Электронная библиотека » Маркус Сотой » » онлайн чтение - страница 4


  • Текст добавлен: 10 января 2017, 12:10


Автор книги: Маркус Сотой


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 38 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:
- 100% +
Судьба Солнечной системы

Если Ньютон – мой герой, то французский математик Анри Пуанкаре в моей истории о предсказании будущего должен быть злодеем. И все же я не могу винить его за то, что он нанес один из самых сокрушительных ударов всем желающим узнать, что произойдет дальше. Он и сам был не особенно рад своему открытию с учетом того, что оно обошлось ему весьма недешево.

Пуанкаре, родившийся столетием позже Лапласа, разделял веру своего соотечественника во Вселенную, устроенную наподобие часового механизма, управляемую математическими законами и совершенно предсказуемую. «Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент».

Понимание устройства мира было, с точки зрения Пуанкаре, главным стимулом занятий математикой. «В математике фактами, заслуживающими изучения, являются те, которые ввиду их сходства с другими фактами способны привести нас к открытию физического закона»[24]24
  «Наука и метод», гл. III. Перевод под ред. Л. С. Понтрягина. Если быть точным, в оригинале Пуанкаре пишет: Les faits mathématiques dignes d’être étudiés, ce sont ceux qui, par leur analogie avec d’autres faits, sont susceptibles de nous conduire à la connaissance d’une loi mathématique, de la même façon que les faits expérimentaux nous conduisent à la connaissance d’une loi physique, т. е. «В математике фактами, заслуживающими изучения, являются те, которые ввиду их сходства с другими фактами способны привести нас к открытию какого-нибудь математического закона, совершенно подобно тому, как экспериментальные факты приводят к открытию физического закона».


[Закрыть]
.

Хотя законы движения Ньютона породили целый массив математических уравнений, описывающих эволюцию физического мира, большинство таких уравнений все еще чрезвычайно сложно было решить. Возьмем уравнения состояния газа. Газ можно считать состоящим из молекул, сталкивающихся друг с другом как мельчайшие бильярдные шары, и будущее поведение газа теоретически подчиняется законам движения Ньютона. Но само количество таких шариков означает, что любое точное решение этой задачи недостижимо. Статистические или вероятностные методы по-прежнему оставались значительно лучшим средством понимания поведения миллиардов молекул.

Однако в одном случае число бильярдных шаров было достаточно малым, и решение задачи представлялось достижимым. Речь идет о Солнечной системе. Пуанкаре был одержим вопросами предсказания судьбы планет, кружащихся навстречу своему будущему.

Гравитационное притяжение между одной планетой и другой, находящейся на некотором расстоянии от первой, такое же, как если бы вся масса планеты была сосредоточена в ее центре тяжести, и потому для определения судьбы, ожидающей Солнечную систему, планеты можно считать точками в пространстве, как делал Ньютон. Это значит, что для описания эволюции Солнечной системы достаточно трех координат, определяющих положение центра масс каждой из планет в пространстве, и еще трех чисел, соответствующих их скорости по каждому из трех пространственных направлений. Сила, воздействующая на каждую планету, определяется гравитационными силами, действующими со стороны всех остальных планет. При наличии всей этой информации остается только применить второй закон Ньютона, чтобы проложить курс этих планет в самое отдаленное будущее.

Единственная проблема состоит в том, что математическое решение все равно остается чрезвычайно сложным. Ньютон решил задачу поведения двух планет (или планеты и Солнца). Они движутся по эллиптическим траекториям, причем общий фокус таких эллипсов расположен в их общем центре тяжести. Это движение повторяется периодически до скончания времен. Однако, попытавшись ввести в задачу третью планету, Ньютон зашел в тупик. Казалось бы, расчет поведения Солнечной системы, состоящей, скажем, из Солнца, Земли и Луны, должен быть достаточно простым, но в нем приходится решать уравнение с 18 переменными: 9 переменными положений (координатами) и 9 составляющими скоростей всех этих небесных тел. Ньютон признавал, что «одновременное рассмотрение всех причин движения и определение такого движения точными законами, допускающими несложные расчеты, превосходит, если я не ошибаюсь, возможности любого человеческого разума».

Разрешение этой проблемы получило новый толчок, когда король Швеции и Норвегии Оскар II решил предложить в честь своего шестидесятилетия премию за решение одной из еще нерешенных математических задач. На свете не так много монархов, которые отмечали бы свои юбилеи математическими задачами, но Оскар интересовался математикой еще с тех пор, когда он сам блистал в этой области, будучи студентом университета в Упсале.

Его величество Оскар II, желая дать новое подтверждение своего интереса к успехам математической науки, решил выдать 21 января 1889 г. награду за важное открытие в области высшего математического анализа. Награда состоит из золотой медали с изображением Его Величества стоимостью в тысячу франков и премии в две тысячи пятьсот крон.

Была создана комиссия из трех выдающихся математиков, которые должны были выбрать несколько подходящих математических проблем и оценить работы претендентов. Одно из предложенных ими заданий состояло в представлении математического доказательства устойчивости Солнечной системы. Будет ли она и дальше работать как часы, или же в какой-то момент в будущем Земля может улететь в пространство и покинуть пределы Солнечной системы?

Чтобы ответить на этот вопрос, необходимо было решить те самые уравнения, которые завели в тупик Ньютона. Пуанкаре полагал, что его мастерства должно быть достаточно для победы в конкурсе. Математики часто используют следующий прием: они пытаются сначала решить задачу в упрощенном варианте, чтобы понять, имеет ли она решение. Поэтому Пуанкаре начал с задачи трех тел. Но, поскольку и она была слишком сложной, он решил еще более упростить задачу. Вместо того чтобы рассматривать Солнце, Землю и Луну, почему бы не попытаться разобраться с системой, состоящей из двух планет и пылинки? Так как пылинка не будет влиять на планеты, можно предположить, что они будут попросту вращаться одна вокруг другой по эллиптическим траекториям в соответствии с решением Ньютона. И в то же время сама пылинка будет испытывать воздействие гравитационных сил обеих планет. Пуанкаре взялся за воссоздание траектории, описываемой такой пылинкой. Некоторое понимание этой траектории внесло бы интересный вклад в решение исходной задачи.

Хотя ему и не удалось полностью решить задачу, представленной им работы было более чем достаточно для получения премии короля Оскара. Пуанкаре смог доказать существование интересного класса траекторий, воспроизводящих самих себя, так называемых периодических траекторий. Периодические орбиты устойчивы по определению, так как они снова и снова повторяются во времени, подобно эллипсам, которые заведомо описывают две планеты системы.

Французские власти были чрезвычайно обрадованы тем, что награду получил их соотечественник. В XIX в. Германия опередила Францию по части математики, так что французские академики немедленно провозгласили победу Пуанкаре доказательством возрождения французской математики. Гастон Дарбу, непременный секретарь Французской академии наук, заявил:

Начиная с этого момента имя Анри Пуанкаре стало известно широкой публике, которая привыкла затем видеть в нашем коллеге не просто особенно многообещающего математика, но великого ученого, которым Франция по праву может гордиться.

Маленькая ошибка и ее большие последствия

Решение Пуанкаре готовилось к изданию в специальном выпуске журнала Acta Mathematica Шведской королевской академии наук. И тут наступил тот самый момент, которого больше всего на свете боится каждый математик. Худший кошмар любого математика. Пуанкаре думал, что его работе ничто не угрожает. Он проверил каждый шаг своего доказательства. И перед самой публикацией один из редакторов журнала усомнился в одном из этапов математического рассуждения.

Пуанкаре считал, что малые изменения положения планет, небольшие округления в некоторых местах, были допустимы, так как они могли вызвать лишь малые изменения предсказанных орбит. Это предположение казалось вполне разумным. Но никакого обоснования этому допущению приведено не было. А в математическом доказательстве каждый шаг, каждое предположение должны быть основаны на строгой математической логике.

Редактор попросил Пуанкаре как-либо объяснить этот пробел в доказательстве. Но, когда Пуанкаре попытался обосновать этот шаг, он осознал, что допустил серьезную ошибку. Пытаясь ограничить ущерб для своей репутации, он написал председателю комитета по присуждению премии Гёсте Миттаг-Леффлеру:

Последствия этой ошибки серьезнее, чем я предполагал вначале. Не скрою от Вас, насколько огорчило меня это открытие […]. Не знаю, признаете ли Вы оставшиеся результаты достойными той высокой награды, которую Вы им присудили. (Во всяком случае, я могу лишь признаться Вам как верному другу в своем замешательстве.) Я напишу Вам подробнее, когда буду яснее понимать положение.

Миттаг-Леффлер решил известить других членов жюри:

Работа Пуанкаре обладает такой редкой глубиной и творческой силой, что она несомненно откроет новую эпоху в анализе и его приложениях к астрономии. Однако разъяснения необходимо значительно расширить, и в данный момент я прошу многоуважаемого автора просветить меня по некоторым важным вопросам.

Сражаясь с возникшей проблемой, Пуанкаре понял, что он попросту был неправ. Даже малое изменение начальных условий может привести к возникновению разительно отличающихся орбит. Предложенное им приближение было недопустимым. Его предположение было ошибочным.

Пуанкаре телеграфировал печальные новости Миттаг-Леффлеру и попытался остановить публикацию своей статьи. Он писал ему в смущении:

Может случиться, что малые различия в начальных условиях порождают чрезвычайно большие расхождения в результирующих явлениях. Малая ошибка в первых порождает огромную ошибку в последних. Предсказания становятся невозможными.

Это сообщение «чрезвычайно озадачило» Миттаг-Леффлера:

Не то чтобы я сомневался в том, что Ваша работа в любом случае будет воспринята большинством геометров как гениальное произведение и станет отправной точкой для всех дальнейших трудов по небесной механике. Не думайте поэтому, что я сожалею о присуждении Вам премии […] Но хуже всего то, что Ваше письмо пришло слишком поздно и статья уже была разослана.

На карту была поставлена репутация Миттаг-Леффлера, который не обнаружил ошибку до публичного присуждения премии Пуанкаре. Не так следовало бы отмечать юбилей монарха! «Пожалуйста, не говорите никому ни слова об этой прискорбной истории. Завтра я сообщу Вам все подробности».

Следующие несколько недель прошли в попытках изъять отпечатанные экземпляры статьи, не возбуждая ничьих подозрений. Миттаг-Леффлер предложил Пуанкаре оплатить печать исходного варианта. Пристыженный Пуанкаре согласился, хотя стоимость тиража составила более 3500 крон, то есть на тысячу больше той премии, которую он изначально завоевал.

В попытке исправить положение Пуанкаре попробовал разобраться со своей ошибкой, понять, где и почему он был неправ. В 1890 г. он написал вторую, расширенную статью, в которой объяснял свое предположение о возможности внезапного разлета, по-видимому, устойчивых систем вследствие чрезвычайно малых изменений.

Открытие Пуанкаре, вызванное его ошибкой, привело к появлению одной из важнейших математических концепций прошлого века – понятия хаоса. Это открытие установило существенные пределы тому, что может познать человечество. Пусть я выписал все уравнения движения игральной кости, но что, если моя кость ведет себя подобно планетам Солнечной системы? В соответствии с открытием Пуанкаре, даже одна маленькая ошибка в определении начального положения кости может разрастись в огромное расхождение исхода броска к тому моменту, как кость закончит свое движение по столу. Значит ли это, что будущее игральной кости из Лас-Вегаса сокрыто завесой математики хаоса?


Хаотическая траектория единичной планеты, вращающейся вокруг двух солнц

2

Если бы природа не была прекрасной, она не стоила бы того, чтобы быть познанной, а если бы природа не стоила того, чтобы быть познанной, то и жизнь не стоила бы того, чтобы быть прожитой.

Анри Пуанкаре[25]25
  Перевод А. В. Кубицкого.


[Закрыть]

Когда я учился в университете, я потратил кучу времени, играя в бильярд в комнате отдыха студенческого общежития. Я мог бы сделать вид, что занимался там исследованиями углов и всего такого прочего, но на самом деле я попросту убивал время. Это был хороший способ оттянуть тот момент, когда мне нужно было браться за решение заданных на очередную неделю задач, с которым я не мог справиться. Тем не менее бильярдный стол таит в себе множество интересной математики. И эта математика имеет самое прямое отношение к моему стремлению познать игральную кость.

Если запустить шар по бильярдному столу и отметить его траекторию, а затем запустить другой шар в направлении, очень близком к первому, то второй шар опишет траекторию, очень похожую на путь первого. Пуанкаре изначально считал, что тот же принцип применим и к Солнечной системе. Если отправить планету по слегка отличающейся траектории, то развитие Солнечной системы пойдет по очень похожему пути. Это интуитивно очевидно для многих из нас: малое изменение изначальной траектории планеты не должно привести к значительным изменениям пути ее движения. Но Солнечная система, по-видимому, играет на своем бильярде в несколько более интересную игру, чем я играл студентом.

Как это ни удивительно, если изменить форму бильярдного стола, то такое интуитивное представление окажется неправильным. Например, если запускать шары по столу, имеющему форму стадиона с полукруглыми торцами и прямыми боковыми сторонами, то их траектории будут разительно отличаться друг от друга, несмотря на то что шары были запущены в почти одном и том же направлении. Это визитная карточка хаоса – чувствительность к крайне малым изменениям начальных условий.


Две быстро расходящиеся траектории бильярдного шара на столе в форме стадиона


Поэтому моя задача состоит в том, чтобы установить, предсказуемо ли падение игральной кости подобно обычной игре в бильярд, или же эта кость играет в бильярд хаотический.

Дьявол после запятой

Хотя считается, что лавры отца хаоса принадлежат Пуанкаре, такая чувствительность многих динамических систем к малым изменениям была на удивление мало известна в течение многих десятилетий XX в. Собственно говоря, для обретения идеями хаоса более широкой известности потребовалось повторное открытие этого явления ученым Эдвардом Лоренцем, который, как и Пуанкаре, думал, что допустил какую-то ошибку.

В 1963 г., когда Лоренц, работавший в Массачусетском технологическом институте метеорологом, обсчитывал на своем компьютере уравнения изменения температуры динамической текучей среды, он решил, что одна из моделей требует более длительного обсчета. Он взял некоторые данные, полученные раньше, и снова ввел их в машину, собираясь перезапустить модель начиная с этой точки.

Вернувшись после чашки кофе, он с ужасом обнаружил, что компьютер не воспроизвел предыдущие результаты, а очень быстро выдал значительно расходящиеся с ними предсказания изменений температуры. Сначала он не мог понять, что происходит. Если ввести в уравнение то же самое число, на выходе не ожидаешь получить другой ответ. Но через некоторое время он понял, в чем было дело: он ввел не те же самые числа. В использованной им компьютерной распечатке данных значения были указаны с точностью до третьего знака после запятой, а вычисления проводились с точностью до шестого знака.

Хотя числа действительно отличались друг от друга, расхождения между ними были лишь в четвертом знаке после запятой. Трудно было ожидать, что это приведет к такой большой разнице, но Лоренца поразило то влияние, которое такое малое расхождение оказало на результат. Ниже показаны два графика, созданные с использованием одного и того же уравнения, но с чрезвычайно малым различием между данными, введенными в уравнение. В одном графике значение входного параметра равно 0,506127. Во втором графике оно округлено до 0,506. Хотя графики начинаются со сходных траекторий, их поведение очень быстро становится совершенно разным.



Модель, которую обсчитывал Лоренц, была упрощенным вариантом метеорологических моделей, анализирующих поведение атмосферных потоков под влиянием перепадов температуры. Его повторное открытие того, как малые изменения начального состояния системы могут оказать такое сильное влияние на исход, имело огромное значение для наших попыток использовать математические уравнения для предсказания будущего. Как писал сам Лоренц:

Два состояния, между которыми имеются неощутимые различия, могут развиться в существенно разные состояния. Любая ошибка в наблюдениях настоящего состояния – а в любой реальной системе такие ошибки представляются неизбежными – может сделать приемлемое предсказание состояния в отдаленном будущем невозможным.

Месть кузнечика

Когда Лоренц рассказал о своей находке коллеге, тот ответил: «Эдвард, если твоя теория справедлива, то один взмах крыльев чайки может навечно изменить ход истории».

Чайка в конце концов уступила место знаменитой теперь бабочке в 1972 г., когда Лоренц доложил о своем открытии Американской ассоциации содействия развитию науки[26]26
  American Association for the Advancement of Science, AAAS.


[Закрыть]
в докладе, озаглавленном «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?».

Интересно отметить, что и чайку, и бабочку, возможно, обогнал кузнечик. Оказывается, еще в 1898 г. профессор У. С. Франклин осознал то чудовищное влияние, которое сообщество насекомых может оказывать на погоду. Вот что он писал в рецензии на одну книгу:

Бесконечно малая причина может породить конечный эффект. Таким образом, долговременный подробный прогноз погоды невозможен, а единственное возможное предсказание представляет собой предположение о последующих тенденциях и свойствах шторма, выведенное на основе его предыдущих стадий; причем точность такого предсказания следует оценивать с учетом того, что полет кузнечика в Монтане может развернуть шторм, идущий на Филадельфию, в сторону Нью-Йорка!

Удивительное положение. Уравнения, открытые наукой, дают совершенно детерминистическое описание эволюции многих динамических систем, подобных погоде. И тем не менее во многих случаях предсказания, которые можно из них получить, нам недоступны, так как любые измерения положения или скорости полета частицы могут быть лишь приближениями к истинным условиям.

Именно поэтому, когда британская метеорологическая служба составляет прогноз погоды, она берет данные, зарегистрированные метеостанциями, разбросанными по всей стране, и, вместо того чтобы использовать их в уравнениях, метеорологи производят несколько тысяч модельных расчетов, варьируя данные в некотором диапазоне значений. В течение некоторого времени прогнозы остаются достаточно близкими, но начиная приблизительно с пятого дня от текущей даты результаты зачастую расходятся так далеко друг от друга, что один набор данных может предсказывать приход в Великобританию аномально жаркой погоды, в то время как изменение нескольких знаков после запятой дает предсказание ливней, которые затопят всю страну.


Исходя из почти одинаковых начальных условий, прогноз А предсказывает, что через четыре дня на всех Британских островах будут сильные ветры и дожди, а прогноз В – приход с Атлантики зоны высокого давления


Великий шотландский физик Джеймс Клерк Максвелл сформулировал в своей книге «Материя и движение», опубликованной в 1873 г., важное отличие системы детерминистической, но непознаваемой: «Существует принцип, на который часто ссылаются: “Одинаковые причины всегда производят одинаковые следствия”»[27]27
  Здесь и далее цитаты из работы Максвелла даны в переводе под ред. Н. Н. Андреева.


[Закрыть]
. Это безусловно справедливо в отношении математического уравнения, описывающего динамическую систему. Но Максвелл продолжает: «Существует другой принцип, который не следует смешивать с приведенным [выше]: “Подобные причины производят подобные следствия”. Это справедливо лишь в том случае, если небольшие изменения начальных условий производят лишь небольшие изменения в конечном состоянии системы». Ложность именно этого принципа выявило в XX в. открытие теории хаоса.

Такая чувствительность к малым изменениям начальных условий может сорвать мои попытки использовать выписанные мной уравнения для предсказания будущего игральной кости. Уравнения у меня есть, но могу ли я быть уверен в точности определения угла, под которым кубик вылетает из моей руки, скорости его вращения, расстояния до стола?

Конечно, не все так уж безнадежно. Бывают случаи, в которых малые изменения не приводят к разительным отклонениям результатов уравнений, как в примере траекторий на классическом бильярдном столе. Важно осознавать, когда познание невозможно. Прекрасный пример осознания момента, начиная с которого невозможно узнать, что произойдет дальше, был открыт математиком Робертом Мэем, когда он анализировал уравнения роста популяций.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации