапнии, что приводит к дыхательному ацидозу.

ВЕecf — избыток или дефицит оснований – метаболический компонент КОС, свидетельствует о недыхательных нарушениях КОС или о компенсаторных изменениях его при дыхательных расстройствах. В норме ВЕecf = ±2,3 ммоль/л, при пределах колебаний, совместимых с жизнью, ±15 ммоль/л.

SB — стандартный бикарбонат – концентрация аниона гидрокарбоната в плазме крови при 100-процентном насыщении гемоглобина данной пробы крови кислородом, температуре ее 38 °C и напряжении СО2 в ней 40 мм рт. ст. (5,32 кПа). Этот показатель позволяет дифференцировать дыхательные и недыхательные расстройства. Он в норме равен 20 – 27 (среднеe значение 24) ммоль/л.

Нарушения кислотно-основного состояния во время анестезии и интенсивной терапии

Различают недыхательные и дыхательные расстройства КОС, а также их разные комбинации – однонаправленные и разнонаправленные (табл. 2.1).

При постановке диагноза нарушения КОС следует указывать вид нарушения (недыхательные – ацидоз или алкалоз, дыхательные – ацидоз или алкалоз, комбинированные однонаправленные – ацидоз или алкалоз недыхательный и дыхательный, разнонаправленные — недыхательный ацидоз и дыхательный алкалоз, и наоборот); степень нарушения (умеренная, выраженная или тяжелая) и уровень компенсации (умеренный или выраженный). Например: рН = 7,25, ВЕ = –8,5, РаСО2 = 30 мм рт. ст. Диагноз – тяжелый недыхательный ацидоз (ВЕ = –8,5), декомпенсированный (рН = 7,25), с умеренной легочной компенсацией (РаСО2 = 30 мм рт. ст.).

Следует отметить, что окончательный диагноз можно поставить только при учете клинических данных о больном.

Возможными причинами нарушений КОС во время анестезии, реанимации и интенсивной терапии могут быть следующие.

Недыхательный ацидоз может быть метаболическим, выделительным и экзогенным вследствие нарушения внутренней среды организма:

1) уменьшение [HCO3] в организме вследствие нарушения метаболизма при диарее, фистулах кишечника и желчного пузыря, язвенном колите, хронической почечной недостаточности, приеме соляной кислоты и хлористого аммония;

2) вытеснение (титрование) бикарбоната различными эндогенными органическими кислотами (кетокислотами, образующимися при диабете, алкоголизме или голодании, молочной кислотой при гипоксии);

3) уменьшение экскреции кислот при почечной недостаточности;

4) отравления экзогенными кислотами (салицилатами, метанолом, этиленгликолем).

Внеклеточный недыхательный ацидоз тяжелой степени приводит к внутриклеточному, который стимулирует симпатоадреналовую систему, нарушает почечный кровоток, ускоряет распад белка, приводит к повышенной потери калия клетками.


Таблица 2.1

Диагностика основных нарушений КОС


Компенсаторно увеличивается вентиляция легких.

Недыхательный алкалоз может быть результатом следующих причин:

1) дефицита калия вследствие ограничения поступления его в организм или избыточной потери;

2) потери хлористо-водородной кислоты (водородных ионов и хлоридов) при рвоте, диарее и пр.;

3) бесконтрольного длительного введения диуретиков, что приводит к усиленному выделению из организма калия и хлоридов;

4) длительного применения стероидных гормонов;

5) тяжелых формах альдостеронизма;

6) избыточного введения гидрокарбоната и цитрата натрия.

При недыхательном алкалозе отдача кислорода клеткам затруднена, увеличивается токсичность препаратов наперстянки, повышается нейромышечная возбудимость, снижается сердечный выброс. Компенсаторно уменьшается вентиляция легких и повышается выделение бикарбоната почками.

Дыхательный (гиперкапнический) ацидоз возникает, как правило, при уменьшении объема альвеолярной вентиляции (различные комы, отравления, черепно-мозговая травма, инсульт, инфекционные болезни – ботулизм, менингоэнцефалит, столбняк). Он приводит к повышению давления в легочной артерии, увеличению минутного объема сердца и мозгового кровотока, отрицательному балансу калия и хлорида натрия. Компенсация ацидоза осуществляется буферными системами и почками, последняя очень медленная.

Дыхательный (гипокапнический) алкалоз возникает при гипервентиляции: спонтанной (геморрагический шок, травма, возбуждение, гипертермия, лихорадка, истерия) или искусственной. Гипокапния вызывает вазоконстрикцию периферических сосудов, снижает мозговой кровоток и внутричерепное давление, уменьшает минутный объем кровообращения (МОК) и вызывает гипотензию.

Согласно современным представлениям, более точное выявление возможных причин нарушений КОС возможно при комплексном обследовании на основании изменений показателей КОС, лактата, гемоглобина и электролитов.

Лактат – сильный ион, при нормальном рН он полностью диссоциирован, так как организм быстро продуцирует и поглощает лактат. У больных, находящихся в критическом состоянии, уровень гиперлактатемии значительно выше, чем уровень ацидоза.

Лактат может быть повышен, а [H+] – нет. Основным источником лактата являются легкие, особенно при остром легочном повреждении. Однако, по мнению N. Day и соавт. (1996), гиперлактатемия при сепсисе возникает скорее вследствие повышенного аэробного метаболизма, чем тканевой гипоксии или угнетения активности перуватдегидрогеназы.


Страницы книги >> Предыдущая | 1 2 3 4 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации