Электронная библиотека » Маркус Сотой » » онлайн чтение - страница 11


  • Текст добавлен: 10 января 2017, 12:10


Автор книги: Маркус Сотой


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 38 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
От фантазии к реальности

Все это изменилось в конце 1960-х гг. благодаря результатам, полученным в экспериментах в Стэнфордском центре линейного ускорителя[47]47
  Stanford Linear Accelerator Center, SLAC.


[Закрыть]
, в которых протоны бомбардировали электронами. В соответствии с анализом заряда протона предполагалось, что его размеры должны составлять порядка 10–15 м. Считалось, что протон должен быть однородно распределен по этой малой области. Однако, когда на сгусток протонов направили электроны, экспериментаторы были поражены полученной картиной рассеяния. Как и в случае удививших Резерфорда результатов бомбардировки атомов золота альфа-частицами, оказалось, что протон, как и атом, в основном состоит из пустого пространства.

Картина рассеяния соответствовала протону, состоящему из трех частиц меньшего размера. Как и в опытах Резерфорда, какой-нибудь электрон время от времени точно попадал в одну из этих трех точек и отражался обратно, в направлении источника электронов. Эксперимент, по-видимому, подтверждал представление о протоне, состоящем из трех кварков. Хотя никто никогда не видел отдельного кварка, картина рассеяния электронов указывала на то, что три более мелкие частицы, из которых образован протон, действительно существуют.

Выяснилось, что тупицы были правы. Верхний, нижний и странный кварки оказались не просто математическими фокусами, но элементами физической реальности. Затем выяснилось, что этих трех кварков недостаточно для всех новых частиц, и в конце концов у нас оказалось шесть кварков и соответствующие им античастицы. В дополнение к трем кваркам, окрещенным Гелл-Манном, появились еще три: очарованный кварк, истинный кварк и прелестный кварк[48]48
  Соответственно, c-кварк, от английского charm – «очарование», t-кварк, от английского truth – «истина» или top – «вершина», и b-кварк, от английского beauty – «прелесть» или bottom – «дно».


[Закрыть]
.

Открытие этого способа упорядочения зверинца физических частиц при помощи математики симметрии стало одним из самых захватывающих открытий ХХ в. Увидеть, как все эти фундаментальные частицы выстраиваются в готовые схемы, уже существовавшие в математике симметрии, наверное, было совершенно восхитительно. Если бы я выбирал, какое физическое открытие хотел бы совершить, это открытие имело бы хорошие шансы на победу. Мне кажется, это было похоже на ощущения археолога, который находит узор, до сих пор встречавшийся только на другом конце света. Когда обнаруживаешь такие характерные узоры, становится очевидно, что между этими двумя культурами должна существовать какая-то связь.

Странная особенность этой пирамиды из треугольников и шестиугольников, соответствующих различным представлениям группы SU(3), заключается в том, что она продолжается до бесконечности, из чего следует, что, склеивая вместе все больше и больше кварков, можно получать все новые и новые экзотические частицы. Физическая модель, по-видимому, заканчивается на уровне, в котором располагаются частицы, собранные из трех кварков. Однако в 2015 г. появились волнующие сообщения об обнаружении на LHC свидетельств существования частицы, состоящей из пяти кварков. Исследователи из ЦЕРН чуть не упустили эту частицу, которую назвали пентакварком, приняв ее за фоновый шум. Но, когда они попытались удалить этот шум, они обнаружили мощный сигнал, указывающий на следующий уровень пирамиды симметрий. Как сказал один из ученых, работающих в ЦЕРН: «Мы не искали пентакварк. Это он нас нашел».

До каких пределов мы можем углубляться в математику в поисках предсказаний того, что еще можно увидеть на LHC? Например, существует ли еще более крупный симметричный объект под названием SU(6), который может объединить все шесть кварков – верхний, нижний, странный, очарованный, истинный и прелестный – в множество потрясающих частиц. Тогда вместо двумерной схемы, в которой мы распределяли частицы по семействам, понадобилась бы схема пятимерная. Хотя создание некоторых из таких более экзотических комбинаций кварков и представляется возможным, различия между массами кварков становятся все больше, что приводит к нарушению прекрасной математической симметрии и делает реальное существование таких частиц все менее вероятным. Например, t-кварк настолько нестабилен, что распадается, даже не успев соединиться с каким-нибудь другим кварком. Физики не могут ответить на вопрос о причинах таких различий между массами кварков – то есть пока не могут. Математика, по-видимому, предлагает гораздо большее разнообразие частиц, чем может выдержать физическая реальность. Реальность кажется лишь бледной тенью математических возможностей. Однако понимание даже этой реальности по-прежнему остается непростым делом.

Я должен признать, что, даже имея в своем распоряжении математический аппарат, на разработку которого я потратил многие годы, я не уверен, что действительно понимаю, что такое кварки. Я провожу целые месяцы за изучением книг по физике элементарных частиц, таких как «Квантовая механика и частицы природы»[49]49
  См. список литературы в конце книги. – Прим. ред.


[Закрыть]
Энтони Садбери, и конспектов лекций оксфордских курсов по симметрии и физике элементарных частиц. И вот, сидя тут в окружении всех этих историй о внутреннем устройстве моей игральной кости, я понемногу начинаю впадать в отчаяние. Того, чего я все еще не знаю, так много: интегралы по путям, описывающие будущее частиц, внутреннее устройство уравнений Клейна – Гордона, точный смысл диаграмм Фейнмана, которые физики с такой легкостью рисуют на доске… Я с завистью смотрю на своего сына, который только начинает изучать физику. У него будет время погрузиться в этот мир, узнать все это так же близко, как я знаю область своей работы.

То же и с виолончелью. Я взрослый человек и хочу играть сюиты Баха сейчас, а не через десять лет. Но обучение трубе заняло у меня годы, и только медленная, постепенная, настойчивая учеба может вывести меня на тот уровень, на котором я смогу играть эти сюиты. По крайней мере, в этом месяце мне наконец удалось сдать экзамены за третий класс. Я сам удивился, как я нервничал. Смычок трясся у меня в руках. И хотя вокруг меня были сплошные одиннадцатилетки, ждавшие своего экзамена по блок-флейте за первый класс, чувство успеха все равно было очень приятным.

Я знаю, что, как и в случае с виолончелью, если я проведу достаточно долгое время в мире физики элементарных частиц, у меня есть надежда узнать кое-что из того, чем мои коллеги с физического факультета в соседнем корпусе живут изо дня в день. Меня пугает сознание того, что мне не хватит времени узнать все. Но даже те физики, которые с такой завидной для меня легкостью играют с нашим современным уровнем знаний, признаю́т, что никогда не смогут точно знать, что знают всё.

Ковбои и кварки

Чтобы узнать, думают ли специалисты в области физики элементарных частиц, что известная нам сегодня кварковая головоломка может быть составлена из еще более мелких кусочков, я договорился о встрече с одной из тех, кто открыл один из последних фрагментов этой головоломки. Мелисса Франклин, ставшая сейчас профессором в Гарварде, была одним из участников группы, которая обнаружила t-кварк в эксперименте, проведенном в Фермилаб[50]50
  Фермилаб (Fermilab) – сокращенное название Национальной ускорительной лаборатории им. Ферми (Fermi National Accelerator Laboratory), расположенной в пригороде Чикаго.


[Закрыть]
. В противоположность распространенному мнению открытие частицы – это не момент озарения, а долгий и медленный процесс. Но Франклин считает, что так даже лучше: «Если бы это был просто “бум!”, было бы неинтересно. Тратишь 15 лет на строительство машины, а потом вдруг бум! – и все кончено? Ужас». Сбор данных, начатый в 1994 г., занял около года, и только в 1995-м исследовательская группа решила, что получено достаточно доказательств, чтобы уверенно подтвердить открытие этой частицы, предсказанной математиками.

Франклин определенно находится с экспериментальной, а не с теоретической стороны границы, разделяющей физиков. Она предпочитает работать дрелью, а не карандашом и участвовала в сооружении детектора в Фермилаб с начала и до конца.

Мы оба выступали с докладами на Римском фестивале науки, посвященном теме непознаваемого, поэтому договорились встретиться в холле той довольно странной гостиницы, оформленной по мотивам игры в поло, в которой мы жили. Поскольку Франклин расхаживает у себя на работе в ковбойских сапогах, я предположил, что ей, может быть, уютнее находиться в этой гостинице, покрытой изображениями лошадей, чем мне.

Однако ее появление было чрезвычайно драматичным: первым делом она упала с лестницы, ведущей в холл. Отряхнувшись, она как ни в чем не бывало подошла ко мне и села.

Мне очень хотелось узнать, думает ли она, что кварки – это последний уровень, или же под этими частицами, в открытии которых она принимала участие, могут скрываться другие структуры.

«Мы дошли до масштаба 10–18 метра. Следующие семь или восемь порядков величины изучать довольно трудно. Но там конечно же много чего может случиться. Странно думать, что я могу умереть до того – особенно если я и дальше буду падать с лестниц, – что я могу умереть еще до того, как мы продвинемся дальше».

Я спросил, могут ли существовать фундаментальные ограничения того, что мы можем знать.

«Точно есть пределы, которые не будут преодолены при моей жизни, но я не уверена, есть ли другие ограничения. Когда в экспериментальной физике говорят, что чего-то никак нельзя сделать, это лучший способ устроить так, чтобы кто-нибудь придумал, как это можно сделать. В течение моей жизни я никогда не смогу измерить что-то, распадающееся за 10–22 секунды. Я не думаю, что это возможно. Но это не значит, что можно доказать, что это в принципе непознаваемо.

Раньше мы не могли себе представить лазер или атомные часы, да? Я думаю, что все ограничения в физике будут атомными, потому что все, что мы делаем, связано с атомами. Я понимаю, это звучит странно, но в детекторе должны быть атомы».

Интересно, как Эйнштейн вывел существование атомов из наблюдения того, как они воздействуют на что-то видимое – на зерна пыльцы или на угольную пыль. А сегодня мы знаем о существовании кварков по тому, как частицы отражаются от протонов. Так что, возможно, существуют способы заглянуть еще глубже.

«Я уверена, что Гейзенберг или Бор и представить себе не могли то, что мы сегодня можем измерить. Наверное, то же самое можно будет сказать и о нашем поколении… хотя мы-то, конечно, гораздо умнее», – смеется она.

Мне кажется, что эта проблема встает перед каждым поколением. Как можно знать заранее, какие хитрые новые методы можно придумать, чтобы копнуть ткань Вселенной еще немножко глубже? Но Франклин интересует еще и другой вопрос: какую часть того, что уже содержится в данных, получаемых из детекторов нынешнего поколения, мы не замечаем?

«Многие молодые ученые, работающие в моей области, не верят, что можно найти что-то новое, не предсказанное теоретиками. Это очень грустно. Когда мы натыкаемся на что-то, что не было предсказано теорией, мы чаще всего считаем, что это ошибка, и отбрасываем такой результат как флуктуацию. Это меня беспокоит, потому что наши эксперименты устроены таким образом, что там есть триггеры, которые срабатывают на определенные вещи – но только на те вещи, которые мы ищем, а не на другие. Интересно, что мы при этом пропускаем».

Такая судьба, видимо, чуть не постигла пентакварк, об открытии которого недавно объявили в ЦЕРН. Его чуть не посчитали шумом. Поскольку я писал книгу о том, чего мы знать не можем, Франклин спросила меня, согласился бы я узнать все, если бы это можно было сделать одним нажатием кнопки. И когда я уже протянул руку к ее гипотетической кнопке, чтобы продать душу дьяволу за знание доказательств всех теорем, над которыми я работаю, она меня остановила.

– Я бы этого не делала.

– Почему?

– Потому что так неинтересно. То есть существуют какие-то вещи: если бы я могла нажать на кнопку и тут же бегло заговорить по-итальянски, я бы нажала. Но не в науке. Мне кажется, дело в том, что так на самом деле нельзя ничего понять. Нужно приложить усилия. Нужно пытаться что-то измерить, стараться что-то понять.

Я был заинтригован. Неужели она не нажала бы на кнопку, если бы могла узнать, существуют ли за кварками другие частицы?

– Если бы мне просто объяснили методику, это было бы здорово. Но одна из главных причин, по которым мы вообще занимаемся наукой, – это появление новых идей. Бороться за знания интереснее. Так что с кнопкой все не так просто.

Мне кажется, что Франклин просто нравится делать новые вещи, искать новые частицы, управляя погрузчиками и сверля дырки в бетоне, а не размышлять за письменным столом.

– Экспериментаторы кое в чем похожи на ковбоев. Зааркань-ка вон ту штуку и тащи ее сюда. И не обращай внимания на того парня, который сидит в углу и о чем-то там думает. Когда мне будет 60, я стану менее категоричной и предубежденной. Уйду из ковбоев… Нет, не хочу уходить из ковбоев… Не знаю… Это трудно. Ковбои не так-то просты. Ходить на работу в ковбойских сапогах – это своего рода позиция.

С этими словами она села в такси и укатила в римский закат, навстречу новым научным приключениям, в поисках знаний, которые можно было бы заарканить.

Виолончель или труба?

В самом ли деле кварки, в открытии которых участвовала Франклин, образуют самый последний рубеж, или же когда-нибудь их можно будет разделить на меньшие части подобно тому, как атом разделили на электроны, протоны и нейтроны, а их, в свою очередь, – на кварки?

Многим физикам кажется, что имеющиеся сейчас экспериментальные данные в сочетании с математической теорией, которая обосновывает эти эксперименты, дают нам ответ на вопрос о сущности действительно неделимых частиц, из которых состоит игральная кость. Как все 118 элементов периодической системы могут быть сведены к различным комбинациям базовых структурных элементов трех видов – электронов, протонов и нейтронов, – так и сотни новых частиц, обнаруженных в столкновениях космических лучей, могут быть сведены к простому набору ингредиентов. Дикое разнообразие зверинца частиц укрощено. Но насколько можно быть уверенным в том, что его ворота не откроются снова и из них не появятся новые звери? По правде говоря, физики не знают, закончена ли эта история.

В симметрической модели, лежащей в основе систематизации этих частиц, треугольник, соответствующий кваркам, является последним неделимым слоем из всех, описывающих различные физические представления группы SU(3). Математика симметрии предполагает, что мы достигли дна. Треугольник, соответствующий кваркам, образует неделимый слой, из которого образуются все остальные слои. То есть математика симметрии говорит нам, что мы добрались до неделимого. И все же не повторяем ли мы ошибку Гелл-Манна, отвергшего сперва идею кварков на том основании, что они имеют дробный заряд? Однако у кварков и электронов есть еще одна характеристика, которая до некоторой степени обосновывает веру в их неделимость: они, по-видимому, не имеют объема, но ведут себя так, как если бы они были сосредоточены в одной точке.

С точки зрения математики геометрические формы образуются трехмерными телами, двумерными плоскостями, одномерными прямыми и ноль-мерными точками. Странность заключается в том, что все они были задуманы как абстрактные объекты, не имеющие физического воплощения в нашем трехмерном мире. Действительно, что такое прямая линия? Если провести линию на бумаге и посмотреть на нее под микроскопом, можно увидеть, что она имеет некоторую ширину. То есть на самом деле это не прямая. Собственно говоря, она имеет еще и некоторую высоту, потому что атомы, нанесенные карандашом на бумагу, образуют на ней маленький графитовый (или из чего там сейчас делают карандаши) хребет.

Точно так же точку в пространстве можно определить ее координатами GPS, но никто не ожидает, что какой-нибудь объект будет расположен только в этой точке и нигде больше. Точку нельзя увидеть. Ее размеры равны нулю. И тем не менее электрон во многих отношениях ведет себя так, как если бы он был сосредоточен в единственной точке пространства, и так же ведут себя кварки внутри протона и нейтрона. Картина рассеяния электронов на электронах, а также на кварках внутри протонов и нейтронов имеет смысл только в модели, в которой эти частицы не имеют объема. Если придать им объем, рассеяние будет выглядеть по-другому. А если они действительно являются точечными частицами, трудно ожидать, что они могут быть разобраны на части.

Но тогда как быть с массой электрона? Чему равна плотность электрона? Отношению его массы к объему. Объем равен нулю. Результат деления на ноль равен бесконечности. Бесконечности? Что же, каждый электрон есть маленькая черная дыра? Тут мы полностью переходим на территорию квантового мира, поскольку, как мы увидим на следующем «рубеже», ответить на вопрос о том, где находится частица, оказывается не так легко, как можно было бы ожидать.

Значит ли это, что дискретные ноты трубы победили непрерывное глиссандо виолончели? Очень трудно выяснить, закончилась ли эта история. Атомы считались неделимыми из-за неделимости целых чисел, которые управляли их возможными сочетаниями. И все же в конце концов они распались на мелкие части, которые и составляют наше современное представление о строении Вселенной. Почему же не предположить, что, по мере того как мы копаем глубже и глубже, история будет повторяться и преподносить нам все новые и новые сюрпризы? Почему вообще должно существовать какое-то начало, первый уровень, из которого сделаны все остальные? Это классическая проблема бесконечной регрессии, с которой мы еще не раз встретимся. Как сказала однажды одна пожилая дама ученому, высмеивавшему ее теорию о том, что мир покоится на спине черепахи: «Вы очень, очень умный молодой человек, но только там одна черепаха на другой – и так до самого конца!»[51]51
  Дю Сотой приводит этот анекдот так, как он изложен у Стивена Хокинга в его «Краткой истории времени».


[Закрыть]

Даже если электроны и кварки – это частицы, каждая из которых сосредоточена в единственной точке пространства, нет причин, по которым точка не могла бы состоять из двух точек и ее нельзя было бы растянуть на части. А может быть, существуют скрытые измерения, с которыми мы еще не умеем взаимодействовать? Таково предположение теории струн. В ней считается, что точечные частицы на самом деле представляют собой одномерные струны, вибрирующие на резонансных частотах, причем разные частоты создают разные частицы. Кажется, что мы описали полный круг и вернулись к Пифагоровой модели мира. Возможно, виолончель все-таки побеждает трубу, а фундаментальные частицы – это на самом деле просто вибрирующие струны.

Если задаться поисками того, чего мы никогда не сможем узнать, то вопрос о том, из чего состоит игральная кость, вполне можно отнести к этой категории. История того, что мы знаем об этой кости, полна предостережений. Окажемся ли мы когда-нибудь в положении, в котором не останется неоткрытых уровней реальности? Сможем ли мы когда-нибудь узнать, что наша новейшая теория – это последняя теория?

Тут, однако, может возникнуть еще одна трудность. Современная теория предельно малого – квантовая физика – утверждает, что в теории имеются неустранимые пределы познания. Как будет показано на следующем «рубеже», пытаясь разделить игральную кость на все более мелкие части, в некоторый момент мы натыкаемся на барьер, который не можем преодолеть.

Рубеж третий: Банка урана

5

Абсолютно необходимое условие прогресса в науке – неопределенность как фундаментальная часть внутренней природы ученого.

Ричард Фейнман[52]52
  «Взаимосвязь науки и религии» (The Relation of Science and Religion, лекция 1956 г.), перевод Т. А. Ломоносова.


[Закрыть]

Чего только не купишь в интернете! Сегодня почта доставила мне баночку радиоактивного урана-238. Реклама уверяла меня, что она «полезна для опытов по ядерной физике». Меня порадовали комментарии других покупателей: «Очень рад, что мне больше не придется покупать его у ливийцев на парковке торгового центра». Другой покупатель был не столь доволен: «Я приобрел этот продукт 4,47 миллиарда лет назад, а сегодня я открыл банку, и она была наполовину пуста».

Уран встречается в природе, и меня заверили в том, что баночка, стоящая сейчас на моем столе, не представляет никакой опасности. Инструкция только предупреждает меня не размалывать уран и не глотать его. На упаковке написано, что уран испускает излучение с частотой 766 импульсов в минуту. Он испускает несколько видов излучения – альфа-частицы, бета-частицы и гамма-лучи. Но инструкция не может гарантировать, в какой именно момент уран испустит следующую частицу.

Собственно говоря, современная квантовая физика утверждает, что предсказать этот момент вообще невозможно. До сих пор не разработано механизма, который позволил бы точно предсказать, когда радиоактивный уран излучит очередной импульс. Постньютоновская физика, которую мы рассматривали на первом «рубеже», предполагала, что все во Вселенной теоретически должно подчиняться детерминистическому набору математических уравнений и управляться им. Но в начале XX в. группа молодых ученых – Гейзенберг, Шредингер, Бор, Эйнштейн и другие – произвела революцию и утвердила новые воззрения на наши реальные знания о Вселенной. Детерминизм вышел из игры. Теперь, судя по всему, тон задает случайность.

Чтобы понять это неизвестное, необходимо разобраться в одной из самых сложных и противоречащих здравому смыслу теорий за всю историю науки – в квантовой физике. Чтобы оценить трудность этой задачи, достаточно послушать, как те, кто провел в этом мире всю свою жизнь, рассказывают о сложностях, с которыми они сталкивались, осваивая причудливые изгибы его логики. Вернер Гейзенберг вспоминал, как после своих революционных открытий в квантовой физике он «снова и снова повторял вопрос о том, может ли природа действительно быть такой абсурдной, какой она кажется нам в этих атомных экспериментах». Эйнштейн заявил: «Если это правда, то это означает конец науки». Шредингер был настолько потрясен последствиями своей работы, что признавал: «Мне это не нравится, и я сожалею, что приложил к этому руку». Тем не менее эта теория остается одним из самых мощных и испытанных средств, существующих в науке. Ничто не смогло даже поколебать ее статуса одного из величайших научных достижений прошлого века. Так что и нам не остается ничего другого, как нырнуть в этот неопределенный мир. У Фейнмана есть один полезный совет для отправляющихся в такую квантовую экспедицию:

Я собираюсь рассказать вам, как ведет себя Природа. И если вы просто согласитесь, что, возможно, она ведет себя именно таким образом, то вы увидите, что это очаровательная и восхитительная особа. Если сможете, не мучайте себя вопросом «Но как же так может быть?», ибо в противном случае вы зайдете в тупик, из которого еще никто не выбирался. Никто не знает, как же так может быть[53]53
  «Характер физических законов» (The Character of Physical Law, 1965), перевод В. П. Голышева и Э. Л. Наппельбаума.


[Закрыть]
.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации