Текст книги "Удивительная физика"
Автор книги: Гулиа Нурбей
Жанр: Физика, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 16 (всего у книги 33 страниц)
Опасно ли плавать в Мертвом море?
Судя по названию моря, страшновато. Но на самом деле это безопаснее, чем в обычных озерах – пресных. Ведь Мертвое море – озеро, воды которого настолько солены, что в них, как в рассоле, не может жить ни одно живое существо. Расположено Мертвое море в Западной Азии, в библейских краях, где жил и проповедовал Иисус Христос.
Знойный, сухой климат в этих местах вызывает сильное испарение воды с поверхности моря. При этом растворенные соли остаются и увеличивают соленость воды. Вот почему вода Мертвого моря содержит не 2 – 3 % соли, как большинство морей и океанов, а 27 % и более; причем с глубиной эта соленость растет. Итак, около 25 % содержимого Мертвого моря составляют соли, растворенные в его воде, количеством около 40 000 000 т.
Высокая соленость Мертвого моря обуславливает то, что вода здесь тяжелее обыкновенной морской воды. Утонуть в такой тяжелой жидкости нельзя: человеческое тело имеет значительно меньшую плотность.
Вес нашего тела заметно меньше веса равного объема соленой воды, и, следовательно, по закону Архимеда человек не может в Мертвом море пойти ко дну; он всплывает в нем, как всплывает в соленой воде куриное яйцо, которое тонет в пресной (рис. 180). Американский писатель Марк Твен, посетивший это озеро-море, описывает удивительные ощущения, которые он и его спутники испытали, купаясь в соленых водах Мертвого моря:
Рис. 180. Отдыхающий на Мертвом море
«Это было забавное купанье! Мы не могли утонуть. Здесь можно вытянуться на воде во всю длину, лежа на спине и сложив руки на груди, причем большая часть тела будет оставаться над водой. При этом можно совсем поднять голову… Вы можете лежать очень удобно на спине, подняв колени к подбородку и охватив их рука– ми, но вскоре перевернетесь, так как голова перевешивает.
Вы можете встать на голову – и от середины груди до конца ног будете оставаться вне воды; но вы не сможете долго сохранять такое положение. Вы не можете плыть на спине, подвигаясь сколько-нибудь заметно, так как ноги ваши торчат из воды и вам приходится отталкиваться только пятками. Если же вы плывете лицом вниз, то подвигаетесь не вперед, а назад. Лошадь так неустойчива, что не может ни плавать, ни стоять в Мертвом море – она тотчас же ложится набок».
Лежащему на поверхности Мертвого моря человеку большая плотность воды позволяет в этой позе даже читать книгу и держать зонтик. Такими же необычайными свойствами обладает вода залива Каспийского моря Кара-Богаз-Гола с плотностью до 1,2 т/м3, и не менее соленая вода озера Эльтон, содержащая 27 % солей, то есть практически столько же, сколько и в Мертвом море.
Степень солености воды в различных океанах и морях обычно колеблется, и поэтому суда сидят там не одинаково глубоко. На борту океанских судов близ ватерлинии помещают так называемую Ллoйдoвcкyю, или грузовую, марку – знак, показывающий уровни осадки в воде различной плотности. Например, изображенная на рис. 181 грузовая марка означает уровни предельных ватерлиний (осадок):
FW – в пресной воде (Fresh Water);
IS – в Индийском океане летом (India Summer);
S – в соленой воде летом (Summer);
W – в соленой воде зимой (Winter);
WNA – в Северной части Атлантического океана зимой (Winter North Atlantik).
Рис. 181. Ллойдовская марка на борту корабля
Между прочим, существует разновидность воды, которая и в чистом виде, без всяких солей, тяжелее обыкновенной; ее плотность 1,104 т/м3, то есть на 10 % больше обыкновенной. В бассейне с такой водой человек, даже не умеющий плавать, едва ли сможет пойти ко дну. Такую воду обычно называют тяжелой водой; ее химическая формула D2O (входящий в ее состав изотоп водорода – дейтерий состоит из атомов, вдвое тяжелее атомов обыкновенного водорода, и обозначается буквой D). Тяжелая вода в небольшом количестве – менее 0,1 % – находится и в обыкновенной воде.
Тяжелая вода состава D2O в настоящее время используется в атомной промышленности для ядерных реакторов. Если вдруг вы встретите бассейн с тяжелой водой, не вздумайте в нем купаться – вы не утонете, но погибнете от ее губительного действия на живые организмы.
Если уж говорить о плавании человека в озерах и морях, то в отличие от куриного яйца, которое в пресной воде тонет, человек, сделавший вдох, то есть с легкими, заполненными воздухом, не погрузится полностью и в пресную воду. Термин «утонуть» здесь и выше использован именно в смысле «погружения»; «утонуть» (в смысле захлебнуться) можно, как известно, и в стакане воды.
Итак, если вы хотите проверить свою плавучесть в пресной воде, проделайте одно очень полезное для обучения плаванью упражнение (рис. 182). Сделав глубокий вдох, «повисните» в воде стоя, сильно запрокинув голову назад, так, чтобы над водой осталось одно ваше лицо. Тело расслаблено, оно как бы висит в воде, наклонившись слегка назад, и вы можете висеть в таком положении неограниченно долго.
Рис. 182. Как научиться «висеть» в воде
Дышать следует так: сделать быстрый выдох и вдох ртом и продолжать лежать с полными легкими, затаив дыхание. Если вы почему-то погрузились от внешнего толчка или неправильного движения, то не волнуйтесь, через 2 – 3 секунды ваше лицо снова будет в воздухе. С плаваньем тел, а следовательно, с законом Архимеда, который мы знаем как закон плаванья тел, связан один интересный и поучительный опыт.
На одну чашу весов поставлено ведро, до краев наполненное водой. На другую – точно такое же ведро, тоже полное до краев (мениск здесь не учитывается!), но в нем плавает кусок дерева (рис. 183). Какое ведро перетянет? Тут обычно возникают два мнения: одно – что должно перетянуть то ведро, в котором плавает дерево, потому что кроме воды в ведре есть еще и дерево; другое – что, наоборот, перетянет первое ведро, так как вода плотнее дерева.
Но ни то ни другое не верно: оба ведра одинаково тяжелы! Во втором ведре, правда, воды меньше, чем в первом, потому что плавающий кусок дерева вытесняет какой-то ее объем. Но, по закону Архимеда, всякое плавающее тело вытесняет своей погруженной частью ровно столько жидкости (по весу), сколько весит это тело. Вот почему весы и остаются в равновесии.
Рис. 183. Опыт с весами и ведрами
С плаваньем тел, как, впрочем, и с любыми другими физическими явлениями, связывают свои надежды изобретатели «вечных двигателей». Вот, например, один из таких проектов.
Башня высотой около 20 м наполнена водой. Вверху и внизу башни установлены шкивы, через которые перекинут бесконечный ремень. К ремню прикреплены полые кубические ящики со стороной, например, 1 м, изготовленные герметичными, так, что внутрь ящиков вода проникнуть не может (рис. 184).
Рис. 184. Башенно-поплавковый «вечный двигатель»
Как же, по замыслу изобретателя, должна действовать эта установка? Ящики, находящиеся в воде, будет увлекать вверх сила, равная весу воды, вытесняемой ящиками. Допустим, что в воде оказываются 6 ящиков. Если объем каждого 1 м3, значит, сила, увлекающая погруженные ящики вверх, равна весу 6 м воды, то есть 60 кН. Вниз же ящики тянет их собственный вес, который, однако, уравновешивается весом 6 ящиков, свободно свисающих на наружной стороне башни.
Итак, на ремень будет действовать сила в 60 кН, приложенная к одной его стороне и направленная вверх. Кажется, что сила эта заставит его двигаться и совершать работу. Однако если разобраться, то можно убедиться, что ожидаемого движения происходить не будет.
Чтобы бесконечный ремень двигался, ящики должны входить в водяной бассейн башни снизу и выходить сверху. Но ведь заходя в бассейн, ящик должен преодолеть давление столба воды в 20 м высотой! Это давление в расчете на 1 м2 площади ящика равно 200 кН (весу 20 м3 воды). Сила же тяги вверх составляет всего 60 кН, и ее недостаточно, чтобы втащить ящик в башню.
Не думайте, что все эти проекты – дело темного прошлого. Около 5 лет назад автор через одну из самых уважаемых газет по заданию ее редакции принимал участие в рассмотрении именно такого проекта «вечного двигателя», который был известен еще Я. И. Перельману, но не изобретателю этого «нового» проекта. Действительно, новое – это хорошо забытое старое!
Как подделать золото?
Махинации с золотом известны с глубокой древности. Об этом свидетельствует хотя бы история с короной сиракузского царя Гиерона.
Еще за 250 лет до Рождества Христова царь Гиерон поручил ювелиру изготовить ему золотую корону, передав при этом мастеру соответствующее количество золота. Корона была изготовлена, но, усомнившись в честности мастера, царь, согласно легенде, поручил своему другу и родственнику Архимеду проверить честность ювелира. Хотя корона весила столько, сколько было отпущено на нее золота, царь заподозрил, что она изготовлена из сплава золота с другими, более дешевыми, металлами. Архимеду было поручено узнать, не ломая короны, есть в ней примесь или нет. Точно неизвестно, каким методом пользовался Архимед, но логично предположить следующее. Сначала он нашел, что кусок чистого золота в 19,3 раза тяжелее такого же объема воды. Иначе говоря, плотность золота в 19,3 раза больше плотности воды. Но надо было найти плотность вещества короны. Если эта плотность оказалась бы больше плотности воды не в 19,3 раза, а в меньшее число раз, значит, корона была изготовлена не из чистого золота.
Взвесить корону было легко, но как найти ее объем? Ведь корона была очень сложной формы. Долго мучился Архимед над этой задачей. И вот однажды, когда он, находясь в бане, погрузился в наполненную водой бадью, его внезапно осенила мысль, давшая решение задачи. Ликующий и возбужденный своим открытием, Архимед выскочил из бадьи и, как был нагой, побежал по улицам с криком: «Эврика! Эврика!», что значит «Нашел! Нашел!»
Архимед взвесил корону сначала в воздухе, затем в воде. По разнице в весе он определил выталкивающую силу, равную весу воды в объеме короны. Определив затем объем короны, он смог уже определить ее плотность, а зная плотность, ответить на вопрос царя: нет ли примесей дешевых металлов в золотой короне?
Легенда говорит, что плотность вещества короны оказалась меньше плотности чистого золота. Тем самым мастер был изобличен в обмане, а наука обогатилась замечательным открытием.
Историки рассказывают, что задача с золотой короной Гиерона побудила Архимеда заняться вопросом о плавании тел. Результатом этого было появление замечательного сочинения «О плавающих телах», которое дошло до нас. Закон плавания тел сформулирован Архимедом следующим образом:
«Тела, которые тяжелее жидкости, будучи опущены в нее, погружаются все глубже, пока не достигают дна, и, пребывая в жидкости, теряют в своем весе столько, сколько весит жидкость, взятая в объеме тела».
Надо сказать, что в любом газе (например, воздухе) также действует закон Архимеда. Здесь становится актуальным шуточный вопрос: что тяжелее – 1 т железа или 1 т дерева? Не подумав, отвечают обычно, что 1 т железа тяжелее; подумав, говорят, что 1 т – она и есть 1 т и вес 1 т железа, дерева, и чего бы то ни было, одинаков.
Но Я. И. Перельман утверждает, что тяжелее будет 1 т дерева. Вот как он это доказывает:
«Дело в том, что закон Архимеда применим не только к жидкостям, но и к газам. Каждое тело в воздухе „теряет“ из своего веса столько, сколько весит вытесненный телом объем воздуха.
Дерево и железо тоже, конечно, теряют в воздухе часть своего веса. Чтобы получить их истинные веса, нужно «потерю» прибавить. Следовательно, истинный вес дерева в нашем случае равен 1 т + вес воздуха в объеме дерева; истинный вес железа равен 1 т + вес воздуха в объеме железа.
Но 1 т дерева занимает гораздо больший объем, нежели 1 т железа (раз в 15), поэтому истинный вес 1 т дерева больше истинного веса 1 т железа! Выражаясь точнее, мы должны были бы сказать: истинный вес того дерева, которое в воздухе весит 1 т, больше истинного веса того железа, которое весит в воздухе также 1 т.
Так как 1 т железа занимает объем в 1/8 м3, а 1 т дерева – 2 м3, то разность в весе вытесняемого ими воздуха должна составлять около 2,5 кг. Вот насколько 1 т дерева в действительности тяжелее 1 т железа!»
Автор не согласен с такой трактовкой этого шуточного вопроса и считает, что 1 т железа весит больше 1 т дерева.
1 т, или 1 000 кг, – это мера не силы, а массы вещества. При этом безразлично, где оно находится – в воде, в воздухе или вакууме. Если мы взвешиваем это вещество в вакууме, то получаем, что сила тяжести, равная весу Р, есть произведение массы m на ускорение силы тяжести g:
P = mg.
При взвешивании в воздухе часть веса «теряется» – вверх действует выталкивающая сила воздуха; но она больше у дерева, так как объем больше. Поэтому 1 т железа будет весить больше 1 т дерева, если взвешивают в обычных условиях, – в воздухе. То есть 1 т железа будет тяжелее тонны дерева, что и требовалось доказать. Кстати, 1 т водорода будет иметь вообще отрицательный вес, и немалый. В воздухе 1 т водорода может поднять более 14 т железа!
Но мы отвлеклись от темы. Как же все-таки подделать золото, чтобы это никакой Архимед не определил?
При Гиероне это было невозможно, а сегодня – пожалуйста! Надо только, чтобы тот металл, которым мы хотим заменить золото, имел плотность, равную плотности самого золота или больше ее – для получения сплава с более легким металлом. А таких очень и очень немного, и, в основном, они дороже самого золота. Это осмий с плотностью 22,5 т/м3, иридий – 22,4 т/м3, платина – 21,5 т/м3, рений – 21,0 т/м3. Золото, как известно, имеет плотность 19,3 т/м3. Даже уран имеет меньшую плотность – 19,1 т/м3, да он и радиоактивен. Далеко отстает «тяжелый» свинец – 11,3 т/м3.
Но есть один-единственный металл, достаточно дешевый и в чистом виде пластичный (из него тянут тончайшие проволоки), известный нам всем вольфрам, плотность которого совпадает с плотностью золота с большой точностью. Вольфрам идет, кроме всем известных волосков для электролампочек, на твердосплавные резцы, на специальные электроды, как легирующая добавка в металлы, и мало ли на что еще…
Конечно, не надо сплавлять вольфрам с золотом – это трудновато и ни к чему – непонятно, какой будет цвет у сплава. Надо только (Запомните, честные люди! Мошенники давно знают об этом) изготовить изделие – монету, слиток, кольцо и т. д. из вольфрама, а затем покрыть тонким слоем золота. Это можно сделать и гальваническим способом, и старинным – амальгамированием.
В ртути, как известно, растворяются многие металлы, в том числе и золото. В старину таким раствором – амальгамой натирали купола церквей и другие изделия для их золочения. Только помните, что ртуть крайне опасна для дыхания. Не имейте с ней дела без специальной вытяжки!
Вот мы и получили изделие, которое по плотности от золота не отличишь. Ювелиры пробуют золото «кислотой» – царской водкой. Здесь это не поможет – на поверхности чистое золото. Остается пилить, как это делал Шура Балаганов с «золотой» гирей Корейко. Но не каждый позволит пилить его ювелирное украшение!
Определить подделку можно попробовать разными способами. При этом следует помнить, что у вольфрама с золотом лишь плотность одинакова, а многие другие показатели разные. Для неповрежденного изделия, такими показателями будут: теплоемкость; теплопроводность; электропроводность, особенно зависимость ее от температуры, которая у вольфрама специфическая, и т. д. Только чрезвычайно трудно все эти показатели измерить достаточно точно; это очень дорогие процедуры. Еще раз повторим: автор пишет это для честных читателей, чтобы они были бдительны и не покупали «драгметаллы» с рук. А о том, что мошенники знают об этом способе, автору известно из собственного опыта.
Однажды автора попросил его знакомый (из «крутых») определить подлинность проданного ему червонного золотого слитка. Архимедова проба на плотность показала, что слиток золотой, проба кислотой – то же. И тогда автор попробовал старинный способ – пробу на зуб, т. е. на твердость. Так раньше определяли подлинность золотых монет. И народный метод не подвел – слиток оказался тверже обычного червонного золота 96-й пробы, из которого раньше чеканили монеты. Конечно, так не все попробуешь, метод этот повреждающий – на золоте остается маленькая вмятина. Но для слитка это не столь важно.
Автор уговорил знакомого просверлить слиток тонким сверлом, и сверло выдало серебристую стружку – вольфрам! «Крутой» приятель был очень недоволен, и, пожалуй, одним изготовителем «золотых» вольфрамовых слитков стало меньше. Но другие-то пока остаются!
Добавим только, что для подделки золота подойдут также сплавы рения, применяющиеся в авиа– и космическом машиностроении.
Кстати, в газетах последних лет можно встретить заметки о подделке золота тяжелыми сплавами, которые очень трудно отличить от золота. Криминал становится все более грамотным, успешно учит физику!
Где плавают затонувшие корабли?
Существуют легенды, что затонувшие в океане корабли не ложатся на дно, а повисают на некоторой глубине, путешествуя, как подводные «летучие голландцы», вместе с океанскими течениями. Жюль Верн в своем романе «Двадцать тысяч лье под водой» даже описывал неподвижно висящее в воде затонувшее судно, причем затонувшие корабли якобы догнивали, свободно вися в воде.
Справедливо ли это, или корабли все-таки достигают дна? Давление воды в глубинах океана действительно достигает огромных величин. На глубине 10 м вода давит с силой 10 Н на 1 см2 погруженного тела, на глубине 100 м – 0,1 кН, 1 000 м – 1 кН и т. д. Океан же может иметь глубину в несколько километров, достигая в самых глубоких частях Тихого океана более 11 км. Можно подсчитать, какое огромное давление должны испытывать вода и плавающие в ней тела на этих глубинах.
Если пустую закупоренную бутылку опустить на большую глубину и затем извлечь вновь, то обнаружится, что давление воды вогнало пробку внутрь бутылки. Будучи закупоренной крепче, бутылка эта будет раздавлена давлением воды. Опыты такие проводились и подтверждали это. Куски дерева, погруженные на глубину 5 км, после извлечения на поверхность оказались настолько спрессованными, что тонули в воде. На глубине Марианского желоба – 11,5 км – давление достигает почти 120 МПа. Существует мнение, что из огнестрельного оружия, опущенного на такую глубину (разумеется, если не будет поврежден механизм, вода не проникнет внутрь заряда и т. п.), нельзя выстрелить. Это мнение отражено в популярных книгах по физике, и автор даже видел рисунок пистолета, который лежал на дне океана, и при выстреле из него пуля так и не вылетела.
Так вот, давление в стволе при выстреле из пушки достигает 400 МПа, из автомата – 270 МПа, у пистолета – немного поменьше, в зависимости от его типа. Так что выстрелить это оружие сможет. Вопрос только в том, вылетит ли пуля из ствола. Вот тут-то так просто не ответишь. В конце выстрела давление в стволе сильно падает, оно в ряде случаев может оказаться ниже 120 МПа. Но это тогда, когда пуля летит, а порох горит. Если же пуля наглухо закупорит ствол, неизвестно, до какой величины поднимется давление – ведь порох-то продолжает догорать. В воздухе при заклинке пули часто ствол разрывается, особенно у охотничьих ружей. В воде при таком давлении ствол не разорвет, и вопрос о том, вылетит пуля из ствола или нет, остается открытым…
Говорят, что столь чудовищное давление так уплотнит воду, что корабли и прочие тяжелые предметы зависнут в ней и не будут тонуть, как, например, железо не тонет в ртути. Однако подобное мнение не обосновано. Опыт показывает, что вода, как и вообще все жидкости, мало поддается сжатию. Подвергнутая давлению 0,1 МПа вода сжимается всего только на 1/22 000 долю своего объема и примерно также продолжает сжиматься при дальнейшем возрастании давления. Если бы мы захотели сжать воду до такой плотности, чтобы в ней плавало железо, необходимо было бы уплотнить ее в 8 раз. Между тем для уплотнения только вдвое, то есть сокращения объема наполовину, необходимо давление 1 100 МПа, или 1,1 ГПа (1,1·109 Па). Это соответствует глубине 110 км ниже уровня океана, чего быть не может!
Английский физик Тэт сделал интересные вычисления, что если бы земное притяжение внезапно прекратилось и вода сделалась невесомой, то уровень воды в океане поднялся бы в среднем на 35 м, вследствие того, что сжатая вода приобрела бы нормальный объем. Океан затопил бы при этом громадную территорию суши в 5 000 000 км2!
В самом глубоком месте океана вода уплотнена на 5 %. Это почти не может повлиять на условия плавания в ней различных тел, тем более что твердые предметы, погруженные в такую воду, также подвергаются этому давлению и, следовательно, тоже уплотняются.
Поэтому многие ученые, в том числе Я. И. Перельман, делают вывод, что «не может быть ни малейшего сомнения в том, что затонувшие корабли покоятся на дне океана». Не оставляется шанса даже для перевернутых килем вверх кораблей. Вот что пишет об этом Я. И. Перельман:
«Мне приходилось слышать такое возражение. Если осторожно погрузить стакан вверх дном в воду, он может остаться в этом положении, так как будет вытеснять объем воды, весящий столько же, сколько стакан. Более тяжелый металлический стакан может удержаться в подобном положении и ниже уровня воды, не опускаясь на дно. Точно так же может остановиться на полпути и опрокинутый вверх килем крейсер или другое судно. Если в некоторых помещениях судна воздух окажется плотно запертым, то судно погрузится на определенную глубину и там остановится.
Не мало ведь судов идет ко дну в перевернутом состоянии, и возможно, что некоторые из них так и не достигают дна, оставаясь висеть в темных глубинах океана. Достаточно было бы легкого толчка, чтобы вывести такое судно из равновесия, перевернуть, наполнить водой и заставить упасть на дно, но откуда взяться толчкам в глубине океана, где вечно царит тишина и спокойствие и куда не проникают даже отголоски бурь?
Все эти доводы основаны на физической ошибке. Перевернутый стакан не погружается в воду сам – его надо внешней силой погрузить в воду, как кусок дерева или пустую закупоренную бутылку. Точно так же и опрокинутый килем вверх корабль вовсе не начнет тонуть, а останется на поверхности воды. Оказаться на полпути между уровнем океана и его дном он никак не может».
Автор считает, что серьезный ученый должен оставить хоть «малейшее сомнение» в чем бы то ни было. Тем более что мнение о «зависших» кораблях разделяют многие моряки. Дело в том, что на кораблях часто имеются герметичные отсеки. И если эти отсеки не повреждены и в них остался воздух, то он не сжимается давлением воды, оставаясь прежнего объема. Поэтому корабль, имея общую плотность выше поверхностной плотности воды океанов (почти всегда менее плотной – по причине и более высокой температуры, и меньшей солености), начинает погружаться, и когда достигает холодных (а в глубине океанов температура +4 °С, при этом плотность ее максимальна) и более соленых ее слоев, зависает на неопределенное время.
Вот вам и подтверждение легенды о блуждающих зависших затонувших кораблях!
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.