Электронная библиотека » Маркус Сотой » » онлайн чтение - страница 3


  • Текст добавлен: 10 января 2017, 12:10


Автор книги: Маркус Сотой


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 38 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:
- 100% +
Пари паскаля

Анализ ставок в игре, разработанный Паскалем и Ферма, можно применить и к гораздо более сложным ситуациям. Паскаль выяснил, что тайна распределения выигрыша сокрыта внутри того, что теперь называют треугольником Паскаля.



Треугольник устроен таким образом, что каждое число в нем равно сумме двух чисел, расположенных непосредственно над ним. Полученные числа определяют, как следует разделить выигрыш в любой прерванной игре. Например, если Ферма до победы не хватает двух выигранных партий, а Паскалю – четырех, нужно взять строку треугольника номер 2 + 4 = 6 и найти сумму первых четырех чисел и сумму последних двух. Эти суммы дают пропорцию, в которой следует разделить выигрыш. В данном случае получается пропорция 1 + 5 + 10 + 10 = 26 к 1 + 5 = 6. Таким образом, Ферма получает 26/32 · 64 = 52 фунта, а Паскаль – 6/32 · 64 = 12 фунтов. В общем случае решение для игры, в которой Ферма не хватает n, а Паскалю – m выигранных партий, можно найти в (n + m) – й строке треугольника Паскаля.

Есть данные, что французы опоздали с открытием связи между этим треугольником и исходом азартных игр на несколько тысячелетий. Игральные кости и другие методы получения случайных результатов, например «И цзин», издавна использовали в Китае в попытках предсказать будущее. В тексте книги «И цзин», созданном около 3000 лет назад, для случайного выбора гексаграммы, значение которой затем можно истолковать, используется в точности та же таблица, которую Паскаль составил для анализа исходов подбрасывания монет. Однако создателем треугольника считают в наше время Паскаля, а не китайцев.

Паскаль интересовался не только игральными костями. Он предпринял знаменитую попытку приложения своей новой вероятностной математики к величайшему из неизвестных – существованию Бога.

Бог есть или Бога нет. Но на которую сторону мы склонимся? Разум тут ничего решить не может. Нас разделяет бесконечный хаос. На краю этого бесконечного расстояния разыгрывается игра, исход которой неизвестен. […] На чем же вы остановитесь? Так как выбор сделать необходимо, то посмотрим, что представляет для вас меньше интереса: вы можете проиграть две вещи, истину и благо, и две вещи вам приходится ставить на карту, ваши разум и волю, ваше познание и ваше блаженство; природа же ваша должна избегать двух вещей: ошибки и бедствия. Раз выбирать необходимо, то ваш разум не потерпит ущерба ни при том, ни при другом выборе. Это бесспорно; ну а ваше блаженство? Взвесим выигрыш и проигрыш, ставя на то, что Бог есть. Возьмем два случая: если выиграете, вы выиграете все; если проиграете, то не потеряете ничего. Поэтому не колеблясь ставьте на то, что Он есть[16]16
  «Мысли о религии и других предметах», перевод С. Долгова.


[Закрыть]
.

В этом рассуждении, известном под названием «пари Паскаля», он утверждает, что выбор веры в Бога приносит гораздо больший выигрыш. Если такой выбор ошибочен, вы ничего не теряете; если он справедлив, вы выигрываете вечную жизнь. И вместе с тем ставка на то, что Бога нет, в случае проигрыша приносит вечное проклятие, а в случае выигрыша не дает ничего, кроме знания, что Бога действительно нет. Этот аргумент рассыпается, если вероятность существования Бога на самом деле равна нулю, но, даже если это и не так, цена верования может оказаться слишком высокой по сравнению с вероятностью существования Бога.

Вероятностные методы, разработанные математиками, подобными Ферма и Паскалю, для разрешения неопределенности, оказались невероятно могущественными. Явления, считавшиеся недоступными для познания, выражением воли богов, начали становиться досягаемыми для человеческого разума. На сегодня такие вероятностные подходы являются лучшим из имеющихся у нас средств исследования буквально всего, от поведения частиц газа до подъемов и падений рынка ценных бумаг. Действительно, кажется, что сама природа материи отдана на милость математической вероятности, как мы увидим на «Рубеже третьем», говоря об использовании квантовой физики для предсказания поведения наблюдаемых нами частиц. Но с точки зрения поисков определенности такие вероятностные методы представляют собой раздражающий компромисс.

Я, безусловно, ценю величайшие открытия, сделанные Ферма, Паскалем и другими, но они не помогают мне узнать заранее, сколько очков выпадет на брошенной мной кости. Сколько я ни изучал математическую теорию вероятностей, меня никогда не покидало чувство неудовлетворенности. Единственное, что вбивает в голову любой курс теории вероятностей, – это идея о том, что, сколько бы раз подряд у вас ни выпадала шестерка, это никак не влияет на поведение кости при следующем броске.

Так можно ли как-нибудь узнать, как упадет моя кость? Или же это знание навечно останется недоступным? Не останется, если верить откровениям одного ученого, жившего за морем, в Англии.

Математика природы

Для меня Исаак Ньютон – главный герой борьбы с непознаваемым. Идея о том, что я могу узнать о Вселенной все, происходит из революционной работы Ньютона «Математические начала натуральной философии». Эта книга, впервые изданная в 1687 г., посвящена разработке нового математического языка, обещавшего дать инструменты, которые откроют секреты устройства Вселенной. В ней была предложена разительно новая модель занятий наукой. Как заявил в 1747 г. французский физик Алексис Клеро, эта работа «пролила свет математики на науку, которая до тех пор оставалась во тьме догадок и гипотез».

Она также была попыткой объединения, создания теории, которая описывала бы небесное и земное, великое и малое. Кеплер предложил законы, описывающие движение планет, которые он разработал эмпирически, опираясь на данные и пытаясь найти уравнения, которые воссоздавали бы прошлое. Галилей описал траекторию шара, летящего в воздухе. Гениальность Ньютона позволила ему понять, что эти два примера – проявления одного и того же феномена: гравитации.

Ньютон, появившийся на свет на Рождество 1643 г. в городе Вулсторп в Линкольншире, всегда стремился обуздать физический мир. Он делал механические и солнечные часы, строил миниатюрные мельницы на мышиной тяге, чертил бесчисленные планы зданий и кораблей и делал подробные зарисовки животных. Жившая в его доме кошка однажды исчезла, улетев на сделанном Ньютоном воздушном шаре. Однако отзывы его школьных учителей не сулили ему блестящего будущего: его называли «невнимательным и ленивым».

Надо сказать, что лень может быть не самым плохим качеством для математика. Она может быть мощным стимулом для изобретательного поиска какого-нибудь легкого способа решения задачи, избавляющего от упорной и монотонной работы. Но учителя, как правило, не ценят это качество.

И действительно, Ньютон так плохо учился в школе, что мать сочла его учебу пустой тратой времени и решила, что ему будет полезнее научиться управлять семейной фермой в Вулсторпе. К сожалению, в деле управления хозяйством Ньютон оказался столь же безнадежным, так что его снова отправили в школу. Хотя эта история наверняка апокрифична, говорят, что внезапное превращение Ньютона в ученого совпало с ударом по голове, который он получил от школьного хулигана. Как бы то ни было, после этого преображения Ньютон внезапно стал блестящим учеником и в конце концов поступил на учебу в Тринити-колледж в Кембридже.

В 1665 г., когда в Англии вспыхнула эпидемия бубонной чумы, Кембриджский университет был из предосторожности закрыт. Ньютон вернулся домой, в Вулсторп. Изоляция часто бывает важным ингредиентом изобретения новых идей. Ньютон запирался в своей комнате и размышлял.

Истина – дитя тишины и размышлений. Я постоянно держал предмет своих размышлений перед собой и ждал, пока первые проблески медленно, мало-помалу не разгорятся, превращаясь в яркий и ясный свет.

Будучи изолирован в Линкольншире, Ньютон создал новый язык, способный выразить картину постоянно изменяющегося мира, – язык математического анализа. Этому инструменту предстояло стать ключом к возможности заблаговременного знания о будущем поведении Вселенной. Именно этот язык дает мне надежду узнать, какой стороной может упасть моя игральная кость.

Математические фотографии

Математический анализ пытается разобраться в математической задаче, которая на первый взгляд кажется бессмысленной: деление ноля на ноль. Когда я роняю свою игральную кость на стол, именно эту задачу мне нужно решить, чтобы узнать мгновенную скорость кости, летящей в воздухе.

Скорость кости постоянно увеличивается, поскольку сила тяжести тянет ее к земле. Как же вычислить, чему равна эта скорость в любой момент времени? Например, с какой скоростью падает кость через одну секунду? Скорость равна пройденному расстоянию, деленному на прошедшее время. Значит, я могу измерить расстояние, которое она пролетит в течение следующей секунды, и получить среднюю скорость за этот период. Но я хочу узнать точную скорость. Я могу измерить расстояние, пройденное за более краткий промежуток времени, скажем, за половину или четверть секунды. Чем меньше длительность такого интервала, тем точнее я могу вычислить скорость. В конце концов для получения точного значения скорости я буду вынужден взять бесконечно малый временной интервал. Но тогда мне придется вычислять результат деления ноля на ноль.

Придуманное Ньютоном исчисление сделало такой расчет возможным. Он понял, как можно вычислить то значение, к которому скорость стремится по мере уменьшения длительности временного отрезка. Этот революционный новый язык смог выразить картину постоянно изменяющегося мира. Геометрия древних греков была совершенным средством для описания статической, застывшей картины мира.


Математический анализ: осмысление деления ноля на ноль

Рассмотрим автомобиль, начинающий движение из неподвижного состояния. В момент включения секундомера водитель нажимает на педаль газа. Предположим, что, согласно нашим измерениям, в течение t секунд водитель проехал t · t м. С какой скоростью машина будет ехать через 10 секунд? Мы можем получить приблизительное значение скорости, измерив расстояние, пройденное автомобилем между 10-й и 11-й секундами. Средняя скорость за эту секунду равна (11 · 11–10 · 10)/1 = 21 м/с.

Но, взяв среднюю скорость на меньшем временном отрезке, скажем, длительностью 0,5 секунды, мы получим:

(10,5 · 10,5 – 10 · 10)/0,5 = 20,5 м/с.

Это, конечно, чуть медленнее, так как автомобиль разгоняется и во вторую половину секунды, которая прошла между 10-й и 11-й, он в среднем едет быстрее. Возьмем теперь еще меньший промежуток. Давайте еще раз разделим его пополам:

(10,25 · 10,25–10 · 10)/0,25 = 20,25 м/с.

Я надеюсь, что ваш внутренний математик уже заметил закономерность. Если взять временной промежуток длительностью х секунд, то средняя скорость за это время будет равна 20 + x м/с. По мере того как мы рассматриваем все меньшие интервалы, она все более приближается к 20 м/с. Так что, хотя кажется, что определение скорости на 10-й секунде требует вычисления частного 0/0, математический анализ позволяет понять, что это означает.


Великое математическое открытие Ньютона дало нам язык, способный описать мир движущийся. Математика перешла от описания натюрморта к воспроизведению движущегося изображения. В науке произошло нечто подобное случившемуся в этот же период перевороту в искусстве, когда динамическое искусство барокко вырвалось из статического искусства Возрождения.

Вспоминая это время, которое он называл «annus mirabilis»[17]17
  «Год чудес» (лат.).


[Закрыть]
, Ньютон считал его одним из самых продуктивных периодов своей жизни. «Я был в расцвете сил и думал о Математике и Философии больше, чем когда-либо после».

Все, что нас окружает, находится в состоянии постоянного изменения, поэтому неудивительно, что эти математические методы приобрели такое большое влияние. Но, с точки зрения Ньютона, математический анализ был инструментом для личного пользования, позволившим ему получить научные выводы, изложенные в «Началах», великом труде, изданном в 1687 г., в котором он описывал свои идеи о гравитации и законах движения.

Говоря о себе в третьем лице, он объясняет, что его математический анализ был ключом к открытиям, содержащимся в этой книге: «Г-н Ньютон открыл большую часть предложений, изложенных в его “Началах”, при помощи этого нового Анализа». Но никакого описания этого «нового анализа» опубликовано не было. Вместо этого Ньютон частным образом распространял свои идеи среди друзей, но не испытывал никакого желания представить их на суд общественности.

К счастью, теперь этот язык широко доступен, и я лично потратил несколько лет на его изучение, когда учился математике. Но мои попытки познания игральной кости требуют использования математического открытия Ньютона в сочетании с его великим вкладом в физику – знаменитыми законами движения, которыми открываются его «Начала».

Правила игры

Ньютон излагает в «Началах» три простых закона, на которых в огромной степени основывается динамика Вселенной.

Первый закон движения Ньютона: «Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние»[18]18
  Первый закон Ньютона приведен здесь в том виде, в каком он изложен в «Началах»; цитаты из этой книги здесь и далее даны в переводе А. Н. Крылова.


[Закрыть]
.

Это было не так уж и очевидно, например, Аристотелю. Если покатить шар по плоской поверхности, то через некоторое время он остановится. Кажется, что для продолжения его движения необходимо приложить силу. На самом же деле существует скрытая сила, изменяющая скорость шара, – сила трения. Если нашу игральную кость бросить где-нибудь в космосе, вдали от гравитационных полей, она так и будет лететь по прямой линии с постоянной скоростью.

Для изменения скорости или направления движения объекта требуется сила. Второй закон Ньютона объяснял, как именно такая сила изменяет движение, и содержал в себе новый инструмент, созданный для выражения этого изменения. Математический анализ уже позволил мне выразить скорость кости по мере ускорения ее падения к столу. Скорость изменения этой скорости также можно узнать при помощи анализа. Второй закон Ньютона утверждает, что между силой, прилагаемой к объекту, и изменением его скорости существует прямая связь.

Второй закон движения Ньютона: «Скорость изменения движения, или ускорение, пропорциональна приложенной к телу силе и обратно пропорциональна его массе»[19]19
  В формулировке самого Ньютона: «Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует».


[Закрыть]
.

Чтобы понять движение таких тел, как падающая игральная кость, необходимо понять, какие силы могут на них воздействовать. Закон всемирного тяготения Ньютона выявил одну из основных сил, оказывающих влияние, скажем, на падающее яблоко или на планеты, движущиеся в Солнечной системе. Этот закон гласит, что сила, действующая на тело массой m1 со стороны тела массой m2, равна



где G – эмпирическая физическая постоянная, определяющая силу гравитации в нашей Вселенной.

При помощи этих законов теперь можно описать траекторию шара, падающего в воздухе, или планеты, движущейся в Солнечной системе, или же игральной кости, падающей из руки игрока. Но, когда кость падает на стол, возникает следующая проблема. Что происходит в этот момент? Подсказку дает третий закон движения Ньютона: «Когда одно тело прилагает силу к другому, второе тело одновременно прилагает к первому силу, равную ей по величине и противоположную по направлению»[20]20
  В формулировке Ньютона: «Действию всегда есть равное и противоположное противодействие, иначе – взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны».


[Закрыть]
.

Сам Ньютон получил при помощи этих законов необыкновенный набор результатов, касающихся Солнечной системы. Он писал: «Остается изложить, исходя из тех же начал, учение о строении системы мира»[21]21
  «Математические начала натуральной философии». Книга III.


[Закрыть]
. Он начал приложение своих идей к траекториям планет с того, что представил каждую планету в виде точки, расположенной в ее центре масс, и предположил, что вся масса планеты сосредоточена в этой точке. Затем, используя свои законы движения и свой новый математический аппарат, он смог вывести законы планетарного движения Кеплера.

Ему также удалось рассчитать соотношения масс крупных планет, Земли и Солнца. Он объяснил несколько интересных отклонений в движении Луны, приписав их притяжению Солнца. Он также заключил, что форма Земли не соответствует идеальной сфере, но должна быть сплюснута у полюсов благодаря вращению Земли, порождающему центробежную силу. Французы придерживались противоположной точки зрения: они считали, что Земля должна быть вытянута на полюсах. В 1733 г. была отправлена экспедиция, которая подтвердила правоту Ньютона – и могущество математики.

Ньютонова «теория всего»

Это было необычайное достижение. Три закона стали теми зернами, из которых можно было вывести движение всех частиц Вселенной. Они по праву заслуживали названия «теории всего». Я называю их «зернами», потому что труд других ученых потребовался, чтобы взрастить их и применить к более сложным задачам, чем ньютоновская Солнечная система, состоящая из точечных масс. Например, в своем изначальном виде законы движения были непригодны для описания движения менее жестких или деформируемых тел. Уравнения, обобщающие законы Ньютона, предложил великий швейцарский математик XVIII в. Леонард Эйлер. Уравнения Эйлера можно было применять к более общим случаям, например к колеблющейся струне или к качающемуся маятнику.

Появлялось все больше и больше уравнений, управляющих разными природными явлениями. Эйлер создал уравнения для невязких жидкостей. Французский математик Жозеф Фурье получил в начале XIX в. уравнения, описывающие тепловой поток. Его соотечественники Пьер-Симон Лаплас и Симеон-Дени Пуассон использовали уравнения Ньютона для создания более общих уравнений гравитации, которые, как потом выяснилось, управляют также и другими явлениями, например гидродинамикой и электростатикой. Поведение вязких жидкостей было описано уравнениями Навье – Стокса, а электромагнитные явления – уравнениями Максвелла.

Казалось, что открытием математического анализа и законов движения Ньютон превратил Вселенную в детерминистическую машину с часовым механизмом, управляемую математическими уравнениями. Ученые полагали, что они действительно открыли «теорию всего». Вот как выразил веру большинства ученых в необычайное могущество математики, позволяющее ей рассказать все о физическом мире, математик Пьер-Симон Лаплас в опубликованных в 1814 г. «Опытах философии теории вероятностей»:

Мы должны рассматривать настоящее состояние Вселенной как следствие ее предыдущего состояния и как причину последующего. Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, если бы вдобавок он оказался достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями мельчайших атомов: не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее, предстало бы перед его взором[22]22
  Перевод А. К. Власова.


[Закрыть]
.

В столетия, последовавшие за великим произведением Ньютона, мнение о теоретической познаваемости Вселенной, как прошлой, так и настоящей, стало преобладающим среди ученых. Казалось, что всякая мысль о Боге, действующем в мире, совершенно исчезла. Бог, возможно, сыграл свою роль в запуске механизмов Вселенной, но начиная с этого момента его место заняли уравнения математики и физики.

Так как же насчет нашей прозаической игральной кости? Уж наверное, имея в своем распоряжении законы движения, можно будет предсказать исход броска на основе простого сочетания геометрии кубика, начального направления его движения и последующего взаимодействия с поверхностью стола? Я выписал все эти уравнения в свой блокнот, и они выглядят довольно-таки устрашающе.

Ньютон также обдумывал задачу предсказания поведения костей. Его интерес к ней был вызван письмом, которое он получил от Сэмюэла Пипса. Пипс просил Ньютона посоветовать, на что ему следует поставить в пари, которое он собирался заключить со своим другом:

1) что при броске шести костей выпадет хотя бы одна шестерка,

2) что при броске двенадцати костей выпадут по меньшей мере две шестерки или

3) что при броске восемнадцати костей выпадут по меньшей мере три шестерки.


Пипс собирался поставить 10 фунтов (что эквивалентно 1000 фунтов в сегодняшних деньгах) и был бы очень рад получить хороший совет. Интуиция Пипса подсказывала ему, что наиболее вероятен третий вариант, но Ньютон ответил, что с точки зрения математики должно быть справедливо обратное. Ставить следует на первый вариант. Однако для решения этой задачи Ньютон обратился не к своему математическому анализу и законам движения, а к идеям, разработанным Ферма и Паскалем.

Но, даже если бы Ньютон и смог решить выписанные мною уравнения, описывающие траекторию игральной кости, обнаружилась бы еще одна проблема, способная уничтожить всякую надежду на познание будущего моей кости. Хотя Паскаль и говорил о своем пари с Богом, в его анализе есть одна интересная строка, сильно затрудняющая любые попытки познания будущего: «Разум тут ничего решить не может. Нас разделяет бесконечный хаос»[23]23
  Перевод С. Долгова.


[Закрыть]
.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации