Электронная библиотека » Илья Мельников » » онлайн чтение - страница 2


  • Текст добавлен: 14 ноября 2013, 03:16


Автор книги: Илья Мельников


Жанр: Хобби и Ремесла, Дом и Семья


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 6 страниц)

Шрифт:
- 100% +
Механические свойства строительных материалов

Прочность. Прочность – способность материала сопротивляться разрушению под влиянием внутренних напряжений, возникающих в результате действия на материал внешних нагрузок или других факторов. В построенном здании почти все конструкции испытывают нагрузки (вес частей здания, вес оборудования, вес мебели и др.), вследствие чего в материалах конструкций возникают напряжения, противодействующие внешним силам.

Основными показателями, характеризующими прочность материала, являются сопротивление сжатию, растяжению, изгибу. Прочность материала при сжатии и растяжении характеризуется его пределом прочности. Предел прочности, или временное сопротивление, – напряжение в материале образца, соответствующее нагрузке, при которой он разрушается.

Предел прочности различных материалов при сжатии и растяжении меняется в широких пределах – от 0,5 до 1000 МПа и более. Для многих материалов предел прочности при сжатии резко отличается от предела прочности при растяжении. Одинаково хорошо сопротивляются сжатию и растяжению такие материалы, как сталь, древесина. Плохо сопротивляются растяжению каменные материалы: природный камень, кирпич, бетон и т.п.

Примером прочности конструкции при изгибе может служить мост, доска через канаву, а также балка, на которую опираются плиты перекрытия, стропила крыши.

Твердость. Твердость – это способность материалов сопротивляться проникновению в него другого более твердого тела. Твердость не всегда соответствует прочности материала. Существуют несколько способов определения твердости. Например, твердость каменных материалов оценивают шкалой Мооса, состоящей из десяти минералов, расположенных по степени возрастания их твердости. Показатель твердости испытуемого материала находится между показателями твердости двух соседних минералов, из которых один чертит, а другой сам чертится этим материалом.

Шкала твердости Мооса

1 Тальк или мел (легко чертится ногтем).

2 Гипс или каменная соль (чертится ногтем).

3 Кальцит или ангидрит (легко чертится стальным ножом).

4 Плавиковый шпат (чертится стальным ножом под небольшим нажимом).

5 Апатит (сталь) (чертится стальным ножом под большим нажимом).

6 Полевой шпат (слегка царапает стекло, стальным ножом не чертится).

7 Кварц (легко чертит стекло, стальным ножом не чертится).

8 Топаз.

9 Корунд.

10 Алмаз.

Износ. Износ – это разрушение материала при совместном действии истирания и удара. Прочность при износе оценивается потерей в массе, выраженной в процентах. Износу подвергаются материалы дорожных покрытий, полов промышленных предприятий, аэродромов и др.

Сопротивление удару. Сопротивление удару имеет большое значение для материалов, применяемых в дорожных покрытиях и полах. Испытание материалов на удар производят на специальном приборе – копре.

Технологические свойства строительных материалов

Технологические свойства характеризуют способность материала подвергаться тому или иному виду обработки. Так, древесина хорошо обрабатывается инструментами. Технологические свойства некоторых полимерных материалов включают способность сверлиться, обтачиваться, свариваться, склеиваться. Глиняные, бетонные и иные смеси обладают пластичностью, вязкостью, которые обеспечивают заполнение определенного объема.

Вязкость. Вязкость – это сопротивление жидкости передвижению одного ее слоя относительно другого. Когда какой-либо слой жидкости приводится в движение, то соседние слои также вовлекаются в движение и оказывают ему сопротивление, величина которого зависит от температуры и вещественного состава. Вязкостные свойства важны при использовании органических вяжущих веществ, природных и синтетических полимеров, красочных составов, масел, клеев. При нагревании вязкость этих материалов снижается, при охлаждении – повышается.

Упругость. Упругость является свойством материала восстанавливать после снятия нагрузки свою первоначальную форму и размеры. Пределом упругости считается напряжение, при котором остаточные деформации впервые достигают некоторой очень малой величины.

Пластичность – способность материала деформироваться без разрыва сплошности под влиянием внешнего механического воздействия и сохранять полученную форму, когда действие внешней силы закончится. Все материалы делятся на пластичные и хрупкие. К пластичным относят сталь, медь, глиняное тесто, нагретый битум и др.

Акустические свойства строительных материалов

Акустические свойства проявляются при действии звука на материал. Акустические материалы по назначению могут быть звукопоглощающие, звукоизолирующие, вибропоглощающие и виброизолирующие.

Звукопоглощающие материалы. Звукопоглощающие материалы предназначены для поглощения шумового звука. Их акустической характеристикой является величина коэффициента звукопоглощения, равная отношению количества поглощенной материалом звуковой энергии к общему количеству звуковой энергии, падающей на поверхность материала в единицу времени. Как правило, такие материалы имеют большую пористость или шероховатую, рельефную поверхность, поглощающую звук. Строительные материалы, у которых коэффициент звукопоглощения выше 0,2, называют звукопоглощающими.

Звукоизолирующие материалы. Звукоизолирующие материалы применяют для ослабления ударного звука, передающегося через строительные конструкции здания из одного помещения в другое. Звукоизоляционные материалы оценивают по двум показателям: относительной сжимаемости под нагрузкой в процентах и динамическому модулю упругости.

Вибропоглощающие и виброизолирующие материалы предназначены для предотвращения передачи вибрации от машин и механизмов к строительным конструкциям.

Ниже приводятся некоторые свойства строительных материалов.



Химические свойства строительных материалов

Химические свойства характеризуют способность материалов реагировать на внешние воздействия, ведущие к изменению химической структуры, а также воздействовать в этом отношении на другие материалы. Основные химические свойства: растворимость и стойкость к коррозии (кислотостойкость, щелочестойкость, газостойкость).

Растворимость. Растворимость – это способность материала растворяться в жидких растворителях: воде, керосине, бензине, масле и других, образовывая новые растворы. Растворимость зависит от химического состава веществ, давления и температуры. Показателем растворимости является произведение растворимости, представляющее собой предельное содержание растворенного вещества в граммах на 100 мл раствора при нормальном давлении и заданной температуре.

Стойкость к коррозии. Стойкость к коррозии является свойством материала сохранять свои качества в условиях агрессивной среды. Такой средой могут быть вода, газы, растворы солей, щелочей, кислот, органические растворители, а также биологические организмы (бактерии, водоросли и т.п.). Древесина, пластмассы, битумы и некоторые другие органические материалы при обычных температурах относительно стойки к действию кислот и щелочей средней и слабой концентрации.

Адгезия. Адгезия представляет собой соединение, сцепление твердых и жидких материалов по поверхности. Это свойство обусловлено межмолекулярным взаимодействием. Адгезионные силы сцепления очень важны при получении строительных материалов, состоящих из многих компонентов, например железобетон.

Кристаллизация. Кристаллизия представляет собой процесс образования кристаллов из паров, растворов, расплавов при электролизе и химических реакциях, который сопровождается выделением тепла.

Долговечность. Долговечность представляет собой способность материала сопротивляться комплексному действию атмосферных и других факторов в условиях эксплуатации. Старение – это процесс постепенного изменения, ухудшения свойств материалов в условиях эксплуатации.

Знание этих и других свойств позволяет сравнивать материалы между собой и определять область их применения с учетом технико-экономической целесообразности. Так, в условиях эксплуатации гидротехнических сооружений строительные материалы, изделия и конструкции, из которых они построены, подвергаются периодическому или постоянному воздействию воды и агрессивных сред, поэтому к ним предъявляются повышенные требования по водостойкости, морозостойкости, водонепроницаемости, корроизонной стойкости и др.

Многие материалы под влиянием водопоглощения ярко проявляют повышенные пластические свойства. Практика строительства показывает, что выбор технически целесообразного материала обосновывают не только его прочностные характеристики, но стойкость к воздействию внешней среды, в которой работает конструкция. Обычно эта стойкость материала во времени (долговечность) неразрывно связана с его химическими и физико-химическими свойствами. Физико-химические в свою очередь тесно связаны со структурой материала и зависят от ее изменения под влиянием внешних и внутренних факторов.

Вследствие проникновения химических реагентов из внешней среды внутренние химические реакции с образованием новых соединений могут значительным образом отразиться на структуре. Изменение структуры (микроструктуры и макроструктуры) в первый период может привести к псевдоупрочнению, а в дальнейшем – к сокращению долговечности материала. Применяемый в строительстве материал обычно подвергают технологической обработке. Cпособность поддаваться такой обработке является порой решающим показателем при выборе материала. Так, при массовой заготовке щебня для бетонных работ учитывается способность горной породы дробиться без образования плоских щебенок, поэтому при выборе материалов всегда учитывают его способность реагировать на отдельные или взятые в совокупности следующие факторы: физические, механические, внешнюю среду, температуру и ее колебания, химические реагенты, технологические операции и т.д. Эта способность материала реагировать на указанные факторы определяется его свойствами.

Оценить технические свойства и сравнить материалы между собой возможно по показателям, которые получают при испытании материалов в полевых, производственных или лабораторных условиях. Полученные знания основных технических свойств строительных материалов и изделий дают возможность рационально их использовать в строительстве. Например, по известным значениям истинной и средней плотности строительных материалов можно рассчитать, какой плотностью (или пористостью) обладают эти материалы, и составить достаточно полное представление о прочности, теплопроводности, водопоглощении и других важных характеристиках строительных материалов, чтобы в дальнейшем на этом основании решать вопрос об их применении в тех или иных сооружениях и конструкциях.

Для расчета нагрузок при определении массы сооружений для транспортных расчетов и выбора емкости складских помещений необходимо знать величину средней плотности строительных материалов. Без данных о прочности применяемых материалов невозможны расчеты прочности и устойчивости сооружений и конструкций. Прогноз их долговечности невозможен без знания таких свойств материала, как отношение к влаге, воздействию окружающей среды, смене температур и др.

Свойства материалов не остаются постоянными, а изменяются во времени в результате механических, физико-химических и биохимических воздействий среды, в которой эксплуатируется строительная конструкция или изделие. Эти изменения могут протекать и медленно (разрушение горных пород), и быстро (вымывание из бетона растворимых веществ). Следовательно, каждый материал должен обладать не только свойствами, позволяющими применять его по назначению, но и определенной стойкостью, обеспечивающей долговечную эксплуатацию изделия или конструкции.

Знание основных свойств строительных материалов необходимо также для выполнения расчетов, позволяющих оценить их качество, соответствие техническим требованиям, возможность применения в конкретных условиях эксплуатации.

Употребляемые в строительстве материалы должны удовлетворять определенным требованиям, которые устанавливаются государственными стандартами (ГОСТами). В строительстве соответствие поступающих материалов требованиям ГОСТа проверяют специальные лаборатории.

Любой вид продукции обладает определенными свойствами, представляющими интерес для потребителей. Для строительных материалов важны такие качества, как прочность, плотность, теплопроводность, морозостойкость, стойкость по отношению к действию воды, агрессивных сред и др. Качеством называется сумма свойств, определяющих пригодность материала и изделия для использования по назначению. Так, для кровельных материалов оценка их качества производится по сумме таких свойств, как водостойкость, водонепроницаемость, термостойкость, прочность на изгиб, атмосферостойкость и др.

Контроль качества строительных материалов и изделий проводят по разработанным нормам, требованиям и правилам. В зависимости от контролируемого производственного этапа различают контроль входной, технологический и приемочный.

Входной контроль включает проверку соответствия поступающих материалов и изделий установленным требованиям. Например, на предприятиях сборного железобетона проверяют качество поступающих исходных материалов: заполнителей и цемента для бетона, арматурной стали, закладных деталей, отделочных и других материалов.

Технологический контроль состоит в проверке соответствия установленным требованиям температуры, давления, времени выдерживания, тщательности перемешивания и других показателей технологического процесса.

Приемочный контроль заключается в проверке соответствия готовых изделий требованиям стандартов или технических условий.

Все материалы и изделия выпускают по государственным и межгосударственным стандартам – ГОСТ, СТ СЭВ, ИСО, СТБ, СНБ. Деятельность стандартизации существует для повышения качества продукции, безопасности ее получения и безопасности. Методы испытаний также стандартизированы. Кроме этого, в строительстве существуют «Строительные нормы» и «Технические нормативные правовые акты», представляющие собой объединенные нормативные документы по проектированию, строительству и строительным материалам.

АСБЕСТОЦЕМЕНТНЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
Эксплуатационная характеристика асбестоцементных материалов и изделий

Асбестоцементные строительные тонкостенные изделия выпускают на основе портландцемента. Асбестоцемент представляет собой искусственный каменный материал, который получают в результате затвердевания смеси цемента, асбеста и воды. Цементные камни хорошо сопротивляются сжимающим нагрузкам и плохо – растягивающим.

Физико-механические свойства цементного камня улучшают путем введения в цемент от 10 до 20 % тонковолокнистого минерального асбеста, обладающего высокой прочностью при растяжении и изгибе. Полученный материал обладает высокой прочностью, огнестойкостью, небольшой водопроницаемостью, теплопроводностью и электропроводностью. Однако он хрупок и при изменении влажности подвергается короблению.

В номенклатуру асбестоцементных изделий входит более 40 наименований. Основные группы асбестоцементных изделий составляют следующие виды:

– стеновые и стеновые каркасные панели с теплоизоляционным внутренним слоем;

– обыкновенные и офактуренные или окрашенные плоские плиты, применяемые для облицовки стен;

– волнистые и полуволнистые профилированные листы для обшивки стен и кровель;

– архитектурные, санитарно-технические, электроизоляционные и иные специальные изделия;

– напорные и безнапорные трубы.

Для получения асбестоцементных изделий применяют сырьевую смесь, которая в расчете на массу сухих веществ содержит около 85 % цемента и 15 % асбеста. Получают асбест путем механической обработки горной породы хризотил-асбест, которая сравнительно легко расщепляется на тонкие волокна диаметром до 0,0005 мм. Волокна обладают гибкостью, огнестойкостью, водостойкостью и высокой механической прочностью.

При смешивании асбеста с портландцементом и водой волокна равномерно распределяются в массе цементного теста, адсорбируя на своей поверхности продукты гидратации цемента. В результате этого схватывание и твердение цемента ускоряются, увеличивается прочность связи волокон асбеста с цементным камнем.

При производстве асбестоцементных изделий в качестве вяжущего вещества применяют специальный бездобавочный портпландемент. Этот цемент характеризуется быстрым нарастанием прочности как в начале, так и в последующие сроки твердения, замедленным началом схватывания (не ранее 1,5 ч) и достаточно большой тонкостью помола, что очень важно для улучшения сцепления между цементом и волокнами асбеста.

Для получения асбестоцементных строительных материалов мокрым способом применяют следующие виды операций:

– распушка асбестоцементного волокна;

– размешивание распушенного асбестоцементного волокна с водой и цементом (содержание сухих компонентов в зависимости от вида изделий составляет от 3 до 14%);

формование изделий на круглосетчатых листоформовочных или трубоформовочных машинах с использованием вакуумирования, ускоряющего процесс обезвоживания %;

– раскроя отформованных изделий;

– твердения раскроенных изделий.

Для повышения плотности плоских листов в процесс изготовления могут быть дополнительно включены прессование, а также волнировка для получения волнистых листов и различные виды отделки.

Для производства облицовочных плиток для стен и пола применяют метод сухого формования. Он заключается в распушке асбеста, смешения его с цементом и молотым песком в сухом состоянии. Затем смесь, увлажненную до 18 %, уплотняют на конвейерной ленте катками или под прессом.

Изделия длиной до шести метров, используемые при изготовлении кровельных, стеновых и перегородочных панелей, получают методом экструзии. При этом методе повышенная однородность, связанность и пластичность формовочной массы обеспечиваются добавкой метилцеллюлозы. Для ускорения набора прочности воду подогревают до 30 градусов.

Твердение изделий происходит в специальных камерах при температуре 50…60 градусов и влажности 85…95 % для набора прочности. Такая прочность обеспечивает бездефектное транспортирование. Окончательный набор прочности происходит на специальных складах с температурой не ниже 15 0С. Если применяют песчаный наполненный цемент, изделия направляют в автоклавы с давлением пара 0,8 МПа и температурой 175 градусов.

Готовые изделия отделывают водонепроницаемыми эмалями и лаками на основе перхлорвиниловых и глифталевых смол.

Готовая продукция представляет собой волнистые крупноразмерные листы, которые применяют в качестве кровельных покрытий – шифер, а также плоские крупноразмерные листы, применяемые для изготовления сборных утепленных ограждающих конструкций в виде панелей и плит.

Стеновые панели и плиты покрытий представляют собой многослойные крупноразмерные изделия, состоящие из деревянного каркаса, внутреннего и наружного облицовочных слоев из асбестоцементных листов и расположенного между ними минераловатного или пенопластового плитного утеплителя.

Асбестоцементные листы и плитки с различной отделкой лицевой поверхности пленочными, красочными материалами изготовляют для внутренней и наружной отделки стен.

Асбестоцементные трубы различной длины и диаметров выпускают для устройства водопроводов, нефтепроводов, газопроводов, канализации, дымовых и вентиляционных каналов, а также для прокладки телефонных кабелей.

Основное их преимущество состоит в том, что по сравнению с металлическими, они в 3 – 4 раза легче и в 2 – 3 раза дешевле. Они более стойки к действию минерализированных вод. Трение воды о стенки этих труб меньше, чем в металлических, что увеличивает их пропускную способность и сокращает расход электроэнергии на перекачивание жидкостей. Значительная теплозащитная способность асбестоцементных труб позволяет укладывать их на меньшей глубине, чем металлические, не опасаясь замерзания воды. Кроме этого, на них не действуют разрушительные блуждающие токи, которые довольно быстро выводят из строя металлические изделия.

В настоящее время многие страны отказались от использования асбеста, обладающего в силу высокой адсорбционной способности поверхности свойством накопления вредных для человека веществ. Как правило, асбестоцементный материал в изделиях заменяют стеклянными, древесными, базальтовыми, синтетическими волокнами и бумажной макулатурой. Ограничено также применение асбестоцементных изделий и для внутренней отделки жилых помещений.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации