Электронная библиотека » Хеннинг Бекк » » онлайн чтение - страница 2


  • Текст добавлен: 29 декабря 2018, 16:40


Автор книги: Хеннинг Бекк


Жанр: Личностный рост, Книги по психологии


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Правда, это сработает лишь в том случае, если вы не будете перегружать мозг, постоянно бомбардируя его новыми сведениями. Ведь тогда он будет обращать внимание не на содержание информации, а лишь на ее внешние эффекты (звонки, вибрацию, жужжание, всплывающие окна на мониторе). В какой-то момент пороговое значение фильтрационного механизма поднимется настолько, что большая часть информации вообще не будет восприниматься сознанием. Этого можно легко избежать, осознанно делая паузы, чтобы дать мозгу время на обдумывание.

А теперь – пауза!

Помните ли вы, с каких трех слов начиналось предпоследнее предложение? Вам это и не требуется. Они не столь важны, а мелочи мозг забывает. Лишь таким путем он может выявлять закономерности. Например, из этой главы вам достаточно вынести главное: мозг не обязан помнить всё, и это не его слабость, а хитроумный трюк, с помощью которого он впоследствии может извлекать из памяти нужную информацию и комбинировать ее с другими сведениями. Мозг – это не машина памяти и не любитель порядка, который педантично следит за тем, чтобы ничего не забыть и все аккуратно расставить по полочкам. Он больше напоминает растяпу, который не может толком ни на чем сконцентрироваться. Но именно эти непредсказуемые скачки мысли делают его таким творческим и независимым.

Даже если через несколько минут вы забудете многие детали, о которых шла речь на последних страницах, у вас в памяти останется главная мысль, что именно паузы дают мозгу возможность привести информацию в порядок и промаркировать ее для дальнейшего использования. Итак, прежде чем читать дальше, вы можете со спокойной душой на пару минут отложить книгу в сторону, расслабиться и дать информации возможность отстояться. Ведь вы теперь знаете, что даже если содержание главы не удалось запомнить полностью, то главное из нее помечено и готово для использования в будущем.

Глава 2
Обучение. Почему мы плохо заучиваем наизусть, но зато способны понимать окружающий мир

Знание – сила. Значит, те, кто больше знает, сильнее других. Ну, как правило. Но знания не сваливаются с неба. Мозг должен добывать их, то есть учиться. А это не так просто. Давайте прямо сейчас проверим, насколько вам это удается. Выучите наизусть следующий список слов:


Имбирь

Изюм

Колесо

Земляника

Ночь

Еж

Салат

Виноград

Лапша

Часы

Отдых

Мечта

Зебра

Леденец

Лабиринт

Хамелеон

Малина


Не торопитесь, прочитайте эти слова несколько раз, убедитесь, что вы помните их все. Можете использовать различные приемы: образные представления, смысловые ассоциации, составление историй. А теперь продолжайте читать. И не забывайте то, что выучили. Ни в коем случае не забывайте! Даже если из предыдущей главы вам известно, насколько это тяжело. Ведь вы уже знаете, как охотно мозг вычеркивает содержимое памяти.

Выучить – это только полдела

Учеба не пользуется популярностью. Для ее описания используются слова, имеющие не самый положительный оттенок: зубрежка, долбежка, штудирование, а тех, кто успешно справляется с ней, называют «ботаниками» и утверждают, что до них все доходит через зад, которым они просиживают штаны. Многие ассоциируют время учебы в школе или на курсах повышения квалификации с тяжелым трудом, разочарованиями, борьбой за хорошие оценки и нервозностью перед экзаменами. Жизнь в их понимании делится на учебу, где надо напрягать голову, и на досуг, когда можно делать то, что доставляет радость. Учеба дается с трудом, утомляет и не приносит радости, а в свободное время можно развлечься, отдохнуть и получить удовольствие. Складывается впечатление, что надо создавать какую-то особо благоприятную среду для тех, кто вообще выражает желание учиться. Окончив какие-нибудь курсы повышения квалификации, сдав заключительный экзамен и получив свидетельство, люди считают, что уже всему научились и больше им ничего не требуется.

К сожалению, от учебы никуда не деться. Нам все время приходится учиться чему-то новому, и конца этому не видно. «Учеба похожа на греблю против течения. Стоит только прекратить грести, тебя сносит назад» – это изречение я вычитал в своем поэтическом альбоме, а вписал его туда мой одноклассник, которому на ту пору было семь лет и который уже двадцать лет назад знал, что учеба не закончится никогда. Сегодня надо настраиваться на то, что знания придется приобретать всю жизнь. Учиться надо всегда и везде: в школе, университете, на производстве. К счастью, у нас есть мозг, который готов нам в этом помочь.

А может, не готов? Ведь зачастую бывает очень нелегко усвоить какую-то информацию. В ходе обучения мозг проявляет три свои слабые стороны. Во-первых, он не любит учиться под давлением. Если вам приходилось готовиться к важному экзамену, то вы знаете, как это непросто. Во-вторых, мы с большим трудом запоминаем даты, факты и другие подобные сведения. Они очень быстро перестают интересовать мозг. Неужели вы до сих пор помните имена первых трех рейхсканцлеров Веймарской Республики, формулу квадрата разности и разницу между определительными и обстоятельственными придаточными предложениями? Вы наверняка все это когда-то учили, а потом забыли. И тут мы подходим к третьей слабой стороне мозга: если вы чему-то научились, то можете и разучиться. Учеба – это не улица с односторонним движением.

Хотя на первый взгляд учеба кажется очень трудным процессом, что находит свое отражение и в нашей речи, мозг является настоящим гроссмейстером в этой дисциплине. Учеба – это наша эволюционная ниша. В ней мы особенно сильны, и это дает нам преимущества перед другими существами. Птицы умеют летать, рыбы умеют плавать, а люди умеют учиться. Правда, происходит это не совсем так, как мы порой себе представляем. Ведь ни у кого не вызывает сомнений, что в этом деле нам свойственны определенные слабости (неглубокое усвоение знаний в стрессовых условиях, плохое запоминание фактических данных…), но, если задуматься, становится понятно, что эту цену нам приходится платить за то, что мы умеем учиться лучше всех в мире. Мы же не просто учимся; мы постигаем мир. В этом заключается великая сила человеческого разума, которая перевешивает его отдельные слабые стороны. Признавая их, мы сможем понять, как лучше всего усваивать новые знания и почему мы по-прежнему превосходим в этом любые компьютеры.

Оркестр нервных клеток

Прежде чем обсуждать слабые (и сильные) стороны учебного процесса, давайте заглянем за кулисы обучающегося мозга. Что в нем происходит, когда мы узнаем что-то новое? Или копнем еще глубже: что должна представлять собой информация или мысль, которую мозг сочтет достойной усвоения?

В компьютере все относительно просто: если я хочу что-то сохранить, мне нужно только иметь данные, пригодные для сохранения. Эти данные представляют собой последовательность знаков, подвергшихся электронной обработке. Компьютер помещает их в определенное место, откуда потом может их извлечь. Информация в компьютере представляет собой комбинацию смысловых знаков и адрес места, где они хранятся. Это напоминает библиотеку. Там тоже есть книги, написанные знаками (буквами), которые вы ставите на полку, чтобы потом их было легче найти. Когда вам требуется какая-то информация, нужно знать место, где стоит книга, и уметь читать буквы.

Мозг работает по-другому. Там нет ни данных, выраженных в знаках, ни определенного места, где хранится информация. Если я попрошу вас подумать о своей бабушке, то в этот момент в мозге не срабатывает какая-то конкретная нервная клетка, ответственная за бабушку (как некоторое время полагали исследователи), а возбуждается целая сеть нервных клеток, приходя в определенное состояние. Информация закодирована именно в этом состоянии взаимной активации нервных клеток. Звучит несколько абстрактно, но в упрощенном виде данный процесс можно сравнить с игрой огромного оркестра. Он состоит из отдельных музыкантов, каждый из которых способен регулировать свою активность (играть тише или громче, выше или ниже). Пока оркестр молчит, вы, глядя на него со стороны, не можете определить, что он будет играть. Точно так же невозможно сказать, о чем думает мозг, глядя со стороны на сплетение его нервных клеток. Музыка рождается в оркестре, когда музыканты начинают играть, синхронизируя свои действия. Она существует не вообще в оркестре, а в игре каждого конкретного музыканта. Если вы слышите только одну виолончель, то можете что-то узнать о состоянии одного из музыкантов, но не имеете понятия, как звучит все произведение целиком, поскольку для этого необходимо знать, какие действия производят другие музыканты. Но и этого еще недостаточно, так как музыка возникает лишь тогда, когда они действуют синхронно. Таким образом, информация (в данном случае мелодия) закодирована и распределена между музыкантами.

Нервные клетки взаимодействуют примерно так же, как и оркестранты. В результате этого взаимодействия оркестр создает музыку, а в нервных клетках за счет синхронизации их действий рождается некое информационное содержание – мысль. Она не хранится в каком-то определенном месте нейронной сети мозга, а закодирована в характере взаимодействия нейронов. Для этого нервные клетки соединяются друг с другом посредством общих мест контакта (синапсов). Через них нейроны узнают, чем занимаются их соседи. В оркестре каждый из музыкантов тоже слышит, что играют другие. Только так можно обеспечить их взаимодействие. Нервные клетки мозга соединены с тысячами себе подобных, поэтому могут создавать куда более сложные связи, чем музыканты в оркестре. Именно в этих состояниях активности и кроется информационное содержание. В оркестре в этой роли выступает музыка, а в мозге – мысль.

Такой способ обработки информации дает нам кардинальное преимущество: один и тот же оркестр может играть разные произведения за счет того, что музыканты по-новому синхронизируют свои действия. Аналогичным образом одна и та же нейронная сеть может производить совершенно разные мысли в зависимости от способа активации. Кроме того, информация (будь то оркестровая мелодия или мысленный образ) может скрываться не только в конкретном состоянии активности, но и в изменении этого состояния. Например, на наше настроение при слушании музыки может влиять изменение ее громкости. Точно так же содержание информации может зависеть не только от того, в каком состоянии находятся нейроны, но и от того, как это состояние меняется.

Из одного только этого можно понять, что число возможных вариантов состояний активности невообразимо велико. Поэтому вопрос о том, какое количество мыслей мы способны обдумать, имеет столько же смысла, сколько и вопрос о количестве мелодий, которое может сыграть оркестр.

Очевидным становится и другое: в компьютере информация хранится в каком-то определенном месте. Когда он выключен, информация в нем все равно присутствует (в форме электрических зарядов), и когда я вновь включу компьютер, ее можно будет извлечь. Но если «выключить» мозг, то игре наступает конец. Ведь информация в нем хранится не в какой-то физической форме, а лишь в виде постоянно меняющихся состояний нейронов. Пока мозг жив, он беспрерывно порождает мысли, выводя новую информацию из уже имеющейся. Любое текущее состояние мозга является как бы стартовым сигналом для очередной мысли. Мысль не может возникнуть из ничего.

Обучение происходит в местах контактов нейронов

Каким бы удачным ни было сравнение мозга с оркестром, я не могу не упомянуть об одном колоссальном отличии: в мозге нет дирижера. Никто не стоит перед нейронами и не объясняет им, каким образом надо активировать своих соседей. И все же они справляются с этой задачей и очень точно подстраиваются друг под друга, создавая новые варианты соединений.

Отсюда вытекает очень важное следствие для процесса обучения. Если в оркестре дирижер задает такт и настраивает музыкантов на общий ритм, то нервным клеткам приходится искать другие способы. Ведь воспроизведение информации, как и оркестровой мелодии, зависит от способности нейронов действовать совместно.

Когда оркестр разучивает новую мелодию, музыканты должны сделать две вещи: во-первых, освоить некие новые навыки (комбинации пальцев и их последовательности); во-вторых, что более важно, точно запомнить, когда, что и как надо играть. Но это они могут понять, только следя за дирижером и слушая своих коллег. Когда оркестр репетирует новое произведение, музыканты, по сути, заново учатся взаимодействовать и запоминают, как это правильно делать, чтобы в нужный момент вызвать из памяти данные знания. Информация в мозге также кодируется в форме взаимодействия нервных клеток. «Репетируя» новые знания, нейроны налаживают взаимодействие таким образом, чтобы впоследствии было легче извлекать закодированную информацию. Чтобы чему-то научиться, им надо менять характер и структуру своих контактов.

Поскольку в мозге нет дирижера, нервным клеткам приходится полагаться исключительно на соседей. Происходящие при этом биологические процессы на клеточном уровне очень хорошо известны. В упрощенном виде все изменения в местах контактов нервных клеток при обучении происходят по одному основному принципу: часто используемые контакты укрепляются, а редко используемые – затухают. Таким образом, когда в мозге появляется важная информация (то есть создается некое характерное взаимодействие нервных клеток), ее надо каким-то образом запомнить. Для этого нейроны так видоизменяют свои контакты, чтобы в следующий раз данную информацию было проще извлечь. Если синапсы задействуются особенно активно, то имеют место определенные изменения и в самой нервной клетке, чтобы в следующий раз эта активация происходила еще сильнее. И наоборот, неиспользуемые синапсы не получают структурной поддержки и со временем ликвидируются. Это экономит энергию, что позволяет мозгу обходиться всего 20 ваттами мощности. Для сравнения: электрической духовке требуется в сто раз больше энергии, чтобы испечь всего пару булочек. Похоже, духовки не обладают высоким интеллектом.

Вот так и происходит обучение системы. Она изменяет свою структуру, чтобы легче было переходить в активное состояние. Таким образом, можно сказать, что информация откладывается в нейронной сети «между» нервными клетками, в местах их связи друг с другом. Это, конечно, нельзя назвать постоянным местом прописки, так как для извлечения информации из памяти каждый раз приходится заново активировать нервные клетки. Правда, чем лучше контакты между ними, тем легче осуществляется данный процесс, но из одних только контактов информацию не получишь. Если вскрыть мозг, то можно увидеть только соединения между нейронами, но определить, как они взаимодействуют между собой, невозможно. Вы не сможете понять, какая информация «записана» в мозге и с помощью какой динамической активации ее можно извлечь.

В условиях стресса мы учимся лучше всего – и хуже всего

Нейронная система обработки информации чрезвычайно эффективна, потому что по своей гибкости намного превосходит статичные компьютерные системы, не нуждается во внешнем контроле (дирижере) и может приспосабливаться к любым условиям окружающей среды. Но такая форма обучения имеет и свои недостатки. Поскольку процессы перестройки нервных клеток испытывают на себе влияние обычных биологических колебаний, мы не всегда учимся с одинаковым успехом. Например, при стрессе мы нередко впадаем в ступор. Каждый, кому приходилось готовиться к экзаменам в условиях дефицита времени, знает, как тяжело справляться с подобным стрессом. Важная информация не хочет оседать в голове. А если все-таки оказывается там, то в самый ответственный момент (на экзамене) ее невозможно извлечь. Почему же стресс так негативно сказывается на обучении?

Прежде всего необходимо отметить, что стресс в принципе не блокирует нашу способность к обучению. Наоборот, он может ускорить процесс усвоения знаний. В условиях острого стресса (например, когда мы сильно испуганы или, напротив, чем-то приятно удивлены) поступающий в мозг гормон норадреналин способствует активации как раз тех его областей, которые усиливают внимание. Примерно через двадцать минут на помощь этому процессу приходит гормон кортизол, подавляющий сопротивляемость нервных клеток. В результате мы еще сильнее сосредоточиваемся. Вывод: острый стресс усиливает способность к обучению. Например, если однажды мы, переходя дорогу, по рассеянности едва не попадаем под машину, то в следующий раз будем намного внимательнее. То же самое касается и положительного стресса: мы никогда не забудем свой первый поцелуй, хотя речь идет об одноразовом событии.

Благодаря стрессу нейронная сеть оживляется и улучшает способность быстро усваивать новую информацию. Но, если содержание информации никак не связано со стрессом, этого не происходит. Ведь задача мозга в этих условиях заключается именно в том, чтобы сконцентрироваться на важной информации, имеющей отношение к стрессу. Все остальное несущественно. Вот почему стресс при обучении – это палка о двух концах. Если вызвать у участников эксперимента стресс, например заставить окунуть руку в ледяную воду и одновременно заучивать перечень каких-то слов, то на следующий день они лучше всего будут помнить те слова, которые были как-то связаны с холодной водой («вода», «холод»), а не какие-то другие («квадрат», «вечеринка»).

Если меня чуть не переехала машина, то я сразу усваиваю взаимосвязь между вероятностью смерти и необходимостью посмотреть сначала налево, а затем направо, прежде чем переходить дорогу. Этого я никогда не забуду. Если же я учу латынь, то мне придется сильно напрячь голову, чтобы обнаружить связь между alea iacta est (жребий брошен) и последствиями плохой оценки на экзамене.

Подведем пока краткие промежуточные итоги: мозг довольно хорошо обучается в условиях стресса, если речь идет об усвоении информации, связанной с этим стрессом. Мы с первого же раза усваиваем, что хвататься за раскаленную плиту – это не самая лучшая идея. Динамика нервных клеток активно регулируется гормонами стресса, чтобы в памяти лучше всего откладывались эмоциональные аспекты (боль от ожога важнее, чем данные о производителе плиты). Только эмоции, никаких фактов. Потому что это же так скучно: факты, факты, факты. И тут мы подходим еще к одному слабому месту мозга в процессе обучения.

Трудности заучивания наизусть

Вы еще помните список слов, приведенный в начале главы? Ну хотя бы половину? Если да, то я вас поздравляю. И как же это у вас получилось? Если вы строили смысловые ассоциации, придумывали себе истории или зрительные образы, чтобы как-то увязать слова друг с другом, то тем самым фактически увеличивали объем информации, подлежащей запоминанию. Чтобы запомнить, вам пришлось учить больше, чем задано. Парадокс. Кроме того, можно задать вполне оправданный вопрос: а для чего все это? Ведь все слова в этом списке не имеют никакого смысла. Они подобраны случайно и никак не связаны друг с другом. Зачем их запоминать? Просто потому, что так захотелось автору?

В этом-то все и дело. Наш мозг может динамично приспосабливаться ко многим ситуациям и усваивать новые знания, но голый информационный материал типа отдельных терминов, дат и фактов к ним не относится. Если попытаться выяснить, где проходит верхний предел, то мы выходим примерно на двадцать запоминаемых объектов (без использования вспомогательных средств типа сочинения историй). И это в общем-то мало. Список в начале главы занимает на диске компьютера всего 116 байт, а фотография зебры может превосходить этот объем в миллионы раз. И все же мы лучше запоминаем образную историю про то, как мечтательная зебра, сосущая леденец, брела по лабиринту, чем четыре отдельных слова! Почему мозг плохо справляется с запоминанием таких простых вещей, как всего несколько слов?

Причина опять-таки заключается в особенностях его функционирования. Он не заучивает информацию наизусть, а организует новые знания. В этом его отличие от компьютера. Простой пример: я мог бы в правильном порядке назвать вам авторов всех голов немецкой сборной в ворота Бразилии в том памятном матче чемпионата мира, закончившемся со счетом 7:1. 11-я минута – 1:0 Мюллер, 23-я минута – 2:0 Кроос, 24-я минута – 3:0 Кроос… Из жалости к бразильским болельщикам я не буду приводить этот список до конца и перейду сразу к сути дела: даже помня все эти данные, что вы можете сказать о той игре? Не слишком много, если вы не видели шок и ступор бразильцев и радость Филиппа Лама. Значение игры не определяется комбинацией статистических данных. Но если вы видели тот матч, то понимаете, почему бразильцы все еще не в состоянии забыть его, несмотря на реванш, которого они добились на Олимпийских играх.

Интенсивное обучение

К сожалению, в основе многих учебных планов (и в школе, и в университете, и на курсах повышения квалификации) все еще лежит представление о том, будто заучивание дат и фактов приносит пользу. Это, в свою очередь, приводит к совершенно неправильной методике преподавания, которая именуется «интенсивным обучением». На человека за короткий срок вываливают массу информации в надежде, что он сможет запомнить достаточно многое из нее. Но этого не происходит, поскольку такие обособленные «информационные пакеты» мозгу абсолютно неинтересны.

Ведь оркестр не разучивает новое произведение, беря по отдельности каждую из многих тысяч нот (а именно в этом заключается принцип «интенсивного обучения»). Нет, лучше всего оно будет усваиваться, если оркестранты сразу постараются услышать мелодию, то есть совокупность звуков.

Лишь контекст позволяет сделать обучение эффективным. При этом даже необязательно сознательно концентрировать внимание на учебе. Это было наглядно продемонстрировано, когда группа моей коллеги Мелиссы Во взялась за изучение памяти взрослых людей. Участникам эксперимента предлагали найти на изображениях интерьера квартиры определенные предметы (например, мыло в ванной комнате). И хотя никто не просил испытуемых запоминать эти предметы, впоследствии они все равно помнили их значительно лучше, чем если бы просто заучили список наизусть. Если объекты демонстрировались в нейтральной обстановке, то они были менее интересны и не запоминались. Кусок мыла в ванной имеет, очевидно, больше смысла, чем просто на зеленом фоне. Сам по себе он не представляет интереса, а вот в контексте возникает смысловая связь, которая запоминается. Вообще-то это нелогично, потому что нам приходится запоминать больше информации (а именно всякие второстепенные обстоятельства), но нам так почему-то легче.

Принцип лазаньи в обучении

Чтобы понять смысловые связи, контекст и значение, мозг должен учиться не так, как мы привыкли, а с перерывами. Из предыдущей главы вы уже знаете, что порой он сознательно жертвует определенным содержанием, когда не хочет вспоминать какую-то информацию (или даже прилагает активные усилия для забывания). Нечто подобное происходит и при обучении. Чтобы этот процесс был успешным, в нем необходимо делать паузы. Его так и называют: «интервальное обучение». Это вроде бы противоречит здравому смыслу, поскольку мы, как правило, считаем, что взаимосвязи и концепции можно сформировать лишь тогда, когда сразу обрабатывается максимум информации. Ведь, устраивая перерывы в процессе обучения, можно забыть какие-то важные вещи. Однако нашему мозгу интересен не объем информации сам по себе, а то, как ее отдельные фрагменты связываются между собой.

Данное утверждение проверялось в ходе эксперимента, где участникам предлагалось распознать различные стили живописи. В одном случае им демонстрировали шесть картин одного художника подряд, потом столько же картин второго и затем еще несколько серий картин четырех других художников. В другом случае картины различных стилей и направлений демонстрировались вперемежку. Результат был однозначным: когда различные стили живописи чередовались, участники быстрее классифицировали их и приписывали определенному художнику. Те же, кому картины демонстрировались сериями, распознавали стили хуже. Но при этом большинство участников заявляли, что им больше нравится, когда картины заранее распределены по стилям, потому что это якобы более наглядно.

Тем не менее результаты исследований раз за разом говорят о том, что перерывы благотворно сказываются на обучении. И это касается не только направлений живописи, но и заучивания новых слов, последовательности движений, естественнонаучных взаимосвязей, запоминания каких-либо перечней. Причина кроется в способах взаимодействия нейронов. Первый информационный импульс побуждает нервные клетки к изменению структуры. Данное изменение надо для начала «переварить». Лишь после этого клетки будут готовы к следующему возбуждению. Если очередной импульс поступает слишком рано, он не оказывает должного воздействия. Только когда различные фрагменты информации сменяют друг друга, мозг получает возможность объединить их в некое знание. Это похоже на приготовление лазаньи. Разумеется, можно сначала залить в форму соус, потом свалить в кучу пласты теста и сверху засыпать сыром. Но это будет не лазанья. Вкусное блюдо (как и осознанная мыслительная концепция) получается лишь в результате определенной очередности операций. Такое концептуальное мышление позволяет нам уйти от простого заучивания. Только так можно классифицировать все предметы и явления окружающего мира по категориям и смысловым взаимосвязям и, как следствие, понять его.

Не заучивать, а понимать!

То, что можно выучить, впоследствии можно и забыть. Но если вы что-то поняли, то уже не сможете вернуться к состоянию непонимания. В обучении как таковом нет ничего особенного. Обучаться могут многие животные и даже компьютеры. Но на то, чтобы понимать окружающие явления, способен только наш мозг, и этим искусством он владеет благодаря тому, что не ограничивается накоплением данных, а пытается обнаружить корреляции между ними. Только таким путем из данных рождается знание. Их нельзя путать. Правда, в современном оцифрованном мире между ними зачастую ставится знак равенства. Однако, хотя символы:-) и:-(равны в количественном выражении, они несут в себе совершенно разную информацию. Я уже не говорю про эмоциональную подоплеку (улыбающееся лицо вызывает радостные чувства). Для компьютера разница между:-) и:-(составляет 33 процента, но для нас – все сто.

Как мы усваиваем эти знания и концепции? Как мы понимаем мир? Давайте сначала познакомимся с образцами непонимания на примере компьютерных алгоритмов, причем самых современных из тех, которые имеются на сегодняшний день, – так называемых глубоких нейронных сетей. Речь идет о компьютерных системах, в основе программирования которых лежит неклассическая логика (из А вытекает Б). Они построены по примеру мозга (по крайней мере, так утверждают) и копируют его нейронную структуру. В ходе работы цифровые «нейроны» приспосабливаются друг к другу, взаимодействуя в местах контакта, в зависимости от того, какие данные обрабатываются. Поскольку нейроны самостоятельно анализируют характер своих контактов, со временем система может самообучаться. К примеру, если мы хотим, чтобы программа распознавала пингвинов, ей демонстрируются сотни тысяч разных фотографий, среди которых попадаются сотни изображений пингвинов. В результате программа сама определяет отличительные особенности пингвинов и начинает понимать, кто это такой.

Прогресс этих искусственных нейронных сетей поражает. Только за счет демонстрации изображений такие системы самостоятельно находят животных, предметы и людей на любых фотографиях. Их способность распознавать лица уже превосходит человеческую (приложение Google может распознавать в толпе не только человеческие лица, но и коровьи морды). Но давайте скажем прямо: подобные компьютерные системы имеют такое же отношение к мозгу, как футболист-любитель, играющий в районном первенстве, к олимпийскому чемпиону по десятиборью. Они даже выступают в разных видах спорта, так как компьютер делает отнюдь не то же самое, что нервные клетки, что бы ни заявляли концерны, работающие в сфере информационных технологий и якобы создающие искусственные нейронные сети. Компьютер не обладает настоящей нейронной сетью и строится не по образцу мозга. Это всего лишь маркетинговый трюк производителей. Ведь для того, чтобы научиться выделять на картинке пингвина, компьютер должен предварительно просмотреть тысячи изображений. Мозгу же это не требуется.

Глубокое понимание

Недавно соседский парнишка двух с половиной лет от роду зашел ко мне в прихожую. Указав пальцем на пожарный извещатель на потолке, он сразу сказал: «Это для пожара». Я был поражен. Неужели родители целыми неделями показывали ему изображения пожарных извещателей, чтобы он в конце концов выделил их общие черты и особенности и смог распознавать среди других предметов? Должен признать, что его отец действительно работает в пожарной охране, так что выбор темы не случаен. Но ведь малышу, в отличие от «глубоких нейронных сетей», не демонстрировали тысячи фотографий устройств для сигнализации, огнетушителей и другого пожарного инвентаря, чтобы он в случае чего смог узнать их среди всего прочего. От него не требовали сдавать экзамены по этому предмету! Каким же образом ребенок, видевший пожарный извещатель всего два-три раза, смог распознать его в совершенно незнакомой обстановке?

Он не изучал пожарные извещатели, как это делал бы компьютер. Мальчик просто понял, что это такое. Это как раз то, в чем люди сильны и что в психологии называется быстрой классификацией. Если, к примеру, дать трехлетнему ребенку какие-нибудь предметы, которых он раньше никогда не видел, и объяснить, что предмет, явно отличающийся от всех остальных, называется «коба» или привезен из страны

Коба, он запомнит это слово и сможет вспомнить о нем даже через месяц. Заметьте, с первого раза! Еще лучше обстоят дела, когда наряду со словами запоминаются действия. Даже детям в два с половиной года достаточно всего пятнадцать минут поиграть с каким-нибудь предметом, чтобы впоследствии перенести его свойства на другие схожие объекты. Если ребенок увидел, что с яркой пластмассовой деталью с выдуманным названием «коба» можно совершать какие-то манипуляции, то на будущее усвоит для себя, что схожие, хотя и несколько отличающиеся по форме, предметы тоже должны называться «коба», и будет пытаться совершать с ними те же манипуляции. Всего несколько минут – и ему уже все ясно. А разве смогли бы двухлетние дети осваивать в среднем по десять новых слов в день, если бы для этого им приходилось все повторять по сто раз? Ни у одного мозга на это просто не хватило бы времени.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации