Электронная библиотека » Маркус Сотой » » онлайн чтение - страница 10


  • Текст добавлен: 10 января 2017, 12:10


Автор книги: Маркус Сотой


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 38 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
План зоопарка частиц

Когда пытаешься что-то классифицировать, полезно выделить некую основную характеристику, позволяющую разделить множество неупорядоченных объектов на меньшие группы. Так, идея биологического вида помогла установить некий порядок в животном царстве. В случае физики элементарных частиц одной из важных неизменяемых характеристик, которые позволили разбить весь этот зоопарк на меньшие группы, был электрический заряд. Как та или иная частица взаимодействует с электромагнитным полем? Электроны отклоняются в нем в одну сторону, протоны – в другую, а нейтроны вообще его не замечают.

По мере обнаружения новых частиц их можно было сортировать при помощи электромагнитного поля. Некоторые из них отправлялись в клетку к электрону, другие – к протону, а остальные следовало поместить вместе с нейтроном. Так был сделан первый шаг к упорядочению зверинца частиц.

Но электромагнитное взаимодействие – это лишь одна из четырех известных нам сил, связывающих Вселенную воедино. Три остальные силы – это гравитация, сильное ядерное взаимодействие, которое связывает протоны и нейтроны, удерживая их вместе внутри атомного ядра, и, наконец, слабое ядерное взаимодействие, управляющее такими процессами, как радиоактивный распад.

Задача состояла в выделении других характеристик, которые подобно электрическому заряду могли бы выявить разное поведение этих частиц с точки зрения других фундаментальных взаимодействий. Например, хорошим критерием для установления некоторой иерархии в зоопарке частиц была их масса. По этому признаку можно сгруппировать вместе пионы и каоны, масса которых на порядок меньше, чем у протонов и нейтронов, из которых состоит обычная материя. В другую группу входили вновь открытые сигма-, кси– и лямбда-гипероны, более тяжелые, чем протоны и нейтроны, и часто распадающиеся на протоны и нейтроны.

Частицам с близкой массой часто присваивали одинаковые греческие названия. Собственно говоря, массы протона и нейтрона настолько близки, что их тоже считали родственными частицами, и немецкий физик Вернер Гейзенберг (идеи которого легли в основу нашего следующего «рубежа») придумал для них новое общее название – нуклоны. Но масса все же была грубоватым критерием для классификации частиц. Физики искали чего-то более фундаментального, какой-нибудь закономерности, которая была бы так же эффективна, как и открытый Менделеевым принцип расположения атомов.

Ключевым элементом, позволившим разобраться в этой лавине новых частиц, стало новое свойство, называемое странностью. Название это возникло в связи со странным поведением некоторых из таких частиц при их распаде. Поскольку, в соответствии с уравнением Эйнштейна E = mc2, масса эквивалентна энергии, а природа предпочитает низкоэнергетические состояния, частицы с большей массой часто стремятся распасться на менее массивные частицы.

Существует несколько механизмов такого распада, каждый из которых основан на одном из фундаментальных взаимодействий. Каждый из механизмов имеет свои характерные признаки, что позволяет физикам понять, какое из фундаментальных взаимодействий вызывает данный распад. Наиболее вероятное для распада той или иной частицы взаимодействие также определяется энергетическими соображениями. Сильное ядерное взаимодействие обычно приводит к распаду частицы быстрее всего, в течение 10–24 секунды. Следующим в этой иерархии идет электромагнитное взаимодействие, которое может вызвать испускание фотонов. Слабое ядерное взаимодействие наименее выгодно энергетически, а потому занимает большее время. Распад частицы через слабое ядерное взаимодействие может занять около 10–11 секунды. Таким образом, измеряя время, проходящее до распада, можно выявить признаки участия в нем того или иного взаимодействия.

Например, дельта-барион распадается за 6 · 10–24 секунды на протон и пион через сильное ядерное взаимодействие, а сигма-гиперон распадается на те же протон и пион за 8 · 10–11 секунды. Большее время распада говорит о том, что он происходит с участием слабого ядерного взаимодействия. Между двумя этими случаями мы находим пример нейтрального пиона, распадающегося через электромагнитное взаимодействие на два фотона, что занимает 8,4 · 10–17 секунды.

Представим себе шар, лежащий в ложбине. Если слегка подтолкнуть шар вправо, он перекатится через бугорок и попадет в более глубокую ложбину. Этот путь соответствует сильному ядерному взаимодействию. Слева от шара расположен более высокий бугорок, за которым также лежит состояние с более низкой энергией. Это направление соответствует действию слабого ядерного взаимодействия.

Так почему же дельта-барион находит легкий путь через низкий бугорок, а сигма-гиперон преодолевает дополнительные препятствия? Такое поведение казалось странным. Получалось, что некоторые частицы наталкиваются на некий барьер (обозначенный прерывистой линией), который мешает им попасть в нижнюю ложбину по легкому пути.


Дельта-барион (Δ) распадается на протон и пион через сильное взаимодействие. В отличие от него сигма-гиперон (Σ) распадается через слабое взаимодействие

Красота должна быть странной

Физики Абрахам Пайс, Мюррей Гелл-Манн и Кадзухико Нисидзима придумали хитроумный способ разрешения этой загадки. Они предложили новое свойство, подобное заряду, которое определяло, могут или не могут такие частицы участвовать в сильном взаимодействии. Такое новое свойство, названное странностью, позволило физикам классифицировать все эти новые частицы. Каждой частице можно было присвоить значение странности в соответствии с тем, проходил или не проходил ее распад по «длинному пути».

Идея состояла в том, что сильное взаимодействие не может изменить странность частицы, так что если две частицы имеют разную странность, то распад одной в другую через сильное взаимодействие невозможен. На пути в нижнюю ложбину стоит барьер. Однако слабое взаимодействие может изменить странность. Поэтому, раз дельта-барион распадается в протон через сильное взаимодействие, обе эти частицы имеют одинаковую странность, равную 0; в то же время сигма-гиперон имеет другое значение странности, так как для его распада в протон необходимо слабое взаимодействие, и ему приписали странность, равную –1. То, что это значение получилось отрицательным, связано только с причудами нумерации разных частиц. Если бы оно было равно 1, а не –1, ничего не изменилось бы.

Затем были обнаружены еще более экзотические частицы, возникающие в высокоэнергетических столкновениях, – они распадались в два этапа. Их назвали каскадными частицами и предположили, что они обладают двойной странностью, то есть имеют странность, равную –2. Результат первого этапа распада имеет странность –1 и распадается на протоны и нейтроны, имеющие нулевую странность. Это несколько похоже на фокус с вытягиванием кролика из шляпы, но он составляет часть научного процесса. В науке то и дело приходится извлекать что-нибудь из шляпы. Большую часть извлеченного приходится отбрасывать, так как она ни на что не годится. Но, если вытаскивать достаточно долго, рано или поздно попадется кролик. Гелл-Манн рассказывал: «Я придумал теорию странности, когда объяснял кому-то одну неправильную идею: я случайно оговорился, и получилась теория странности». Как оказалось, странность была в высшей степени замечательным кроликом.

Исходно понятие странности было введено в качестве бухгалтерского фокуса, приема, который облегчал учет каналов распада из одних частиц в другие. Никто не предполагал, что в идее странности содержится какой бы то ни было физический смысл. Она была нужна, только чтобы установить очередной набор клеток в зоопарке частиц. Но эта новая характеристика оказалась первым намеком на существование гораздо более глубокой физической реальности, действующей под всеми этими частицами. Ключевой момент настал, когда частицы со сходной массой нанесли на график, связывающий значения странности и электрического заряда. Получившаяся картина была преисполнена симметрии.

Частицы расположились по шестиугольной решетке, причем в центральной точке этой решетки находились сразу две частицы. Если пионы и каоны расположить на графике зависимости странности от заряда, то тоже получается сходная структура. Когда получаешь такую конструкцию, это несомненно что-то значит. Ключ к пониманию более глубокой реальности, лежащей за этими частицами, состоял в осознании того, что шестиугольные структуры, которые они образовывали, не были чем-то новым – они встречались и раньше. Не в физике, а в математике симметрии.

Симметричное просветление

Для человека, изучавшего математику симметрии, такая шестиугольная система клеток со сдвоенной точкой в центре выглядит очень знакомо. Она является визитной карточкой вполне конкретного симметричного объекта, называемого группой SU(3).



На мой взгляд, это великолепно. Про симметрию я знаю. У меня появляется шанс понять, что происходит в глубинах моей игральной кости. Собственно говоря, моя кость – это идеальное средство объяснения идей, которые лежат в основе математики симметрии. Преобразованиями симметрии такого кубика (если пренебречь очками на его гранях) называются все способы взять кубик, повернуть его и положить обратно так, чтобы он выглядел точно таким же образом, как раньше. Всего таких движений существует 24. Например, кубик можно просто повернуть на четверть оборота вокруг одной из граней или повернуть его на треть оборота вокруг одной из осей, проходящих через противоположные углы кубика.



Всего разных вариантов действий существует 24 (включая тот странный вариант, в котором кубик вообще можно оставить в покое и ничего с ним не делать). Этот набор симметричных движений называют S 4 или группой симметрии четвертого порядка. С учетом зеркальной симметрии, то есть того обстоятельства, что кость также можно увидеть в зеркальном отражении, у такого кубика имеется 48 разных симметрий.

Кубик следует рассматривать как геометрическую форму в трехмерном пространстве, на которую воздействует группа симметрии S 4. Но существуют и другие геометрические формы, имеющие те же симметрии. Например, другой трехмерной геометрической формой, группа симметрии которой та же, что и у куба, является октаэдр. Кроме того, существуют объекты более высоких размерностей, также имеющие группу симметрии S 4. Таким образом, имеется много разных геометрических форм, в основе которых лежит одна и та же группа симметрии.

В основе шестиугольной схемы систематизации частиц лежит не группа симметрии игральной кости, а другой симметричный объект, называемый SU(3). Обозначение SU(3) означает «специальная унитарная группа третьего порядка», но такая группа может описывать симметрии разных геометрических объектов разной размерности. Шестиугольная решетка, образованная частицами, совпадает с конструкцией, которую математики используют для описания воздействия SU(3) на объект в восьмимерном пространстве. Восемь частиц, образующих решетку, соответствуют числу измерений, необходимых для создания такого симметричного объекта.

Этот шестиугольник стал тем розеттским камнем, который открыл для физики элементарных частиц совершенно новое направление, хотя для описания этого переворота обычно используют другую культурную аналогию. Путеводный свет этой фигуры с восемью частицами, соответствующей такому восьмимерному представлению, привел к так называемому «восьмеричному пути», название которого цитирует буддистскую идею восьмеричного пути к духовному просветлению.

Существуют и другие фигуры, соответствующие объектам разных размерностей, на которые может воздействовать SU(3). Восхитительное откровение состояло в том, что эти другие схемы можно использовать для расположения других обитателей нашего зверинца частиц. Оказалось, что разные геометрические представления симметрий группы SU(3) отвечают за разные физические частицы, из которых состоит материя Вселенной.

Я не перестаю поражаться тому, как физический мир снова и снова оказывается математическим объектом. Спрашивается, в том ли тут дело, что математика просто дает удобные средства для связного описания физической Вселенной, или же физическая Вселенная на самом деле является физическим проявлением математического объекта? Эта новая связь превратила физические частицы в геометрические элементы, стабилизированные группой симметрии, действующей в геометрическом пространстве.

Гейзенберг был прав, когда писал: «Современная физика определенно признала правоту Платона. Собственно говоря, мельчайшие элементы материи не есть физические объекты в обычном смысле этого слова; они являются формами, идеями, которые можно недвусмысленно выразить только на языке математики». На смену Платоновым икосаэдру воды и тетраэдру огня пришла эта новая странная симметричная форма группы SU(3).

Когда физический мир превращается в математический объект, я немедленно чувствую, что могу его понять. Математика симметрии – это мой язык. Для большинства людей превращение фундаментальных частиц в математические элементы означает отдаление от известных им понятий. Сравнение элементарных частиц с бильярдными шарами или волнами придает этим частицам большую осязаемость. Как можно понять что-либо, если оно не вытекает из нашего опыта физического взаимодействия с окружающим миром? Даже абстрактный язык восьмимерных симметричных объектов возможен лишь как абстрактное расширение идей о вещах, знакомых нам в своей физической форме, таких как симметрия моей игральной кости из Лас-Вегаса.

Многоликая симметрия

Тут важно отметить, что могут существовать несколько разных геометрических объектов, в основе которых лежит одна и та же группа симметрии. И наоборот, если имеется некая группа симметрии, могут существовать несколько разных геометрических объектов, симметрии которых описываются этой группой. Математики говорят, что объект является представлением абстрактной группы симметрии подобно тому, как три яблока или три игральные кости являются физическими проявлениями абстрактной концепции числа 3. Например, если взять все ту же игральную кость, ее можно повернуть 24 различными способами. Рассматривая четыре диагонали, проходящие между противоположными углами кубика, можно сказать, что такие повороты производят перестановки этих диагоналей.



Если поместить на углы кубика четыре игральные карты (туза, короля, даму и валета), то каждый поворот будет перетасовывать эти карты: всего существует 24 разных способа перетасовки четырех карт. Но можно получить и другое физическое представление этой группы симметрии. Возьмем тетраэдр и рассмотрим повороты и отражения этой фигуры: в этом случае также существуют 24 разные симметрии. Если приклеить игральные карты на грани четырехгранной треугольной пирамиды, то симметрии тетраэдра снова дают 24 разных варианта перетасовки этих карт. Эта группа симметрии имеет две разных трехмерных реализации в качестве симметрии геометрического объекта – одна из них включает в себя вращения куба, а другая – вращения и отражения тетраэдра. Оказывается, что если посмотреть на все физические геометрические представления группы SU(3) во всех измерениях, то эти симметричные объекты позволят создать все разнообразие появившихся фундаментальных частиц.

В 1961 г. два физика, Гелл-Манн и Юваль Неэман, независимо друг от друга выявили в этих частицах такие закономерности. При этом Неэман совмещал занятия физикой с карьерой в Силах обороны Израиля и был отправлен в Лондон на должность военного атташе. Сначала он собирался изучать общую теорию относительности в Кингс-колледже, но, поняв, что тот находится в нескольких милях от посольства Израиля, расположенного в Кенсингтоне, решил разузнать, чем занимаются по соседству, в Имперском колледже. Там занимались физикой элементарных частиц. Так Неэман переключился с предельно большого на предельно малое.

Хотя схема, составленная для частиц лямбда, сигма и кси, при добавлении протона и нейтрона соответствовала восьмимерной симметрии SU(3), в аналогичной схеме для каонов и пионов не хватало частицы, которая должна была быть в ее центре. Либо схема была ошибочной, либо существовала еще неоткрытая частица. Гелл-Манн опубликовал свое предсказание существования такой частицы в препринте Калтеха в 1961 г. И всего несколько месяцев спустя физики из Беркли[42]42
  Имеется в виду Lawrence Berkeley National Laboratory – Национальная лаборатория им. Лоуренса в Беркли.


[Закрыть]
благополучно открыли эта-мезон.

Для новой теории это идеальный вариант развития событий. Если теория делает физическое предсказание, которое затем подтверждается, можно быть уверенным, что ставка сделана правильно. Та же история повторилась, когда и Гелл-Манн, и Неэман были в 1962 г. на конференции в ЦЕРН. На этой конференции было объявлено об открытии множества новых частиц – трех Σ*-гиперонов со странностью –1 и двух Ξ*-гиперонов со странностью –2. Предполагалось, что эти частицы должны соответствовать одной из схем, иллюстрирующих действие группы симметрии SU(3) на симметричный объект в более высоких измерениях.

Гелл-Манн и Неэман независимо друг от друга сидели на лекции, пытаясь встроить эти новые частицы в свои схемы, когда у обоих начала проявляться другая картинка, соответствующая еще одному симметричному объекту, на котором действует группа SU(3), – объекту десятимерному. Но один из углов схемы оставался незаполненным. Частиц было всего девять. Гелл-Манн и Неэман одновременно осознали, что одна позиция в схеме пустует, из чего следовало предсказание существования новой частицы. Первым поднял руку Гелл-Манн, который и предсказал омега-гиперон со странностью –3. Это предсказание было подтверждено в январе 1964 г.

История периодической системы Менделеева заново повторилась в XX в.: основополагающая закономерность была выявлена, но в головоломке не хватало некоторых элементов. Подобно тому как открытие недостающих атомов придало убедительности модели Менделеева, открытие этих недостающих частиц помогло убедить физиков в том, что эти математические схемы являются могущественным средством ориентации в зоопарке частиц.



Закономерности, открытые Менделеевым в периодической системе, оказались следствием того, что атомы элементов состоят из фундаментальных ингредиентов – протонов, электронов и нейтронов. Существовало ощущение, что закономерности, найденные во всех этих вновь открытых частицах, намекают на нечто похожее – на существование в основе сотен зарегистрированных частиц еще более фундаментальных кирпичиков.

Кварки – недостающий последний уровень?

Некоторые физики заметили, что если расположить схемы, соответствующие разным многомерным представлениям SU(3), послойно, получается конструкция в форме пирамиды, у которой отсутствует самый верхний слой. На вершине всего этого должно быть что-то похожее на простой треугольник. Такой треугольник соответствовал бы простейшему физическому представлению SU(3), действующему в трехмерной геометрии. Если посмотреть на эти слои с точки зрения симметрии, видно, что именно из недостающего слоя можно было бы получить все остальные слои. Но никто никогда не видел никаких частиц, которые соответствовали бы этому недостающему слою.

Среди тех, кто догадывался, что такой дополнительный уровень может предполагать три фундаментальные частицы, из которых могут быть построены все частицы, соответствующие следующим уровням, был Роберт Сербер, бывший правой рукой Оппенгеймера в «Манхэттенском проекте». В 1963 г. за обедом Сербер рассказал об этой идее Гелл-Манну, но, когда Гелл-Манн спросил его, какой электрический заряд могли бы иметь эти гипотетические частицы, Сербер затруднился с ответом. Гелл-Манн начал писать на салфетке и вскоре получил ответ. Их заряд должен быть равен 2/3 или –1/3 заряда протона. Такой ответ казался бессмысленным. «Странный был бы выверт»[43]43
  Гелл-Манн использовал английское слово quirk.


[Закрыть]
, – заметил Гелл-Манн. Никаких объектов, заряд которых не был бы равен целому числу зарядов электрона или протона, в истории физики никогда не наблюдалось.


Треугольник, предполагающий существование трех новых частиц: верхнего, или u-кварка, нижнего, или d-кварка, и странного, или s-кварка[44]44
  Буквенные обозначения кварков происходят от их английских названий – соответственно up, down и strange.


[Закрыть]


Ситуация напоминала времена Пифагора. Считалось, что все состоит из целых чисел, как вдруг появилось нечто, что, по-видимому, делило эту фундаментальную единицу на части. Дроби задавались отношениями целых чисел, но до сих пор никто никогда не встречал таких дробных зарядов. Сначала Гелл-Манн отнесся к таким гипотетическим частицам с дробным зарядом скептически, но к вечеру они начали ему нравиться. В последующие недели он стал исследовать возможные следствия этой идеи, называя такие частицы «кворками» – это словечко он использовал и раньше в смысле «непонятные штучки». Сербер считает, что Гелл-Манн обыгрывал в нем тот странный выверт, «quirk», о котором он говорил за обедом.

Читая экспериментальный роман Джеймса Джойса «Поминки по Финнегану», Гелл-Манн набрел на отрывок, определивший правописание слова, которое он стал использовать для обозначения этих гипотетических частиц. Его внимание привлекла первая строчка стихотворения, высмеивающего короля Марка, обманутого мужа, в легенде о Тристане и Изольде: «Three quarks for Muster Mark!»[45]45
  «Три кварка для мюстера Марка!»


[Закрыть]

С учетом того, что таких гипотетических частиц, из которых можно построить другие слои, было три, аналогия казалась точной. Единственная трудность заключалась в том, что Джойс явно считал, что слово «quark» должно рифмоваться с именем «Марк», а не со словом «кворк». Тем не менее утвердились именно те правописание и произношение, которые понравились Гелл-Манну[46]46
  В английском слово quark произносится [kwɔ:rk], через «о». В русском языке, разумеется, такой проблемы не возникает.


[Закрыть]
.

В конце концов такие кварки составили последний, по нашим представлениям, уровень устройства материи. Но идея эта прижилась не сразу. Когда Гелл-Манн говорил о кварках по телефону со своим бывшим научным руководителем, тот перебил его: «Мюррей, хватит шутить. Мы же разговариваем по международной связи».

С точки зрения Гелл-Манна, система казалась слишком красивой, чтобы не содержать в себе хотя бы какой-то истины. Идея заключалась в том, что под всеми этими слоями частиц лежит еще один уровень из трех фундаментальных частиц – верхнего кварка, нижнего кварка и странного кварка, заряды которых равны, соответственно, 2/3, –1/3 и –1/3. Остальные частицы образованы из сочетаний этих кварков (и их античастиц, как в случае каонов и пионов). Число странных кварков, использованных в конструкции частицы, определяет ее странность. Таким образом, схему восьмеричного пути, состоящую из протона, нейтрона и сигма-, кси– и лямбда-гиперонов, теперь можно перерисовать с учетом таких кварковых ингредиентов.


Кварковые составляющие восьмеричного пути


При каждом шаге вверх по этой схеме число странных кварков уменьшается на единицу. Если двигаться в направлении увеличения заряда, то на каждом шаге увеличивается число верхних кварков, имеющих заряд 2/3. Существует еще и третье направление, которое определяет увеличение числа нижних кварков. Схожие закономерности существуют и в других слоях частиц.

Идею разборки материи на такие более мелкие частицы обдумывал не только Гелл-Манн. Американский физик Джордж Цвейг тоже полагал, что эти схемы указывают на существование более фундаментального уровня частиц. Он называл их тузами, но при этом он, вероятно, в большей степени, чем Сербер или Гелл-Манн, верил в физическую реальность таких частиц. Руководитель теоретического отдела ЦЕРН посчитал его препринты, в которых он излагал свои мысли, «полной чушью». Даже Гелл-Манн, высказывавший схожие идеи, считал их всего лишь математической моделью, позволяющей внести в схемы некий согласованный порядок. Для него они были мнемоническим приемом, а не реальными объектами. Гелл-Манн не соглашался с Цвейгом, верившим в физическую реальность кварков: «Модель реальных кварков – это для тупиц!»


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации