Автор книги: Маттео Пасквинелли
Жанр: Публицистика: прочее, Публицистика
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]
Множественные истории ИИ
Написание истории ИИ в нынешней непростой ситуации требует принимать в расчет обширную идеологическую конструкцию: в компаниях Кремниевой долины и высокотехнологичных университетах пропаганда всемогущества ИИ стала нормой и порой даже принимает форму фольклорных представлений о машине, обретающей «сверхчеловеческий разум» и «самосознание». Хорошей иллюстрацией подобных представлений служит апокалиптический нарратив из «Терминатора», согласно которому системы ИИ достигли технологической сингулярности и стали представлять «экзистенциальную угрозу» для выживания человечества на планете – именно это проповедует среди прочих футуролог Ник Бостром[36]36
Бостром Н. Искусственный интеллект. Этапы. Угрозы. Стратегии. М: Манн, Иванов и Фербер, 2016.
[Закрыть]. В мифологиях технологической автономии и машинного интеллекта ничего нового нет: они были придуманы в индустриальную эпоху для мистификации роли рабочих и субалтернов[37]37
Schaffer S. Babbage’s Dancer and the Impresarios of Mechanism // Cultural Babbage: Technology, Time and Invention. Francis Spufford and Jenny Uglow (eds). London: Faber & Faber, 1996; Schaffer S. Enlightened Automata // The Sciences in Enlightened Europe. William Clark, Jan Golinski, and Simon Schaffer (eds). Chicago: University of Chicago Press, 1999; Truitt E. R. Medieval Robots: Mechanism, Magic, Nature, and Art. Philadelphia: University of Pennsylvania Press, 2015; Voskuhl A. Androids in the Enlightenment: Mechanics, Artisans, and Cultures of the Self. Chicago: University of Chicago Press, 2013.
[Закрыть]. Описывая культ автоматов в эпоху Бэббиджа, Шаффер сформулировал это так: «Чтобы машины казались разумными, требовалось спрятать источник энергии, то есть рабочие руки, которые их поддерживали и направляли»[38]38
Schaffer S. Babbage’s Intelligence: Calculating Engines and the Factory System // Critical Inquiry 21, no. 1 (1994): 204. См. также: Geoghegan B. Orientalism and Informatics: The Alterity in Artificial Intelligence, from the Chess-Playing Turk to Amazon’s Mechanical Turk // Ex-Position 43 (June 2020): 45–90.
[Закрыть].
Помимо спекулятивных нарративов, которые никогда не вдаются в достаточные технические подробности, чтобы прояснить, какие именно алгоритмы реализуют «сверхинтеллект» (super-intelligence), сегодня можно найти множество технических историй ИИ, призванных сделать понятными его сложные алгоритмы[39]39
См., например: Nilsson N. The Quest for Artificial Intelligence: A History of Ideas and Achievements. Cambridge: Cambridge University Press, 2010.
[Закрыть]. Соответствующие технические обзоры часто выражают ожидания корпораций от «верховного алгоритма»: чтобы он, с чудесной скоростью сжимая данные, решал перцептивные и когнитивные задачи. Именно так неромантично описывается метрика, по которой оценивают «разумность» систем[40]40
Пример корпоративной повестки см.: Домингос П. Верховный алгоритм: как машинное обучение изменит наш мир. М.: Манн, Иванов и Фербер, 2016.
[Закрыть]. Эти публикации обычно игнорируют исторический контекст и социальные последствия автоматизации и рисуют линейную историю математических достижений, укрепляя тем самым технологический детерминизм[41]41
Об идее автономных технологий см. классический труд: Winner L. Autonomous Technology: Technics-Out-of-Control as a Theme in Political Thought. Cambridge, MA: MIT Press, 1977.
[Закрыть]. К техническим историям ИИ следует также отнести когнитивную науку, поскольку она в значительной степени развивалась под влиянием компьютерной науки. Эпохальный двухтомник Маргарет Боден «Ум как машина» (Mind as Machine; 2006) остается, пожалуй, самой подробной историей ИИ как когнитивной науки и показывает сложную генеалогию проекта без какого-либо идеологического пафоса.
Сопротивляясь узкотехническим подходам, все большее число авторов рассматривают социальные последствия ИИ с точки зрения рабочих, сообществ, меньшинств и общества в целом. Эти авторы ставят под вопрос виртуозность алгоритмов, которые якобы «разумны», но по факту усиливают неравенство, усугубляют гендерные и расовые предубеждения и укрепляют новую форму извлечения знаний. Благодаря книгам «Убийственно большие данные» (2016) Кэти О’Нил, «Алгоритмы угнетения» (2018) Сафии Нобл, «Гонка за технологиями» (2019) Рухи Беньямин, «Дискриминация данных» (2021) Уэнди Чан (Цюань Сицин) и другим работам расширяется новая область знания – критические исследования ИИ[42]42
О’Нил К. Убийственные большие данные: как математика превратилась в оружие массового поражения. М: АСТ, 2018; Noble S. U. Algorithms of Oppression: How Search Engines Reinforce Racism. New York: New York University Press, 2018; Benjamin R. Race after Technology: Abolitionist Tools for the New Jim Code. Cambridge: Polity, 2019; Wendy Hui Kyong Chun. Discriminating Data: Correlation, Neighborhoods, and the New Politics of Recognition. Cambridge, MA: MIT Press, 2021. Исследования в области ИИ в ходе развития сталкиваются с внутренними проблемами. Как отмечает Ярден Кац, порой «критически настроенные эксперты по ИИ используют свою позицию для укрепления белого господства с прогрессивным лицом… прибегая к языку, заимствованному у радикальных социальных движений» (см.: Katz Y. Artificial Whiteness. New York: Columbia University Press, 2020. P. 128).
[Закрыть]. В основе этого направления лежат более ранние исследования ИИ, кибернетики и рациональности времен холодной войны, среди которых стоит упомянуть «Искусственное понимание» (1998) Элисон Адамс, «Вычисления и человеческий опыт» (1997) Филипа Агре, «Закрытый мир» (1996) Пола Эдвардса, «Возможности вычислительных машин и человеческий разум» (1976) Джозефа Вайценбаума и статью Хьюберта Дрейфуса «Алхимия и искусственный интеллект» (1965) для корпорации RAND (эту работу обычно считают первой философской критикой ИИ)[43]43
Систематический обзор критических исследований ИИ см.: University of Cambridge, Department of History and Philosophy of Science. Mellon Sawyer Seminar. Histories of AI: A Genealogy of Power. May 2020 – July 2021. URL: www.ai.hps.cam.ac.uk.
[Закрыть].
Размещая свою книгу внутри растущего корпуса критических работ, я стремлюсь осветить социальную генеалогию ИИ и, что важнее, точку зрения социальных классов, которые развивают ИИ как особое представление о мире и особую эпистемологию. На формирование информационных технологий и ИИ в XX веке воздействовали различные социальные группы и конфигурации власти. Можно сказать, что парадигмы механического мышления (а затем и машинного интеллекта) возникли в разное время и разными способами не на плечах гигантов, а на плечах торговцев, солдат, командиров, бюрократов, шпионов, промышленников, менеджеров и рабочих[44]44
См.: Hadden R. On the Shoulders of Merchants: Exchange and the Mathematical Conception of Nature in Early Modern Europe. Albany, NY: State University of New York Press, 1994. См. также: Erickson P. et al. How Reason Almost Lost Its Mind: The Strange Career of Cold War Rationality. Chicago: University of Chicago Press, 2013.
[Закрыть]. Автоматизация труда представляет собой ключевой аспект каждой из этих генеалогий, но историография технологий часто это игнорирует, предпочитая взгляд «сверху».
Например, согласно популярной точке зрения подъем кибернетики, цифровых вычислений и ИИ детерминистски объясняется обильными финансовыми вливаниями со стороны Пентагона в годы Второй мировой и период холодной войны[45]45
О «военных априори» в истории вычислений см.: Winthrop-Young G. Drill and Distraction in the Yellow Submarine: On the Dominance of War in Friedrich Kittler’s Media Theory // Critical Inquiry 28, no. 4 (2002): 825–854.
[Закрыть]. Однако недавние исследования показали, что архипелаг «военной рациональности» был нестабилен и на нем культивировались только парадигмы, имевшие ключевое значение в моделировании гонки вооружений и логистических проблем, – теория игр и программирование линейных перемещений[46]46
См.: Erickson P. et al. How Reason Almost Lost Its Mind: The Strange Career of Cold War Rationality. Chicago: University of Chicago Press, 2013.
[Закрыть]. Как бы то ни было, государственный аппарат начал влиять на информационные технологии задолго до военной гонки Второй мировой. Автоматизация поиска, выдачи информации и статистического анализа начали применяться с целью механизировать государственную бюрократию и работу правительства по меньшей мере с переписи 1890 года, когда Герман Холлерит представил табулятор для обработки перфокарт. «Правительственная машина», по выражению Джона Агара, предвосхитила появление в эпоху цифровых технологий крупных центров обработки данных, к которым причастны не только интернет-компании, но и спецслужбы, что во всех подробностях описали математик Крис Уиггинс и историк Мэтью Л. Джонс[47]47
Agar J. The Government Machine: A Revolutionary History of the Computer. Cambridge, MA: MIT Press, 2003. См.: Wiggins Ch. and Jones M. L. How Data Happened: A History from the Age of Reason to the Age of Algorithms. New York: W. W. Norton, 2023.
[Закрыть]. Коротко говоря, свыше 100 лет сбор «больших данных» об обществе и его поведении стимулировал развитие информационных технологий – от табулятора Холлерита до машинного обучения[48]48
См.: Katz Y. Manufacturing an Artificial Intelligence Revolution // SSRN Electronic Journal (November 2017).
[Закрыть].
Таким образом, ИИ представляет собой продолжение техник анализа данных, которые сначала развивали государственные бюро, затем тайно культивировали спецслужбы, и в конечном счете закрепили интернет-компании в форме глобального бизнеса по надзору и прогнозированию. Однако такая интерпретация – это также не что иное, как взгляд «сверху», фокусирующийся на техниках контроля, а вовсе не на субъектах, над которыми контроль осуществляется. Мишени этой власти («надзорного капитализма» в определении Шошаны Зубофф) обычно описываются как пассивные субъекты, подверженные измерению и контролю, то есть не как акторы, обладающие автономией и собственной «разумностью». В этом заключается проблема критической теории вообще и критических исследований ИИ в частности. Хотя эти исследования и фиксируют воздействие ИИ на общество, они часто упускают из виду, что коллективные знания и труд – главный источник той самой «разумности», которую извлекает, кодирует и превращает в товар ИИ. Более того, их авторы зачастую не способны оценить вклад социальных форм и сил в ключевые этапы технологических изобретений и разработок. По-настоящему критическая интервенция должна бросить вызов гегемонистской позиции ИИ как уникального «хозяина» коллективного разума. Выступая против образовательной иерархии, итальянский философ Антонио Грамши однажды заявил, что «все люди – интеллектуалы»[49]49
Цитата из эссе «Формирование интеллигенции» из «Тюремных тетрадей» Грамши. – Прим. ред.
[Закрыть]. Аналогичным образом в этой книге я стремлюсь показать центральную роль социального интеллекта, поставляющего данные и расширяющего возможности ИИ. В ней также выдвинут более радикальный тезис, согласно которому именно социальный интеллект формирует изнутри саму структуру алгоритмов ИИ.
Моя книга задумана как экскурс в техническую и социальную историю ИИ и основана на социотехническом историческом подходе, который способен показать, какие экономические и политические факторы повлияли на внутреннюю логику ИИ. Вместо того, чтобы встать на сторону привычного социального конструктивизма и попытаться выйти за рамки новаторских идей социальной информатики, я применяю к ИИ метод исторической эпистемологии, который в истории науки продвигали, каждый по-своему, Борис Гессен, Генрик Гроссман, Жорж Кангийем и Гастон Башляр. Из недавних работ в этом направлении я выделяю исследования Института истории науки Макса Планка в Берлине[50]50
Критику социального конструктивизма см.: Winner L. Upon Opening the Black Box and Finding It Empty: Social Constructivism and the Philosophy of Technology // Science, Technology, and Human Values 18, no. 3 (1993): 362–378. Обзор исторической эпистемологии см.: Renn J. The Evolution of Knowledge: Rethinking Science for the Anthropocene, Princeton, NJ: Princeton University Press, 2020; Omodeo P. D. Political Epistemology: The Problem of Ideology in Science Studies. Berlin: Springer, 2019; Schmidgen H. History of Science // The Routledge Companion to Literature and Science. Bruce Clarke and Manuela Rossini (eds). London: Routledge, 2011.
[Закрыть]. Если социальный конструктивизм в целом подчеркивает влияние внешних факторов на науку и технику, историческая эпистемология делает акцент на диалектическое развертывание социальной практики, орудий труда и научных абстракций внутри экономической динамики. В этой книге я подхожу к изучению ИИ и алгоритмического мышления точно так же, как историческая и политическая эпистемология изучает роль механического мышления и научных абстракций (например, число и пространство) в социально-экономических преобразованиях Нового времени[51]51
О понятии числа см. главу 1. О механическом мышлении см.: Damerow P. et al. Exploring the Limits of Preclassical Mechanics: A Study of Conceptual Development in Early Modern Science. 2nd ed. New York: Springer, 2004; Schemmel M. Historical Epistemology of Space: From Primate Cognition to Spacetime Physics. New York: Springer, 2015.
[Закрыть].
В последние десятилетия политическую эпистемологию науки и технологий продвигали исследовательницы-феминистки – Хилари Роуз, Сандра Хардинг, Эвелин Фокс Келлер, Сильвия Федеричи и другие. Они убедительно показали, как возникновение современной рациональности и механического мышления (к которому относится ИИ) связано с превращением женского тела и коллективного тела вообще в послушную производительную машину[52]52
Rose H. and Rose St. (eds). The Radicalisation of Science. London: Macmillan, 1976; Harding S. The Science Question in Feminism. Ithaca, NY: Cornell University Press, 1986; Keller E. F. Reflections on Gender and Science. New Haven, CT: Yale University Press, 1985; Federici S. Caliban and the Witch: Women, the Body, and Primitive Accumulation. New York: Autonomedia, 2004.
[Закрыть]. В традиции политической эпистемологии мы еще должны обратить внимание на анализ трудового процесса, предложенный Гарри Браверманом в работе «Труд и монополистический капитал» (Labor and Monopoly Capital; 1974), а также на исследования итальянских рабочих, проводившиеся операистами, в частности, Романо Альквати на заводе ЭВМ Olivetti в Ивреа еще в 1960 году[53]53
См. главу 5. О новом подходе к исследованию рабочих см.: Woodcock J. Towards a Digital Workerism: Workers’ Inquiry, Methods, and Technologies // Nanoethics 15 (2021): 87–98.
[Закрыть]. Браверман и Альквати – авторы влиятельных работ, в которых впервые показано, что проекты автоматизации вычислений Бэббиджа в XIX веке и кибернетика XX века неотъемлемо связаны с трудом и его организацией.
Автоматизация познания как распознавание паттернов
Перевод трудового процесса сначала в логическую процедуру, а затем в технический артефакт редко протекает просто и безотказно; чаще это путь проб и ошибок. В этом смысле название книги[54]54
Имеется в виду название книги в оригинале (The Eye of the Master). Напомню, что «хозяйский глаз» – выражение Фридриха Энгельса. – Прим. пер.
[Закрыть] содержит не только политическую, но и техническую аналогию. Оно иронически сигнализирует, что нынешняя парадигма ИИ амбивалентна: она возникла вовсе не из когнитивных теорий, как верят некоторые, а из спорных экспериментов по автоматизации перцептивного труда, то есть распознавания паттернов[55]55
Термины «хозяин» [master] и «паттерн» имеют общую политическую этимологию. Английский термин «паттерн» происходит от французского patron и латинского patronus. Последние два слова имеют общий корень с английскими словами «отеческий» [paternal] и «отец» [father] и восходят к латинскому pater. Латинское patronus означает также «защитник», в том числе защитник слуг. Французское patron – это «лидер», «начальник» и «глава сообщества», что в патриархальном контексте подразумевает «образец для подражания».
[Закрыть]. Глубокое обучение начиналось как расширение методов распознавания визуальных образов, разработанных в 1950‑е годы, на невизуальные данные – текст, аудио, видео и поведенческие материалы самого разного происхождения. Подъем глубокого обучения начался в 2012 году, когда сверточная нейронная сеть AlexNet выиграла конкурс компьютерного зрения ImageNet. С тех пор термин «ИИ» стал по умолчанию обозначать парадигму искусственных нейронных сетей, которая в 1950‑х годах, напротив, считалась конкурентом ИИ (пример противоречий, характеризующих его «рациональность»)[56]56
AlexNet была сверточной нейронной сетью нового поколения, названной в честь Алекса Крижевского, ученика Джеффри Хинтона. Принято считать, что следующая статья знаменует собой начало эры глубокого обучения: Krizhevsky A., Sutskever I., and Hinton G. Imagenet Classification with Deep Convolutional Neural Networks // Advances in Neural Information Processing Systems 25 (2012): 1097–105. См. также: Cardon D., Cointet J.-Ph., and Mazières A. Neurons Spike Back: The Invention of Inductive Machines and the Artificial Intelligence Controversy // Elizabeth Libbrecht (trans.). Réseaux 211, no. 5 (2018): 173–220.
[Закрыть]. Стюарт и Хьюберт Дрейфусы осветили эту коллизию в эссе 1988 года «Создание сознания vs моделирование мозга», в котором обрисовали две родословные ИИ – символическую и коннекционистскую. Cудьба этих подходов, основанных на разных логических постулатах, сложилась по-разному[57]57
Дрейфус Х.Л., Дрейфус С.И. Создание сознания vs. моделирование мозга: искусственный интеллект вернулся на точку ветвления // Аналитическая философия: становление и развитие. М.: Дом интеллектуальной книги, Прогресс-Традиция, 1998. С. 401–432.
[Закрыть].
Символический ИИ – это родословная, связанная с Дартмутским семинаром 1956 года, на котором Джон Маккарти предложил небесспорный термин «искусственный интеллект»[58]58
McCarthy J. et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. 31 August 1955, AI Magazine 27, no. 4 (2006).
[Закрыть]. На основе символического ИИ были разработаны программы Logic Theorist и General Problem Solver, а также множество экспертных систем и машин логического вывода, оказавшихся тривиальными и склонными к комбинаторному взрыву. Коннекционизм в свою очередь представляет родословную искусственных нейронных сетей, созданных Фрэнком Розенблаттом в 1957 году. Изобретенный им «перцептрон» в 1980‑х годах развился в сверточные нейронные сети и в конечном итоге породил архитектуру глубокого обучения, которая доминирует в этой области с 2010‑х.
Обе родословные развивают разные виды логики и эпистемологии. Символический подход утверждает, что разумность – это представление мира (знание-что), которое можно формализовать в виде суждений и, следовательно, механизировать согласно дедуктивной логике. Согласно коннекционистскому подходу, разумность представляет собой опыт мира (знание-как), и этот опыт можно реализовать в приближенных моделях, построенных по индуктивной логике. Что бы ни утверждали корпоративная пропаганда и вычислительные философии разума, ни одна из двух парадигм не смогла полностью имитировать человеческий интеллект. Однако нельзя отрицать, что машинное обучение и глубокие искусственные нейронные сети оказались очень успешными в распознавании паттернов и, как следствие, автоматизации многочисленных задач, благодаря высокой разрешающей способности при обсчете многомерных данных. Двигаясь против традиции, которая воспроизводит чрезмерно знаменитую сагу о Дартмутском семинаре, в книге я концентрируюсь на более убедительной истории ИИ, связанной с происхождением искусственных нейронных сетей, коннекционизмом и машинным обучением. По этому направлению, особенно в том, что касается работы Розенблатта, критической и обстоятельной литературы все еще не хватает.
Структура книги
Книга состоит из трех частей. В вводной части речь идет о вопросах методологии, а две основных посвящены истории – индустриальной и информационной эпохам соответственно. При этом в книге нет линейной истории технологии и автоматизации. Скорее, каждую главу можно читать как независимый «семинар» по изучению алгоритмических практик и машинного разума.
В первой главе я исхожу из необходимости прежде всего прояснить центральное вычислительное понятие: алгоритм. Что такое алгоритм? В компьютерной науке алгоритм определяют как конечную процедуру пошаговых инструкций по преобразованию ввода в вывод, которая оптимально использует имеющиеся ресурсы. В главе ставится под сомнение приведенное чисто техническое определение алгоритма и обосновывается его материалистическая критика, указывающая на экономические и социальные корни явления. Как и у других абстрактных понятий – таких как число или механизм, – у алгоритма долгая история. Как указал математик Жан-Люк Шабер, «алгоритмы существовали с незапамятных времен, задолго до того, как было придумано специальное слово для их обозначения»[59]59
Chabert J.-L. (ed.). A History of Algorithms: From the Pebble to the Microchip. Berlin: Springer, 1999. P. 1.
[Закрыть]. Обращаясь к социальной математике древнего индуистского ритуала Агничаяна, я утверждаю, что алгоритмическое мышление и алгоритмическая практика присущи всем цивилизациям, а не только метаязыку западной компьютерной науки. В противовес математическому и философскому интуитивизму, который верит в полную независимость ментальных конструкций, в главе подчеркивается, что алгоритмическое мышление возникло в качестве материальной абстракции из взаимодействия разума и орудий, направленного главным образом на решение экономических и социальных задач. Центральный тезис главы сформулирован намеренно остро: труд представляет собой первый алгоритм.
Основные части книги посвящены изучению машинного разума в две исторические эпохи и выявляют сходную проблематику. В первой части рассматриваются труд как источник знаний и автоматизация умственного труда в индустриальную эпоху в Великобритании. Этот период обычно исследуется с точки зрения ручного труда, накопления капитала и ископаемых источников энергии, а вовсе не в перспективе когнитивных аспектов. Во второй части анализируется распространение коннекционизма (доктрины искусственных нейронных сетей) в кибернетических кругах в США 1940–1960‑х годов. Искусственные нейронные сети возникли в результате проекта автоматизации зрительного труда (т. н. распознавания образов), отличного от ручного и умственного. Я утверждаю, что изучение роли знаний, умственного труда и науки в XIX веке необходимо для понимания истории автоматизации, подготовившей восхождение ИИ в XX веке. Обе части книги подходят с разных сторон к одной проблеме: взаимосвязи между формами технологических инноваций и социальной организацией.
Как отмечали историки науки Дастон и Шаффер, движущую силу современных вычислений легче найти в мастерских индустриальной эпохи, чем в томах по математике или натурфилософии того же времени. Поэтому во второй главе в попытке избежать традиционной машинной агиографии новаторские эксперименты Бэббиджа в области автоматизированных вычислений – его Разностная и Аналитическая машины – пересмотрены с экономической точки зрения. Для объяснения устройства этих первых компьютеров (и воплощенного в них варианта «машинного разума») в главе описываются два принципа анализа труда, выработанные Бэббиджем. Согласно первому аналитическому принципу (трудовой теории машин), конструкция машины воспроизводит и заменяет схему разделения труда. Второй принцип (исчисления труда, т. н. принцип Бэббиджа) гласит, что разделение труда на мелкие задачи позволяет измерить и приобрести ровно столько труда, сколько требуется для производства. При совмещении два принципа дают промышленную машину, которая не только делает труд более интенсивным, но и выступает как инструмент (и неявная метрика) его измерения. Бэббидж применил оба принципа к автоматизации ручного счета. Так возникло вычисление – как автоматизация умственного труда и подсчет его стоимости.
Помимо представления обычных «термодинамических» интерпретаций ручного труда, в третьей главе показывается, что сложные понятия умственного труда, коллективного разума и отчуждения знания были разработаны уже в индустриальную эпоху. В этой главе исследуются идеи вокруг становления политической экономии в XIX веке, движения Института механики, общественной кампании «Марш разума» и Вопроса о машинах (дебаты о технологиях и безработице, волновавшие английское общество в те годы). Также освещены противоположные размышления о введенных Бэббиджем принципах анализа труда и изобретательстве. С одной стороны, я показываю, что задолго до появления теоретиков общества знаний в XX веке рикардианские социалисты Уильям Томпсон и Томас Годскин выдвинули познавательную теорию труда. С другой стороны, подчеркиваю необходимость признать влияние промышленных машин и инструментов на развитие знаний о природе, что требует расширить машинную теорию науки. В результате выражение «машинный интеллект» приобретает по меньшей мере четыре значения:
человеческое знание машины;
знание, воплощенное в ее конструкции;
человеческие задания, ею автоматизированные;
новое знание о мире, ставшее возможным благодаря ее применению.
Четвертая глава посвящена тому, как связаны Бэббидж и другой столп политической экономии индустриальной эпохи, Карл Маркс, – эта тема все еще изучена недостаточно[60]60
За исключением работ: Caffentzis G. In Letters of Blood and Fire: Work, Machines, and Value. Oakland: PM Press, 2013; Wendling A. E. Karl Marx on Technology and Alienation. Berlin: Springer, 2009. См. также: Beamish R. Marx, Method, and the Division of Labour. Urbana: University of Illinois Press, 1992; Dotzler B. Diskurs und Medium I: Zur Archäologie der Computerkultur. Munich: Fink Verlag, 2006.
[Закрыть]. Здесь исследуется вплетение знаний в материальные действия и артефакты и дано соответствующее прочтение теорий Маркса. В известном отрывке из Grundrisse[61]61
В советско-российской традиции за этим сборником записей, известном как черновой вариант «Капитала», закрепилось название «Экономические рукописи 1857–1859 годов», под которым он был опубликован в составе 46‑го тома собрания сочинений Маркса и Энгельса. Позднее сотрудники Института марксизма-ленинизма уточнили датировку вошедших в сборник документов, поэтому отдельное двухтомное издание 1980 года, по которому даны цитаты в этом переводе, носит название «Экономические рукописи 1857–1861 гг. (Первоначальный вариант „Капитала“)». Во избежание путаницы для обозначения сборника я использую название, принятое в западной марксистской традиции, – Grundrisse (нем. план, очерки, набросок). Историю переоткрытия Grundrisse с точки зрения западного марксизма автор разбирает в главе 4. – Прим. пер.
[Закрыть] философ предсказывал, что постепенное накопление знаний (то, что он назвал «всеобщим интеллектом») в машинах подорвет законы капиталистического накопления и вызовет его фатальный кризис. Благодаря интерпретации итальянских операистов, данной в 1989 году, этот необычный отрывок, получивший название «Фрагмент о машинах», обрел широкую известность среди исследователей и активистов в качестве пророчества об экономике знаний, пузыре доткомов и восхождении ИИ. После десятилетий всевозможных спекуляций в этой главе впервые раскрывается происхождение идеи всеобщего интеллекта (general intellect), которую Маркс встретил в книге Уильяма Томпсона «Исследование принципов распределения богатства» (An Inquiry into the Principles of the Distribution of Wealth; 1824). Также я объясняю (и это даже важнее), почему это понятие не вошло в «Капитал». У Томпсона Маркс почерпнул идею добродетельного накопления знаний и аргумент, согласно которому знание, отчуждаясь в машинах, становится враждебным по отношению к рабочим. Однако именно у Бэббиджа Маркс нашел альтернативную теорию, позволяющую понять двусмысленную роль знаний и науки в промышленной экономике. В «Капитале» Маркс заменил утопические упования на всеобщий интеллект материальной фигурой «совокупного рабочего» (Gesamtarbeiter) – другое имя расширенной трудовой кооперации. Фигура совокупного рабочего как некоего сверхорганизма, объединяющего людей и машины, знаменует в этой книге переход к эпохе кибернетики и кибернетическим экспериментам по самоорганизации. Переходную роль выполняет пятая глава, где кратко описана трансформация труда индустриальной эпохи в век кибернетики и разъясняется, как труд распался на абстрактную энергию и абстрактную форму (информацию).
Вторая часть посвящена коннекционизму как главной родословной современных систем ИИ (я избегаю повторения известной литературы по кибернетике, теории информации и символическому ИИ). В шестой главе развитие искусственных нейронных сетей рассматривается с точки зрения, которой обычно пренебрегают, а именно в перспективе исследований самоорганизации организмов и машин (их обошла вниманием даже Боден в своей огромной истории ИИ). Теории самоорганизации сегодня востребованы в физике, химии, биологии, неврологии и экологии, но именно в среде кибернетиков, а не представителей естественных наук, в середине XX века вспыхнули дебаты о самоорганизации. В главе рассмотрены парадигмы самоорганизующихся вычислений, которые способствовали, среди прочего, укреплению коннекционизма, – в частности, концепция нейронных сетей Уоррена Мак-Каллока и Уолтера Питтса (1943–1947), клеточные автоматы Джона фон Неймана (1948) и перцептрон Розенблатта (1957). Также в шестой главе исследуется реакция кибернетических теорий самоорганизации на социотехнические изменения. Подобно иным вариантам механистического мышления в другие века, кибернетика проецировала на мозг и природу формы организации, которые были частью технического состава окружающего общества. Ключевым примером здесь выступает телеграфная сеть, которая использовалась в XIX веке в качестве аналогии нервной системы, а в ХХ веке – для формализации нейронных сетей, включая машину Тьюринга.
В седьмой главе прослеживается связь концепций искусственных нейронных сетей Мак-Каллока и Питтса с забытым спором о гештальте: дебаты о человеческом восприятии как о когнитивном акте, который может быть представлен аналитически и, следовательно, механизирован. В учебниках по машинному обучению обычно утверждается, что Мак-Каллок и Питтс вдохновлялись нейрофизиологией мозга, но авторами упускается из виду упомянутый интеллектуальный сор. Между тем, именно после этих дебатов выражение «гештальт-восприятие» из военных и академических публикаций превратилось в широко известное словосочетание «распознавание паттернов». Спор о гештальте – это когнитивная окаменелость нерешенной проблемы, и ее изучение помогает понять форму и ограничения, унаследованные глубоким обучением, в частности, неразрешенное противоречие между восприятием и познанием, образом и логикой, которое преследовало технонауку XX века.
В восьмой главе разъясняется двойственная роль неолиберального экономиста Фридриха фон Хайека в укреплении коннекционизма. В книге 1952 года «Сенсорный порядок» Хайек предложил коннекционистскую теорию разума, куда более продвинутую, чем определения ИИ, выработанные на Дартсмутском семинаре в 1956‑м. В этом тексте, как предположили Мак-Каллок и Питтс, Хайек размышлял о создании машины, функционально подобной «нервной системе как инструменту классификации»[62]62
Hayek F. The Sensory Order: An inquiry into the Foundations of Theoretical Psychology. Chicago: University of Chicago Press, 1952. P. 55.
[Закрыть]. Подобно кибернетикам Хайек изучал самоорганизацию разума, но с другой целью: его интересовала не промышленная автоматизация, а автономия рынка.
Девятая глава посвящена одному из наиболее важных и наименее изученных эпизодов в истории ИИ: изобретению Розенблаттом в 1950‑х годах искусственной нейронной сети перцептрон. Несмотря на свои ограничения, перцептрон стал прорывом в истории вычислений – в нем впервые была автоматизирована техника статистического анализа; по этой причине его считают первым алгоритмом машинного обучения[63]63
Первое использование термина «машинное обучение» см.: Samuel A. Some Studies in Machine Learning Using the Game of Checkers // IBM Journal of Research and Development 44 (1959): 206–226. Также Тьюринг размышлял о «неорганизованных машинах», которые обладают способностью самоорганизовываться и, таким образом, обучаться: Turing A. Intelligent Machinery (1948) // The Essential Turing. B. Jack Copeland (ed). Oxford: Oxford University Press, 2004.
[Закрыть]. В качестве технической формы перцептрон претендовал на имитацию биологических нейронных сетей, но с математической точки зрения осуществлял совсем другой трюк. Чтобы решить задачу распознавания образов, машина представляла пиксели изображения как независимые координаты в многомерном пространстве. Любопытно, что статистический метод многомерной проекции зародился в психометрии и евгенике в конце XIX века и аналогичен тому методу оценки «общего интеллекта» [general intelligence], который Чарльз Спирмен реализовал в спорном тесте на определение коэффициента интеллекта (IQ). Это еще одно доказательство социальной генеалогии ИИ: первая искусственная нейронная сеть – перцептрон – родилась не как автоматизация логического рассуждения, а как статистический метод, который применялся для измерения интеллекта в когнитивных задачах и соответствующей этим измерениям организации социальной иерархии.
В заключении утверждается, что принцип действия ИИ представляет собой не только автоматизацию труда, но и навязывание социальной иерархии ручного и умственного труда посредством автоматизации. С XIX по XX век «хозяйский глаз» промышленного капитализма охватил все общество и установил новые формы контроля, основанные на статистических измерениях «интеллекта», с целью дискриминировать рабочих по уровню навыков. Результаты теста IQ применялись именно так: американский психолог Льюис Терман в 1919 году заявлял, что «IQ 75 или ниже обычно относится к неквалифицированным рабочим, от 75 до 85 – диапазон для полуквалифицированного труда, а показатели 80 или 85 вполне достаточны для успеха в некоторых видах квалифицированного труда»[64]64
Terman L. The Intelligence of School Children: How Children Differ in Ability, the Use of Mental Tests in School Grading, and the Proper Education of Exceptional Children. Boston: Houghton Mifflin, 1919. P. 274. Цит. по: Gould S. J. The Mismeasure of Man. New York: Norton & Company, 1981. P. 212.
[Закрыть]. ИИ продолжает кодировать социальные иерархии и дискриминировать рабочую силу, косвенно навязывая метрики разумности. Классовые, гендерные и расовые предубеждения, которые системы ИИ, как известно, только усиливают, следует рассматривать не как технический недостаток, а как неотъемлемую дискриминационную черту автоматизации при капитализме. Предвзятость ИИ не ограничивается социальным угнетением: она также выражается в неявном навязывании иерархии труда и знаний, что усиливает поляризацию квалифицированных и неквалифицированных работников на рынке труда. Замену традиционных рабочих мест системами ИИ следует рассматривать вместе с умножением прекарных, низкооплачиваемых и маргинализированных рабочих мест в глобальной экономике[65]65
О деградации рынка труда за счет умножения бессмысленных профессий см.: Грэбер Д. Бредовая работа. Трактат о распространении бессмысленного труда. М.: Ад Маргинем, 2020. См. также: Бенанав А. Автоматизация и будущее работы. М.: Изд-во Института Гайдара, 2022.
[Закрыть]. ИИ и «призрачная работа» – две стороны одного и того же механизма автоматизации труда и социальной психометрии.
Наконец, выдвинутая в книге трудовая теория автоматизации представляет собой не только аналитический принцип, нужный для демонтажа «верховного алгоритма» монополий ИИ, но и принцип синтетический. Он говорит о практике социальной автономии, которая создаст новые формы знания и новые культуры изобретательства.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?