Электронная библиотека » Гулиа Нурбей » » онлайн чтение - страница 31

Текст книги "Удивительная физика"


  • Текст добавлен: 4 ноября 2013, 22:04


Автор книги: Гулиа Нурбей


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 31 (всего у книги 33 страниц)

Шрифт:
- 100% +
Электромагнитные фокусы и мошенничества

Поговорим о «несерьезных» применениях электромагнитов.

Прежде всего, это цирковые фокусы. Еще в конце XIX в. некий дрессировщик показывал «ученого» слона, который якобы мог проделывать в уме сложные математические расчеты и давал правильные ответы. Дрессировщик громко задавал слону вопросы, связанные с любым математическим действием. После этого тот брал хоботом указку и действительно показывал ею на какую-либо цифру на доске перед собой. Цифра эта всегда оказывалась правильной, что должно было свидетельствовать о высокой математической подготовке слона и о том, что он понимает вопрос, произнесенный на человечьем языке.

Разгадка этого трюка проста. Под каждой цифрой на доске был прикреплен электромагнит. Математические действия, задаваемые слону, проделывал сам дрессировщик или его ассистент, который и замыкал обмотку электромагнита, лежащего под соответствующей цифрой. Слону только оставалось брать в хобот железную указку и водить ею возле доски с цифрами. Когда указка приближалась к включенному электромагниту, она сама, без малейшего участия слона, притягивалась к правильной цифре. Сейчас бы любой школьник догадался об обмане, а сто с лишним лет назад не так уж широко были известны электромагниты и их свойства, что и вызвало сенсационный успех слона-математика.

Тем более совершенно неведомы электромагнитные явления были в это время народам Африки. Это позволяло европейцам легко мистифицировать их несложными фокусами. Один из таких фокусов, «доказывающий» преимущество белых людей над местным населением, показывал французский фокусник Роберт Гудэн. Об этом небезобидном фокусе, который достаточно помог французам в завоевании Алжира, красочно рассказывает сам Роберт Гудэн.

«На сцене находится небольшой окованный железный ящик с ручкой на крышке.

Я вызываю из зрителей человека посильнее. В ответ на мой вызов выходит араб среднего роста, но крепкого сложения, представляющий собой аравийского геркулеса. Выходит он с бодрым и самонадеянным видом и, немного насмешливо улыбаясь, останавливается около меня.

– Подойдите сюда, – сказал я, – и поднимите ящик.

Араб нагнулся, поднял ящик и высокомерно спросил:

– Больше ничего?

– Вы теперь слабее женщины. Попробуйте снова поднять ящик, – ответил я.

Силач, несколько не устрашаясь моих чар, опять взялся за ящик, но на этот раз ящик оказывает сопротивление и, несмотря на отчаянные усилия араба, остается неподвижным, словно прикованный к месту. Араб пробует поднять ящик с такой силой, которой хватило бы для поднятия огромной тяжести, но все напрасно».

Под ковром, на котором стоял ящик, был установлен сильный электромагнит, а сам ящик, или, по крайней мере, дно его, было железным. Француз легко поднимал ящик потому, что электромагнит в это время выключался. Зная, в чем дело, араб мог бы легко посрамить француза: подняв ящик в первый раз, поставить его в другое место, подальше от магнита. Но неосведомленность подвела силача.

А вот случай, когда в положении обманутого оказалось зарубежное военное ведомство, и обманул его некий шарлатан-изобретатель. Он, в отличие от других шарлатанов, не скрывал своего изобретения и предлагал в любое время проверить его в работе.

Опыт, который продемонстрировал изобретатель, состоял в следующем. На маленькую щепотку якобы изобретенного им сверхсильного взрывчатого вещества ставилась тяжелая железная чушка. Щепотка подрывалась электрическим разрядом, для чего автор включал рубильник, и взрыв подбрасывал тяжеленную чушку к потолку.

Опыт произвел сенсацию – еще бы, взрывчатки такой силы еще никто не видел. Изобретателю выдали крупную сумму денег на продолжение опытов, и он сбежал.

А секрет объяснялся просто – над чушкой в лаборатории, где проводился опыт, был тайно установлен весьма сильный электромагнит. Включая рубильник, хитрый изобретатель пускал ток в обмотку магнита – и груз подлетал, якобы от силы взрыва. Задержись на мгновение выключение рубильника – чушка «прилипла» бы к магниту, и все поняли бы, в чем дело. Но изобретатель, видно, был ловок на руку…

Автору самому в юношестве пришлось сыграть со знакомыми похожую шутку, конечно, более безобидную. Детство и юношество автора протекали в Тбилиси, где восточная игра нарды была, наверное, еще более популярна, чем наш традиционный «козел». Не было двора, чтобы там по вечерам, а то и днем, окруженные толпой болельщиков, игроки не резались в нарды. Игра нехитрая, но все счастье игрока зависит от счета выброшенных игральных костей. Особенно ценятся две шестерки, или ду шаш, как их называют на Востоке. Восточная пословица даже говорит: «Что делать хорошему игроку в нарды, если вовремя ду шаш не выпадет?»

Автор не был хорошим игроком, более того, был, видимо, плохим игроком, так как решил выигрывать не ценой бесчисленных тренировок, а… знанием физики. Хотя такое применение знаний можно назвать и достаточно резким словом, но желание победить сделало свое дело.

Автор просверлил в игральных костях отверстия под закрашенными в черный цвет углублениями точно напротив шестерки, вставил туда кусочки гвоздя и снова залил точки краской. Никто не мог заметить подвоха. А в свои нарды автор вставил под середину доски маленький электромагнит с питанием от батарейки. Играть автор соглашался только на своих «счастливых» нардах. Таким образом, автор мог в любое время выкинуть рекордные ду шаш, гарантируя себе победу. Вся хитрость состояла в незаметном нажатии скрытой кнопки в нардах – кости намертво становились в положение ду шаш. Что и говорить – славу автор заработал огромную. Сразиться приходили лучшие нардисты квартала и уходили посрамленные. Коварство «магнитных» нард заключалось не только в том, что автор мог в любой момент организовать себе ду шаш. В нардах встречаются и такие моменты, когда хуже ду шаш счета и придумать нельзя, – фишки не ставятся в соответствующее положение и ход вообще теряется, игрок становится беззащитным. Нужно только представить отчаяние игрока – противника, которому автор «подсовывал» дефицитный ду шаш в то время, когда он ему совсем не нужен.

К счастью, автор догадался вовремя прекратить фокусы и уйти из спорта непобежденным. А также уничтожить все магнитные нововведения в древнюю игру, чтобы уйти к тому же физически не побитым.

Как холод помог магниту?

В конце XIX – начале XX вв. ученым удалось перевести в жидкость все без исключения газы и даже чемпиона среди них – гелий. Температура кипения его всего на 4,2 °С выше абсолютного нуля, равного минус 273,16 °С. Сейчас у ученых и инженеров принято измерять температуру не в градусах Цельсия, а в градусах Кельвина, которые берут отсчет от абсолютного нуля, при этом 0 К= – 273,16 °С. Температура кипения жидкого гелия, стало быть, будет 4,2 К (значок «°» при измерении в градусах Кельвина в отличие от градусов Цельсия не пишется).

Честь получения жидкого гелия принадлежит голландскому ученому Гейке Каммерлингу-Оннесу, и с его же именем связано явление, имеющее непосредственное отношение к магнитам, – явление сверхпроводимости. Сверхпроводимость должна совершить в технике настоящую революцию, немалая роль в которой будет принадлежать сверхпроводящим магнитам.

В начале XX в., а точнее, до 1911 г. и открытия сверхпроводимости, ученые совершенно не знали, как поведут себя проводники тока, в первую очередь металлы, при их охлаждении.

Какая-то часть ученых считала, что электрическое сопротивление проводников с понижением температуры будет постоянно падать, и при температуре абсолютного нуля могло бы исчезнуть совсем. (Такое явление назвали сверхпроводимостью). Но так как абсолютный нуль практически недостижим, то и сверхпроводимости, стало быть, реально не получить. Другие настаивали на том, что и при абсолютном нуле какое-то сопротивление останется из-за дефектов в кристаллах металлов. А третьи и вовсе утверждали, что при приближении к абсолютному нулю сопротивление проводников возрастает. И все это доказывали теоретическим путем.

А Каммерлинг-Оннес своим ставшим знаменитым опытом показал, что и те, и другие, и третьи неправы, а результат таков, какой и ожидать-то трудно было.

Весной 1911 г. ученый решил заморозить ртуть в недавно полученном им жидком гелии. Гелий этот сохраняли в сосуде, который придумал англичанин Дьюар и который впоследствии назвали его именем.

В сосудах Дьюара одинаково хорошо хранятся и холодные, и горячие предметы, в том числе и жидкости, так как они хорошо ограждены вакуумом от поступления тепла снаружи и выхода его изнутри. А зеркальный слой делает невозможным передачу тепла лучами.

Итак, в сосуд Дьюара, содержащий жидкий гелий, была помещена трубочка со ртутью, которая тотчас же там замерзла, а затем Каммерлинг-Оннес пропускал через ртуть ток и замерял электрическое сопротивление, так же, как это делают сегодня радиотехники и электрики. Сопротивление столбика ртути с понижением температуры падало, пока эта температура не снизилась до 4,12 К. При этой температуре сопротивление скачком исчезло совсем! Да об этом никто даже подозревать не мог!

Добросовестный ученый многократно изменял условия опыта: то брал загрязненную ртуть, то утончал и удлинял столбик ртути, чтобы сопротивление стало заметнее, но результат был все тот же: сопротивление равно нулю!

И, наконец, через два года Каммерлинг-Оннес проделывает решающий опыт, для которого уже не важна точность измерительных приборов. Он изготавливает из свинцовой проволоки обмотку и дает импульс тока. Свинец тоже оказался сверхпроводником, причем уже при 7,2 К. Если хоть какое-то, пусть даже ничтожное сопротивление есть, то ток в обмотке очень быстро, за доли секунды угаснет. Ток в обмотке не угасал совсем!

Итак, сверхпроводимость открыта! И не при недоступном абсолютном нуле, а при реальных температурах.

Для тех, кто не верит тому, что сопротивление сверхпроводника действительно равно нулю, можно рассказать об интересном и поучительном опыте, поставленном американским физиком С. Кол-линсом.

Он изготовил сверхпроводящее кольцо, как и Каммерлинг-Он-нес, поместил его в жидкий гелий и пустил по нему ток. В серебряном кольце, например, этот ток затух бы за несколько десятых долей секунды, а ведь серебро – лучший из известных проводников. А в кольце Коллинса угасания тока за 10 лет установить не удалось. Не менее 100 тысяч лет нужно для того, чтобы самыми точными приборами заметить это угасание!

Дотошные физики подсчитали, что до полного затухания тока, когда его уже нельзя будет измерить приборами, пройдет время, в миллиарды миллиардов раз большее, чем время существования нашей Вселенной! Это ли не полное отсутствие сопротивления? Да и то говорят, что такое заключение ученые вынесли необоснованно – некоторое, ничтожное затухание тока наблюдается из-за растяжения кольца, по которому течет этот ток. Известно, что текущий по кольцу ток создает магнитные силы, стремящиеся разорвать кольцо.

Так вот это растяжение и связанное с ним падение напряженности магнитного поля ошибочно принимали за затухание тока. В действительности ток в сверхпроводящем кольце будет течь вечно, и мы получим вечный электромагнит!

Скандал и сенсация в физике сверхпроводимости

Научные авторитеты, оказывается, могут двигать науку не только вперед и назад, но даже останавливать на месте на десятилетия. Именно это и произошло в 30-е гг. XX в. с изучением и практическим использованием такого важного явления, как сверхпроводимость.

В 1911 г. голландский ученый Г. Каммерлинг-Оннес неожиданно открывает явление сверхпроводимости, когда при сильном охлаждении, почти до абсолютного нуля, электрическое сопротивление некоторых металлов падает до нуля.

Но природа, которая так побаловала ученого неожиданным открытием, здесь подготовила ему неприятный сюрприз. Пока ток в сверхпроводящей обмотке был небольшим, все было хорошо. Но как только ток возрастал, он уничтожал саму сверхпроводимость. И это не все. Магнитное поле, порожденное током в обмотке, даже небольшое, 1 000 – 1 500 эрстед, также убивала сверхпроводимость. И тут произошла, пожалуй, самая досадная история, буквально скандал в изучении и применении сверхпроводников. Известный и авторитетный физик того времени В. Кеезом теоретически доказал, что при наличии магнитного поля даже самые малые токи будут «выключать» сверхпроводимость. Это была ошибка Кеезома.

Авторитет известного физика сыграл свою роль, и все поверили, что о мало-мальски пригодных сверхпроводящих магнитах не может быть и речи. Работы в этом направлении были прекращены, и ученые занялись другими, более практичными, с их точки зрения, проблемами. А зря! Были потеряны десятки лет, а убыток в деньгах трудно даже и оценить. Но в дальнейшем природа преподнесла нам приятный сюрприз.

Настоящая сенсация произошла в 1986 г., когда швейцарские физики Д. Беднорц и К. Мюллер объявили о создании ими сверхпроводников при температурах, выше температуры кипения жидкого азота (77,4 К!). Сообщение это было настолько шокирующим, что научные журналы поначалу отказывались его печатать.

Жидкий азот чрезвычайно дешев, как говорят, даже дешевле лимонада, он является побочным продуктом при производстве кислорода, и его просто нередко выливают, выбрасывают. Получить сверхпроводимость при «азотных» температурах было мечтой исследователей и инженеров, казалось, неосуществимой. Отсюда и тот бум, который поднялся после этого сообщения. Сейчас ученые уже перешли от восторгов к делу, начались планомерные исследования в области высокотемпературной сверхпроводимости, в том числе и у нас в стране. В результате получены материалы, приобретающие свойство сверхпроводимости при 100—110 К. Были сообщения о материалах, теряющих электросопротивление почти при обычных температурах нашей средней полосы – от – 20 до +10 °С. Но, как оказалось, это была не сверхпроводимость, а просто сильное, в сотни и тысячи раз, снижение сопротивления, что хоть и хорошо, но коренным образом отлично от сверхпроводимости.

Что же это за материалы, обладающие столь заманчивыми свойствами?

В отличие от низкотемпературных сверхпроводников это не металлы, а керамика, чаще всего на основе элементов иттрия и бария. Сама процедура изготовления сверхпроводящей керамики необыкновенно проста и, как выразился один известный физик, «удивительно дуракоустойчива».

Сами компоненты, входящие в состав новых сверхпроводников, хотя и называются редкоземельными, отнюдь не редкость. Они входят в состав полиметаллических руд, но за отсутствием спроса до сих пор оттуда не извлекались, а шли в отвал. Так что теперь нужно наладить переработку отвалов этих руд.

Где же можно применить новые сверхпроводники? С силовыми применениями сверхпроводников пока придется подождать. Зато уникальные свойства сверхпроводимости, не связанные с большими токами, можно уже начинать использовать. Например, в микроэлектронике и вычислительной технике новые сверхпроводники можно применять уже прямо сейчас, поскольку большие токи там не требуются.

Попытки использовать сверхпроводники для нужд микроэлектроники и вычислительной техники были и раньше, разработали даже некоторые элементы (сверхпроводящий ключ, сверхпроводящая ячейка памяти – криотрон), но широкому их распространению мешала высокая стоимость охлаждения до рабочей температуры. Необходимость же охлаждать до азотной температуры проблемы не представляет. Более того, это даже полезно, поскольку одновременно снижается уровень шумов.

Природа своими подарками еще не полностью искупила высокомерную ошибку Кеезома и наше преклонение перед авторитетами науки. Мы можем с уверенностью ждать скорого появления уже «силовых» сверхпроводников, работающих при обычных для нас температурах. Что мы можем от этого получить, пока даже трудно себе представить!

Как Фарадей перехитрил Ампера?

Тут нам снова надо вернуться в XIX в., к знаменитым опытам Фарадея (1791—1867). Сразу после опытов Эрстеда, где электричество порождало магнетизм, Фарадей записал в своем дневнике девиз: «Превратить магнетизм в электричество». 11 лет Фарадею это не удавалось. Много лет подряд ученый постоянно носил с собой спираль из медной проволоки и железный сердечник, проделывая с этими предметами самые невероятные манипуляции. Но ничего путного не выходило, и в его лабораторном журнале «О возбуждении электричества посредством магнетизма» снова появлялась запись: «Никакого результата». Каждому опыту Фарадей посвящал особый параграф, и последний параграф в журнале помечен номером 16041!



Баснословная работоспособность и одержимость Фарадея была наконец вознаграждена, и 29 августа 1831 г. он «напал на след». Весь сентябрь и октябрь были сплошным повторением в разных вариантах одного и того же опыта, который положил начало всему электромашиностроению. Вот как описал этот опыт сам Фарадей в своем журнале:

«Я взял цилиндрический магнитный брусок и ввел один его конец в просвет спирали из медной проволоки, соединенной с гальванометром. Потом я быстрым движением втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра испытала толчок (рис. 367). Затем я также быстро вытащил магнит из спирали, и стрелка опять качнулась, но в противоположную сторону. Эти качания стрелки повторялись всякий раз, как магнит вталкивался или выталкивался…» Дальше следовал гениальный вывод ученого: «Это значит, что электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».


Рис. 367. Опыт Фарадея:

1 – гальванометр; 2 – магнитный брусок; 3 – спираль из медной проволоки


Сейчас мы отлично понимаем, что если положить магнит около обмотки или даже вдвинуть его в спираль и оставить там, то ожидать появления тока при неподвижном магните равносильно вере в появление энергии из ничего. Действительно, лежит себе магнит внутри обмотки, ничего не теряет, а там течет ток, совершая работу хотя бы на нагрев этой обмотки. Так и до «вечного двигателя» недалеко! Правда, как мы уже видели, такой случай возможен, когда обмотка сверхпроводящая – там ток, возникший при введении магнита, будет течь вечно – потерь-то никаких нет! А ведь такого же эффекта в те времена ждали, и не кто-нибудь, а сам Ампер и, возможно, поначалу и Фарадей.

Одновременно с Фарадеем опыты по вдвиганию магнитных сердечников в проволочную спираль проводил и Ампер. Чтобы избежать влияния магнита на чувствительный гальванометр и Фарадей, и Ампер помещали прибор в другую комнату. При этом Ампер сначала помещал сердечник внутрь спирали и потом уже шел в соседнюю комнату проверить, не появился ли ток. Но, увы, спираль была изготовлена не из сверхпроводника, а из обычной медной проволоки, и ток практически мгновенно затухал, стоило сердечнику прекратить движение. А Фарадей поручил наблюдение за прибором ассистенту, который и заметил появление тока во время движения магнита. Казалось бы, что стоило Амперу воспользоваться чьей-либо помощью или, на худой конец, поставить гальванометр в другом углу той же комнаты и самому наблюдать за ним!

Такие досадные случаи достаточно часты в истории науки, что и дало повод великому немецкому физику Герману Гельмгольцу воскликнуть: «И от этих случайных обстоятельств зависело великое открытие!»

Это изречение Гельмгольца в полной мере относится и к самому Фарадею. Еще за 9 лет до открытия им электромагнитной индукции (а именно так стали называть возбуждение магнитом электричества) Фарадей был необычайно близок к нему.

Наблюдая за проволокой с током, проделывая с ней замысловатые манипуляции, Фарадей неожиданно обнаружил, что магнит начинает движение вблизи проволочки с током. Сохранился собственноручный рисунок Фарадея, иллюстрирующий этот опыт (рис. 368). В чаше с налитой туда ртутью плавает магнитик. Ртуть подсоединена к одному полюсу источника тока, причем в той же ртути находится конец проволочки, подсоединенный к другому полюсу. Когда электрическая цель замыкалась через ртуть, магнитик или конец проволоки приходили во вращение. Эта была первая униполярная электромашина, принципа действия которой тогда не понял сам автор. И не в этом дело – работу такой машины ученые смогли объяснить лишь гораздо позже.


Рис. 368. Рисунок Фарадея, с которого началось электромашиностроение

Но так или иначе, именно Фарадей связал магнит и движение, получив и первый электромотор – магнит вращается при пропускании тока, – и первый электрогенератор – обмотка дает ток при движении около нее магнита. Начало эры электромашиностроения, без которого немыслима современная техника, было положено!


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации