Текст книги "Биологическая систематика: Эволюция идей"
Автор книги: Игорь Павлинов
Жанр: Биология, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 19 (всего у книги 78 страниц) [доступный отрывок для чтения: 25 страниц]
Несмотря на явный рост интереса к биологической систематике и её теоретическим основаниям, она ныне, в начале XXI столетия, обретается в несколько неопределённом положении. С одной стороны, проблематика биологического разнообразия как будто обеспечивает ей очевидное внимание и понимание значимости со стороны научного сообщества, о чём свидетельствует международная программа «Глобальная таксономическая инициатива» (Faith, 2003; Samper, 2004; Sarkar, 2005). Этому способствует и возрождение натурфилософской идеи построения всеобщего «дерева жизни» – правда, в настоящее время преимущественно на молекулярной основе (Cracraft, Donoghue, 2004). При этом если в первом случае основное внимание уделяется видовой систематике, то во втором – надвидовым таксонам вплоть до самого высокого ранга (Кусакин, Дроздов, 1994; Шаталкин, 19966, 2004а-в, 2006а, б). Принципы «линнеевской парадигмы» эффективно осваиваются в таксономических исследованиях не только эу– и прокариот, но и вирусов – организмов, ранее биологической систематикой почти не рассматривавшихся (Мауо, 1996; Regenmortel et al., 2000; Bfichen-Osmond, 2003).
С другой стороны, формирование современной кл ад истине ской версии филогенетической систематики и усилившееся благодаря ей отождествление генеалогических и классификационных схем (Hennig, 1950, 1966; Wiley, 1981) привело к тому, что интерес от собственно таксономических исследований сместился к филогенетическим реконструкциям (O’Hara, 1994; см. 5.7.1.1). В последние годы эта тенденция усилилась в результате сильнейшего пресса, который систематика испытывает со стороны молекулярно-филогенетических исследований, в каких-то отношениях подменяющих таксономические (Felsenstein, 2004; см. 5.1.1). Это вызывает понятное беспокойство систематиков более традиционного толка, даёт им повод говорить о том, что таксономическая наука входит в XXI век в состоянии, близком к кризисному (Wheeler, 2004, 2008b; Mooi, Gill, 2010). Отчасти сложившаяся ситуация повторяет присущую первой половине XX столетия, когда систематика утратила свой престиж вследствие роста экспериментальных дисциплин и экологии (см. выше). Поэтому в настоящее время при обсуждении проблем систематики не в последнюю очередь затрагиваются вопросы привлечения внимания научной общественности к поддержке и развитию таксономических исследований в более традиционном ключе (Vernon, 1993; Hine, 2008; Wheeler, 2008b; Mooi, Gill, 2010).
5.1. Традиции и новации
Систематика упорядочивает наши знания, которые никогда не были нулевыми… и никогда не будут окончательными…
С. В. Мейен
В результате всех эволюций в теории биологической систематики на протяжении XX столетия заметно увеличилось разнообразие таксономических концепций. Часть этого разнообразия, как отмечено выше, приходится на прямое продолжение прежних подходов: здесь следует упомянуть традиционный эмпиризм, далеко не совпадающий с идеями фенетизма (Blackwelder, 1964, 1967; Darlington, 1971); классическую филогенетику, протестующую против предложений кладистики (Remane, 1956; Татаринов, 1976); кое-где можно увидеть следы кювьеровой типологии (Старобогатов, 1989; Иванов, 1996) и даже платонизма (Любищев, 1982; Васильева, 1992; 2003–2004). К 60-70-м годам XX столетия выделилось несколько таксономических доктрин с достаточно развитой теорией, не только продолжающих, но и активно развивающих (вплоть до частичного отрицания) идеи своих исторических предшественников. Из них чаще всего упоминают три – фенетическую (включая численную), эволюционно-таксономическую и кладистическую (Hull, 1970, 1988; Майр, 1971; Песенко, 1989; Sneath, 1995). Во многих руководствах по систематике можно найти краткий анализ этих школ, их сравнение по неким базовым параметрам; Ю. Песенко (1989) для их различения и сравнения вводит следующие «постулаты» (с. 39): «1) тип отношений между таксонами, включение/невключение эволюционных представлений; 2) принципы и методы фиксации видов; 3) концептуально-графическая основа классификации, процедура её построения; 4) теоретические и операциональные определения понятий, основной научный метод; 5) соотношение концептуально-графической основы и классификации; 6) определение „естественности“ таксонов; 7) взвешивание признаков; 8) критерии и факторы, учитываемые в классификационной процедуре». Фенетическая школа в настоящее время утратила свою актуальность и «фоновое» разнообразие основных классификационных подходов на рубеже XX–XXI столетий иногда сводится к двум доминирующим доктринам – эволюционной таксономии и кладистике (Ereshefsky, 2008). Однако в широком историческом контексте, если рассматривать новейшее развитие систематики как продолжение традиций, в основном заложенных в конце XVIII и на протяжении XIX столетий, школ теоретической систематики, разумеется, много больше.
Развитие эмпирической традиции в какой-то мере можно считать наиболее «классическим» разделом современной систематики: исследования систематиков-практиков продолжают чуть ли не базовую идею народной систематики – соединять сходное и разделять различное, её развёрнутое обоснование и обобщение можно найти в фундаментальной сводке Р. Блэкуелдера (Blackwelder, 1967). Что касается эмпирики в её более философском понимании, то в XX веке она развивалась в двух основных направлениях, по-разному реализующих требования позитивистской эпистемологии. Они различаются содержанием решаемых таксономических задач: в одном из них названная эпистемология реализована в полной мере (фенетика, численная систематика), в другом существенное значение имеет эволюционная интерпретация данных (популяционная и био систематика).
Элементы позитивизма именно как философии, а не просто методологии, были явным образом введены в теоретические основания биологической систематики в конце 30-х годов, причём в его крайнем проявлении – в форме логического позитивизма (Gilmour, 1937, 1940). В этой позитивной систематике со ссылкой на философа Милля естественную систему было предложено определять как максимально прогностическую. Несколько позже её воплощением стала фенетическая идея как основа одноимённой школы систематики, в ней ключевой стала концепция всеобщего сходства (Cain, Harrison, 1958; Sneath, 1958, 1961; Sokal, Camin, 1965), а естественная система стала пониматься как максимально информативная (Sokal, Sneath, 1963; см.
5.1.2); другими названиями такой системы стали всеохватная, всеобъемлющая, интегративная (Blackwelder, 1964; Dayrat, 2005; Stuessy, 2008; 5.2.2). Особый упор в фенетической систематике делается на невозможности предшествования любого теоретического знания эмпирическим классификациям: теории могут меняться, а эмпирические классификации должны быть устойчивыми (Russell, 1961; Colless, 1967а).
В пору своего активного формирования классификационная фенетика громогласно претендовала на статус единственной истинно научной таксономической доктрины, которой принадлежит будущее (Sneath, 1958, 1964; Ehrlich, 1961а; Sokal, Sneath, 1963; Sokal, 1966; Сокэл, 1967; Colless, 1967a). Однако эта претензия оказалась едва ли более чем «благим пожеланием»: в настоящее время фенетическая идея, воплощающая в систематике позитивистскую концепцию науки, во многом исчерпала свои познавательные возможности вместе со всей названной концепцией (Ereshefsky, 2008). Это произошло благодаря внимательному анализу её оснований с тех общих научных позиций, которые стали преобладать во второй половине XX столетия: в частности, выяснилось, что отрицание теоретического пред посыл очного знания в некоторых отношениях лишает сходственную систематику биологической содержательности (Sober, 1984; Павлинов, 2005b, 2007а). В новейшее время элементы фенетической идеи активно используются численной филетикой в форме принципа всеобщего свидетельства, обязывающего включать в анализ как можно больше признаков (Eemisse, Kluge, 1993; Kluge, 1998; Rieppel, 2004, 2005a, 2009a; ст. 6.6).
Одно из основных положений позитивизма (точнее, физикализма) – примат количественных методов перед любыми другими, также принятое позитивной систематикой за основу, создало общие предпосылки для превращения значительной её части в численную систематику, или таксометрию (см. 5.3.1). «Нумеристы» сочли, что последняя стала важнейшей после Дарвина или даже Линнея революцией в систематике (Sneath, 1995) и объявили её истинной «новой систематикой», вершиной таксономической науки XX столетия (Смирнов, 1923, 1938; Sneath, 1958; Cain, 1959а; Ehrlich, 1961а; Rogers, 1963; Sokal, Sneath, 1963). Она казалась её апологетам настолько революционной, что, например, Эрлих в своём небольшом профетическом опусе утверждал, что «между систематикой 1958 г. и 1970 г. будет больше различий, чем между систематикой 1758 г. и 1958 г.» (Ehrlich, 1961а, р. 157).
Численная систематика развивалась в двух направлениях – фенетическом и филогенетическом, соответственно сформировав численную фенетику (см. 5.3.2) и численную филетику (см. 5.3.3). Первая подверглась весьма углублённой проработке в 60-70-е годы XX столетия, на которые пришёлся её подлинный расцвет (Sokal, Sneath, 1963; Williams, Dale, 1965; Sneath, Sokal, 1973). Вторая зародилась приблизительно в эти же годы (Cavalli-Sforza, Edwards, 1964, 1967; Camin, Sokal, 1965; Fitch, Margoliash, 1967; Farris et al., 1970; Estabrook, 1972) и начиная с 80-х годов стала доминировать. Этому во многом способствовало активное освоение систематикой и филогенетикой молекулярно-генетической фактологии, оперирование которой немыслимо без количественных методов (Felsenstein, 1988, 2004; Swofford et al., 1996; Nei, Kumar, 2000; Semple, Steel, 2003).
Своего рода данью физикализму стали попытки построения таксономической теории как аксиоматической системы, составившие основу эпистемологически рациональной систематики (см. 5.5.2). Образцом для этого послужили успешные опыты конца XIX – начала XX столетий по аксиоматической разработке оснований теории множеств и некоторых разделов математики и логики, частично также теоретической физики (Френкель, Бар-Хиллел, 1966; Рыбников, 1994; Перминов, 2001; Бунге, 2003). В биологической систематике первыми выполненными в таком ключе стали работы Вуджера (Woodger, 1937, 1952), за ними последовала другие (Gregg, 1954; Beckner, 1959; Loevtrup, 1975; Maimer, Bunge, 1997). Они, с одной стороны, вскрыли некоторые важные вопросы разработки понятийного аппарата биологической систематики (например, необходимость различения таксонов и таксономических категорий), с другой – показали принципиальную недостаточность теоретико-множественных интерпретаций таксономической системы (Woodger, 1952; Griffiths, 1976; Шаталкин, 1988, 1995).
Мощным стимулом к развитию систематики в эмпирическом ключе, имеющем несомненную биологическую подоплёку, стал произошедший в первой половине XX столетия существенный прорыв в области познания организма на субклеточном уровне, который значительно расширил фактологическую базу систематики. Крупный английский ботаник Уильям Тёррил (William Bertram Turrill; 1890–1961) назвал это «экспансией систематики», подчёркивая, что систематика нуждается в «постоянном экспериментировании для выяснения того, каким образом новые данные могут быть вовлечены в систематику. Такая свободная „экспериментирующая системати-ка“ не должна быть ограничена традициями альфа-систематики» (Turrill, 1938, р. 370). Подчёркивание новизны эмпирической базы в то время породило целую серию «фактологических» систематик (таксономий), эпитеты которых указывают на характеристики и признаки, используемые при разработке классификаций. Их достаточно полный обзор представлен в фундаментальной сводке «Принципы и методы современной таксономии» (Quicke, 1993). Так, имму но систематика означает использование в таксономических исследованиях данных по иммунной реакции организма на внедрение чужеродных факторов. Цитосистематика (она же цитотаксономия, кариоси-стематика) соответствует использованию для целей систематики цитогенетических (кариологических) данных. Хемосистематика (хемотаксономия, биохимическая систематика), соответственно опирается на биохимические данные. Первоначально это были сведения по биохимическому составу некоторых тканей, т. е., строго говоря, физиолого-биохимические данные (Розанова, 1946; Alston, Turner, 1963; Reynolds, 2007). Позже к ним добавились данные по строению некоторых белков и информационных макромолекул, составившие фактологическую основу молекулярной систематики.
Строго говоря, фактология перечисленных разделов систематики сложилась не совсем de novo: она была в той или мной мере унаследована от работ XIX столетия. Так, некоторые биохимические и физиологические характеристики использовались начиная с его 60-х годов, в 70-е годы систематики обратились к кариологическим данным, тогда же были предприняты первые попытки экспериментального исследования низших таксономических единиц (Turrill, 1938, 1940; Розанова, 1946; Quicke, 1993). Понятно, что в начале XX века эта база стала существенно богаче, глубже проработанной технически. Важно другое – то, что в указанное время она стала развиваться в существенно иной познавательной ситуации – позитивистской, что и сделало эту фактологию приоритетной. С точки зрения названных подходов классическая, или «ортодоксальная» (музейная) систематика оказалась «морально устаревшей» (Turrill, 1940; Gilmour, Turrill, 1941; Heslop-Harrison, 1956).
Эта «неортодоксальная» фактология составила эмпирическую основу общего подхода, представляющего собой не только «позитивный» ответ на вызовы физикализма, на этот раз весьма биологичный, но и противостоящего классической – в основном «музейной» и потому «формальной» систематике: этот подход получил название биосистематики (Camp, Gilly, 1943; Camp, 1951; Тахтаджян, 1970; Lines, Mertens, 1970; Stace, 1989; Feliner, Fernandez, 2000). Последняя представляет собой совокупность нескольких классификационных концепций, так или иначе воплощающих приверженность эмпирической и эволюционной идеям (см. 5.7.2). Это проявляется в понимании того, что близость организмов, позволяющая упорядочивать их в классификации, является эволюционной, она устанавливается на основе экспериментов или по максимально большому числу признаков (Hall, Clements, 1923; Ferris, 1928; Зенкевич, 1929). Важной частью этой общей таксономической доктрины стала экспериментальная систематика, которая сформировалась в первые десятилетия XX века: её методологическую основу, как видно из названия, составил экспериментальный подход – прямые опыты с живыми организмами (Clements, Hall, 1919; Turreson, 1922; Розанова, 1946; Myers, 1952; Ehrlich, 1961a).
Название этого подхода как биосистематики подчёркивает сугубо биологический характер её фактологии и методологии. Акцентирование внимания на эмпирической составляющей подчёркивается утверждением, что идеалом систематики является некая «всеохватная» или «всеобъемлющая» классификация, обобщающая все категории биологических данных (Turrill, 1938, 1940; Blackwelder, Boy den, 1952; Blackwelder, 1964; Stuessy, 2008): здесь названный подход смыкается с фенетическим. Акцентирование внимания на эволюционной составляющей подчёркнуто обозначением этой таксономической доктрины как эволюционной систематики (Hall, Clements, 1923). В своей крайней форме эта последняя выражена утверждением, что главной задачей систематики является изучение и отражение эволюции доступными ей средствами (Bessey, 1909; Huxley, 1940а) и что поэтому систематика есть раздел эволюционной биологии (Ferris, 1928).
Для данного раздела современной систематики одной из руководящих является набирающая в начале XX века силу дарвиновская микроэволюционная концепция (Bessey, 1909; Bather, 1927; Ferris, 1928; Вермель, 1931; Зенкевич, 1939). Она вполне отвечает позитивистскому условию редукционизма и обязывает исследовать разнообразие организмов главным образом на популяционном уровне. Поэтому ещё одно название этого направления, которым оно обозначено в данной книге, – популяционная систематика. Согласно этому основное внимание уделяется внутривидовым таксономическим категориям (Семенов-Тян-Шанский, 1910; Бианки, 1916; Turreson, 1922; DuRietz, 1930; Майр, 1947, 1971).
Новая фактология и экспериментальная методология вкупе с новыми целями (изучать эволюцию как процесс) дали повод обозначить этот позитивный ответ на «физикалистский вызов» как «новую систематику» (Hubbs, 1934; Turrill, 1938, 1940; Huxley, 1940a,b; Майр, 1947). Впрочем, таксономисты, более тяготеющие к классической эмпирической традиции Жюсьё, Кандоля и др. (см. 4.1.2), протестуют против такого самоназвания: по их мнению, систематика всегда открыта для любых фактических данных, которые оказываются доступными в тот или иной момент (Ramsbottom, 1940; Schindewolf, 1962; Blackwelder, 1964, 1967; Коробков, 1971). Прежняя «ортодоксальная» и призванная сменить её «новая» таксономические концепции противопоставляются как альфа- и бета-систематики, соответственно: первая занята предварительной инвентаризацией фаун и флор, вторая – их углублённым изучением (Turrill, 1938). В добавление к этому Э. Майр (1971) выделяет детальное исследование внутривидовой дифференциации в гамма-систематику. Достижение «всеохватной» классификации как сверхцели, равнозначной классическому идеалу Естественной системы, Тёррил обозначил как омега-систематику (Turrill, 1938).
По своей «биологичности» к биосистематике близок подход, направленный на классификацию жизненных форм или биоморф (см. 5.6). Первые опыты такого рода, основанные на общих идеях А. Гумбольдта, отмечены в конце XIX – первой половине XX столетий (Warming, 1884; Gams, 1918; Friederichs, 1930). В настоящее время он оформляется как экоморфологическая систематика (Алеев, 1986; Мирабдуллаев, 1997; Леонтьев, Акулов, 2004): её можно считать разделом систематики в её общем понимании, включив сюда под названием биоморфики (Pavlinov, 2007; Павлинов, 20106).
Весьма традиционным разделом систематики XX столетия, разумеется, является типология. В наиболее ортодоксальной форме типологическую идею выразили, пожалуй, А. Любищев (1982, с. 195), призвавший к «возрождению подлинного платонизма», и Л. Васильева (1990, с. 155), утверждающая, что «классический эссенциализм полностью соответствует современной философии биологии и является истинной философией систематики». В начале указанного периода активнее всего заявила о себе так называемая «идеалистическая» типология (Naef, 1919, 1931; Kalin, 1941; Zangerl 1948): по сути она стала возрождением гётевской организмической концепции (см. 4.2.3), позже её назвали неотипологией, или «новой типологией» (Sokal, 1962; Любарский 1996а; см. 5.4.1). Дальнейшее развитие этой концепции дало трансформационную типологию (Беклемишев, 1994; Захаров Б.П., 2005; см. 5.5.1), существенно отличную от того, чем обычно считают типологию её противники (Simpson, 1961; Hull, 1965; Майр, 1971 и др.). В первой трети XX столетия на пересечении типологии с эмпирикой начала формироваться эмпирическая типология (Smirnov, 1925; Смирнов, 1938), которая ныне существует в нескольких версиях (Sokal, 1962; Мейен, 1978; см. 5.4.2). Попытка соединения типологии и эволюционной идеи дала эволюционную типологию (Васильева, 1989, 1998, 2003; см. 5.4.3). Всё это показывает, что современная типология в своём развитии не остаётся в стороне от других идей общего порядка, имеющих тесное касательство к теории систематики. Так что как бы её противники не протестовали (Simpson, 1961; Sokal, Sneath, 1963; Hull, 1965, 1970, 1988; Майр, 1971; Mayr, 1988a,b), развитие систематики в типологическом ключе вполне закономерно и, надо полагать, отвечает внутренней логике этой биологической дисциплины.
Общую натурфилософскую идею подчинения систематики законам мироздания развивают несколько современных таксономических концепций. В первую очередь здесь следует упомянуть структурную кладистику, которую не без оснований считают современной версией натурфилософской «систематики естественного порядка» (Charig, 1982; Riedley, 1986; Scott-Ram, 1990; см. 5.7.4.6). Историческую преемственность с гётевской типологической концепцией в её общем натурфилософском понимании демонстрирует онтологически рациональная систематика (см. 5.5.1), связывающая построение таксономических систем с поисками общих законов, упорядочивающих разнообразие биологических форм (Driesch, 1908; Любищев, 1923, 1982; Мейен, 1978; Беклемишев, 1994). Она реализует требуемое классической наукой стремление к построению номотетической систематики как такой, которая формулирует законоподобные обобщения в виде классификаций. Новейшие представления (Но, 1990, 1992; Но, Saunders, 1993; Webster, Goodwin, 1996) развивают эту традицию; одной из версий стала таксономическая концепция, связанная с разработкой периодических систем (Павлов, 2000; Попов, 2008). В последнее время развитие систематики в таком ключе косвенно поддерживается новейшим возрождением интереса к эссенциализму в естествознании (Mahner, Bunge, 1997; Okasha, 2002; Walsh, 2006; Love, 2009; Wilson et al., 2009).
Таксономические концепции макроэволюционного толка, явно противопоставившие себя позитивистской эпистемологии, в основном продолжили общую классическую традицию, воплощённую в филогенетических подходах. Собственно систематическая филогенетика в основном развивает геккелеву трактовку (см. 4.3.5), почти не изменив её (Abel, 1909; Bessey, 1909; Козо-Полянский, 1922; Dendy, 1924) или предприняв первые шаги в сторону будущей кладистики (Zimmermann, 1931, 1934; см. 5.7.4). Некоторые авторы склонны дополнять геккелеву филогенетику идеями био систематики (Green, 1909; Spome, 1956; Тахтаджян, 1966). Менее заметны на общем фоне восходящие к Копу (см. 4.3.6) концепции, которые основаны на идее направленной макроэволюции, несводимой к внутрипопуляционным процессам дарвиновского отбора (Osborn, 1902, 1933; Берг, 1922; см. 5.7.1); одна из них названа аристогенетикой (Раутиан, 1988).
Особый рост интереса к макроэволюционным идеям приходится на вторую половину XX столетия. Онтологическое оправдание такая смена акцентов получила благодаря развитию синергетики с её центральной идеей глобального эволюционизма, частью которой является идея биологической макроэволюции (Brooks, Wiley, 1986). Эпистемологической основой такого смещения акцентов стала неклассическая концепция науки, узаконившая включение этой онтологии в качестве предпосылочного знания в таксономическую познавательную ситуацию (Павлинов, 2006, 2007а; см. 6.1.1). Некоторые современные эволюционно интерпретированные таксономические концепции, пожалуй, в наибольшей степени воплощают идеи этой эпистемологии и поэтому с наибольшим правом могут быть отнесены к неклассической систематике. Именно в них началось обсуждение условий применимости гипотетико-дедуктивной схемы аргументации в таксономических исследованиях (Воск, 1977; Wiley, 1981; Neff, 1986; Павлинов, 1990а, 1992а, 1995, 1996; Песенко, 1991; Panchen, 1992; Расницын, 2002), онтологического статуса монофилетических групп как объектов квазииндивид-ной природы (Wiley, 1981; Павлинов, 1996, 2005b, 2006; Kluge, 1997; Rieppel, 2003).
В рамках этого общего макроэволюционного направления обычно выделяют две школы, по-разному развивающие идеи геккелевой филогенетики, – эволюционную таксономию Симпсона (см. 5.7.3) и кладистику Хеннига (см. 5.7.4). Первая характеризуется более содержательной базовой эволюционной моделью и менее формализованными способами разработки классификаций. Кладистика, напротив, редукционна и потому весьма бедна в содержательном отношении, опирается на упрощенное понимание филогенеза и достаточно формализованные алгоритмы разработки филогенетических схем и основанных на них классификаций, в чём можно усмотреть отголоски физикализма, о котором шла речь выше. Названные таксономические концепции представляет собой достаточно сложный конгломерат школ, дивергирующих внутри каждой из них и конвергирующих между ними (см. 5.7.1).
Отдельного упоминания заслуживает одна из наиболее популярных в настоящее время новейших версий хемосистематики, основанная на анализе молекулярных данных. В соответствии с традицией выделения фактологически определяемых таксономических подходов (см. выше) она более известна как уже упоминавшаяся молекулярная систематика. Тот её фрагмент, который связан с исследованием информационных макромолекул ДНК и РНК, иногда называется геносистематикой (Белозерский, Антонов, 1972; Медников, 1980). Основной задачей последней ставится «систематика генотипов» в противовес классической «систематике фенотипов» (Антонов, 2002); впрочем, это противопоставление имеет несколько иной смысл, чем в фенетике (Ehrlich, Holm, 1963), где оно не всегда поддерживается (Sneath, 1995) (см. 5.2.2.1). Данная версия хемосистематики изначально ориентирована главным образом на реконструкцию «молекулярных филогенезов» (Edwards, Cavalli-Sforza, 1964; Felsenstein, 1982, 1988, 2004; Swofford et al., 1996; Soltis et al., 1992, 1998), поэтому её обычно называют молекулярной филогенетикой, а с учётом её преимущественного оперирования молекулами ДНК/РНК – также генофилетикой (Павлинов, 2004а, 2005b) или филогеномикой (Herve et al., 2005). Достоинство этого подхода состоит в том, что он позволяет на единой фактологической основе исследовать в сравнительном аспекте организмы, по «классическим» признакам несопоставимые; особенно велико её значение при изучении прокариот (Огеп, 2004; Gevers et al., 2006). Это позволяет средствами геносистематики разрабатывать глобальную филему мира живых организмов (Кусакин, Дроздов, 1994; Шаталкин 2004а-в, 2005а, б) и на этой новой молекулярной основе вернуться к классической идее построения всеобщего «дерева жизни» (Cracraft, Donoghue, 2004; Lienau, DeSalle, 2009).
To расширение фактологической базы, к которому привела молекулярная генетика в конце XX столетия, по масштабу вполне сопоставимо с освоением систематикой эмбриологических данных в начале XIX столетия. То прежнее событие имело глубокий натурфилософский смысл, существенно обогатив систематику представлениями о путях формирования организмов и став одной из предпосылок для формирования ранних идей трансформизма (см. 4.3.1). Геносистематика же с онто-эпистемологической точки зрения являет собой пример редукционного подхода, весьма обедняющего представления о предпосылках и содержании классификационной деятельности. В ней организмы редуцируются до последовательностей аминокислотных оснований, эволюция редуцируется до изменений этих последовательностей, а филогенетическая близость – до фенетически интерпретируемого сходства по этим же последовательностям. Редукция организмов до фрагментов ДНК особенно проявляется в том разделе гено систематики, который исследует так называемую «средовую ДНК» (environmental DNA), извлекаемую из почвенных проб (Огеп, 2004). Филогенез же сводится к «деревьям генов» – т. е. по сути к отдельным молекулярным семогенезам, которые выдаются за «деревья таксонов» и непосредственно переводятся в классификации без учёта специфики таксономических концепций и процедур, в результате происходит подмена систематики генофилетикой (Wheeler, 2008b).
В геносистематике игнорируется то принципиально важное обстоятельство, что молекулярные структуры – это те же морфоструктуры, как и исследуемые классической морфологией, и что поэтому при анализе молекулярных данных неизбежно возникают те же проблемы, как и в случае макроморфо логических структур, давно разрабатываемые классической морфологией (Воронцов, 2005; Mooi, Gill, 2010). В частности, справедливо указывается (Patterson, 1987; Doyle, 1992, 1997; Maddison, 1997; Doolittle, 1999, 2005), что игнорирование системного отношения «целое-часть», которое принципиально важно при установлении гомологий и выделении признаков, приводит к более чем упрощенной их трактовке на условиях операционализма.
Несмотря на ультраредукционный характер (или, возможно, именно благодаря этому) молекулярно-филогенетические и молекулярно-таксономические разработки в настоящее время наиболее популярны, если судить по числу соответствующих публикаций. На этом основании один из признанных лидеров молекулярной филогенетики Дж. Фельзенштайн в несколько шутливой форме объявил, что «основал четвёртую великую школу систематики – школу „ничего-особенного“ (It-Doesn’t-Matter-Very-Much)» (Felsenstein, 2004, р. 145). Наверное, с точки зрения технических задач молекулярной филогенетики в таксономических проблемах действительно нет «ничего особенного» (см. 5.7.1.4). Правда, в своей претензии на лавры первооснователя этой «великой школы» Фельзенштайн не учёл, что принцип «ничего особенного» с незапамятных времён реализуют многие тысячи систематиков-практиков, для которых классифицирование, как отмечено выше, – просто соединение сходного и разделение различного. Как бы там ни было, в этом – один из парадоксов новейшего этапа развития систематики: в исходно натурфилософскую систематическую филогенетику включаются мало совместимые с ней позитивистски ориентированные редукционные подходы, которые в конечном итоге пытаются брать на себе решение достаточно сложных филогенетических и таксономических задач. Видимо, осознав это, тот же Дж. Фельзенштайн в последнее время призывает к «разводу» систематики и молекулярной филогенетики, чтобы освободить последнюю от несвойственной ей проблематики и сосредоточиться на собственной (Felsenstein, 2001, 2004; Franz, 2005).
Примечательно, что некоторые новейшие подходы систематики фактически возрождают родовые черты схоластического этапа её развития (о нём см. 3.2). Так, в кладистической систематике одна из идей – отказ от фиксированных линнеевских рангов и разработка так называемых безранговых классификаций (Griffiths, 1976; Queiroz, Gauthier, 1992; Ereshefsky, 1997,2001a,b,с; см. 5.7.4.5): это соответствует условию бесконечной дробимости промежуточных родов логической родовидовой схемы. В геносистематике отстаивается другая идея: выделение таксонов и выстраивание классификаций по единому набору генетических маркеров. Она фактически возрождает схоластический принцип единого основания деления, от которого биологическая систематика старательно освобождалась начиная с середины XVIII столетия (см. 4.1). Такой подход положен в основу построения вышеупомянутого молекулярного «дерева жизни» и более частного метода так называемого генетического штрихкодирования (barcoding) (Blaxter, 2004; Hebert, Gregory, 2005; Savolainen et al., 2005; Шнеер, 2009).
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?