Текст книги "Технология декоративно-прикладного искусства. Основы дизайна. Художественное литье. Учебное пособие"
Автор книги: Михаил Ермаков
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 66 страниц) [доступный отрывок для чтения: 21 страниц]
Рекомендуемая литература
А) ОСНОВНАЯ
1. Рунге В. Ф., Сеньковский В. В. Основы теории и методологии дизайна – М.: Издательство «М3 Пресс», 2004.
2. Петров М. Н., Молочков В. П. Компьютерная графика. – СПб.: Издательство «Питер, 2003.
3. Тайц А. М. Самоучитель Corel Draw 10. – СПб.: Издательство «BHV-С. – Петербург», 1999.
4. Харрел В. Секреты Corel DRAW. – М.: Издательство «Информ-Пресс», 1998.
5. Петров М. В. CorelDRAW11. Руководство пользователя с примерами и упражнениями. М.: Издательство «АСТ-ПРЕСС», 2000.
Б) ДОПОЛНИТЕЛЬНАЯ
6. Петров М., Попов С. Corel Draw 11. Новые инструменты. – М.: Издательство «Информ-Пресс», 2000.
7. Петров А. А. Corel DRAW 9. Справочник. – М.: Издательство «Триумф», 1999.
8. Коцюбинский А. Г. Грошев Л. М. Компьютерная графика. Популярные программы. – М.: Издательство «БИНОМ», 2000.
9. Коцюбинский А. О. Corel DRAW 10: Новейшие версии программ. – М.: Издательство «Триумф», 2001.
10. О' Квин Д. Допечатная подготовка. Руководство дизайнера. – М.: Издательство «Десс», 2002.
11. Залогова Л. А. Практикум по компьютерной графике. – М.: Издательство «Информ-Пресс», 2000.
12. Варакин А. Первые шаги пользователя Corel Draw 10 с примерами. – М.: Издательство «Познавательная книга плюс», 2000.
13. Варакин А. П. Corel Draw 9 для начинающих и не только. М.: Издательство «АСТ-ПРЕСС», 2000.
14. Тимофеев Г. Графический дизайн – М.: Издательство «Познавательная книга плюс», 2001.
15. Курушин В. Графический дизайн и реклама. Самоучитель. – М: Издательство «ДМК», 1999.
16. Кириченко Е. И. Анализ эклектики и модерна конца XIX, началоXX века // Декоративное искусство. 1973, № 12.
17. Разина Т. М. и др. Русский художественный металл. М., 1958.
18. Алешина Л. С. Памятники искусства социалистических стран. Памятники искусства Советского союза. Ленинград и окрестности. Справочник-путеводитель/Л. С. Алешина. Москва «Искусство», Лейпциг «Эдицион», 1990.
19. Ильин М. А., Моисеева Т. В. Памятники искусства социалистических стран. Памятники искусства Советского союза. Москва и подмосковье. Справочник-путеводитель / М. А. Ильин, Т. В. Моисеева. Москва «Искусство», Лейпциг «Эдицион», 1979.
Раздел II
История развития художественного литья
Глава 2
Зарождение художественного литья
О природе вещей
«… металлам, расплавленным жаром, может дана быть фигура и форма какая угодно».
Лукреций Кар
История развития цивилизации неразрывно связана с освоением материалов. В этом плане трудно переоценить роль металла. Уместно привести здесь образное высказывание выдающегося американского этнографа Генри Льюис Моргана: «Когда варвар, продвигаясь вперед, шаг за шагом, открыл самородные металлы и стал плавить их в тигле и отливать в формы; когда он сплавил самородную медь с оловом и создал бронзу и, наконец, когда еще большим напряжением мысли он изобрел горн и добыл из руды железо – девять десятых борьбы за цивилизацию было выиграно» (Г. Л. Морган. «Древнее общество». Л., 1934, с. 28), также его высказывание можно найти в источнике [1] в более сжатой форме. Появление орудий из металла способствовало не только техническому прогрессу (в земледелии, строительстве, ремеслах), но и социальному: образование первых государств совпадает с началом бронзового века.
С той поры как минул каменный век, человечество раз и навсегда отдало свои предпочтения металлам, которые стали фундаментом современной цивилизации. Но путь к основам металлургии был долог, и, прежде чем научиться добывать и плавить руду, люди познакомились с чудесными свойствами металлов, находя и обрабатывая самородки.
При одном только упоминании о самородках в воображении большинства людей тотчас возникает золото. Между тем самородными могут быть многие металлы, в том числе и такие обыденные, как медь и железо.
Имеются сведения, что примерно за 92 века до н. э. народности, населявшие южную часть Анатолии (Чатал-Гуюк, Турция), употребляли медь, найденную в самородном виде. Древнейший неолитический город Чатал-Гуюк был обнаружен английским археологом Д. Меллартом в 1958 году. При раскопках этого города, основанного в середине VII-го тыс. до н. э., было найдено множество мелких медных вещиц и рядом с ними кусок медного шлака – бесспорное свидетельство древнейшей плавки и литья. Данными этих раскопок было доказано, что люди умели выплавлять металл – медь – уже восемь тысяч лет назад. Стало ясно, что человек познал металл раньше золота. Отныне ученые считают, что люди познакомились с самородной медью примерно десять тысяч лет назад.
Первые металлические орудия труда, предметы быта и оружие были выкованы из медных самородков. Первые крупные центры цивилизации возникли там, где медные руды выходили на земную поверхность и часто встречались самородки этого металла.
Самородная медь, которую тысячи лет назад открыл для себя человек, обычно почти не содержит примесей – такова особенность самородков меднокрасного цвета с коричневатыми оттенками. Необычайно пластичный и вязкий металл чаще всего образует крупные скопления – сплошные массы самородной меди, заполняющей трещины и пустоты горных пород в верхних частях месторождений, в так называемых «головах» рудных тел. Но иногда медные самородки могут предстать в виде дендритов, ниточек, проволочек, «лохматых», словно поросших медным мхом, зернышек. Известны и самородки, образующие причудливые ветви и гроздья кристаллов меди.
Почти вся самородная медь в природе встречается там, где обогащенные медью руды подвергаются окислению. Богаты самородной медью Рудные горы Германии. А самые крупные месторождения ее расположены в США, неподалеку от озера Верхнее, где глыбообразные и пластинчатые самородки находят в горных породах, сформировавшихся 2–3 млрд. лет назад. Именно здесь был обнаружен и один из крупнейших медных самородков, вес которого составил более 3560 тонн.
Многие тысячелетия медь была основой материальной культуры, ее исключительная роль в истории человеческой цивилизации трудно переоценить. Медным веком (халколитом или энеолитом) был назван первый век металл – переходный период от каменного века к бронзовому.
Золотые изделия появились примерно за LX в. до н. э., а изделия из метеоритного железа – примерно в XXX веке до н. э.
Самым желанным в обширном классе самородных металлов для человека было золото. Находки самородного золота известны на всех континентах (за исключением Антарктиды), но особую славу снискала Австралия из-за так называемой «Плиты Холтермана» – глыбы кварца, содержавшей более 90 килограммов самородного золота.
Самородное золото, как правило, включает разнообразные примеси. Обычно это медь, серебро, железо, свинец. Характер и количество примесей во многом определяют цвет самородков, который может меняться от ярко-желтого, до красноватого, а порой приобретает даже зеленоватые оттенки. Золотые самородки находят как в россыпях, так и в коренных месторождениях.
Наиболее крупным самородкам принято давать имена. Самым большим русским самородком считается «Большой треугольник» весом 36,2 кг, найденный в 1842 году на Южном Урале. В Алмазном фонде хранятся уникальные самородки: самый маленький – «Мефистофель» (20,25 г), «Заячьи уши» (3,34 кг), «Верблюд» (9,29 кг). Однако чаще всего золотые самородки – это чешуйки, пленки, зернышки, проволочки, весящие лишь несколько граммов.
Извечным соперником золота всегда было серебро, которому порой даже случалось затмить блеск желтого металла. Хотя серебра в недрах Земли значительно больше, чем золота, в виде самородков оно встречается довольно редко. С белым, ковким, пластичным металлом человек познакомился еще в бронзовом веке, разрабатывая месторождения меди, которым нередко сопутствовали проявления серебра. Однако в россыпях самородки этого металла встречались нечасто (см. раздел ниже).
Древние вулканы Америки создали целую цепь богатейших месторождений Перу, Боливии и Мексики.
Другой металл, сыгравший в становлении человеческой цивилизации не меньшую роль, чем медь, – железо встречается в самородном виде исключительно редко. Железный самородок – уникальное явление природы. Среди находок самородного железа преобладают метеориты. Железные и железокаменные «гости из космоса» приносят на землю самородное железо со значительной примесью никеля, благодаря чему оно долго не покрывается ржавчиной. Типичным примером доставки «небесного» железа на Землю является падение Сихотэ-Алинского метеорита, общий вес найденных обломков которого составил 30 тонн. Химический анализ показал, что метеорит более чем на 93 % состоял из чистейшего железа.
Крайне редко самородное железо попадает на нашу планету с железокаменными метеоритами, которые представляют собой смесь никелистого железа и оливина. Первой подобной находкой в России стало знаменитое «Палласово железо» – железокаменный метеорит, привезенный в 1772 году в Петербург из Сибири академиком Палласом. Огромная глыба чистого железа с включениями полупрозрачных зерен оливина ныне демонстрируется в Минералогическом музее им. А. Е. Ферсмана в Москве [67].
Но для того чтобы получать отливки, человек должен был научиться плавить металл. На это потребовалось 47 веков. Самые древние отливки, обнаруженные археологами на территории Анатолии, Месопотамии, Ирана, датируются XLV в. до н. э. Спустя несколько веков технология литья была освоена народами, населявшими Кавказ, Северную Африку, Европу.
Литейная технология является одним из древнейших методов получения изделий из металлов. Сколько лет оно насчитывает, до сих пор не знает никто. Так, в 1991 году на 58 Международном конгрессе литейщиков в г. Кракове X. Джеминг сделал доклад на тему: «6000 лет искусству литья», а в 1994 году в Дюссельдорфе вышла книга Д. Энгельса «5000 лет литья металлов». Но древность этой технологии обработки металлов относительна [5].
История становления человека на Земле исчисляется миллионами лет (археологические находки каменных орудий труда в бассейнах африканских рек Конго, Омо, Аваш – колыбели человечества имеют возраст 2,4–2,6 млн. лет). Однако процесс развития примитивного человека до современного «разумного» (Homo sapiens) закончился всего 30–40 тыс. лет назад. А первые изделия из металла появились за 7–9 тыс. лет до н. э. в переходную эпоху медно-каменного века (энеолит). Кстати, наиболее полные сведения по истории человечества относятся ко времени окончания последнего мощного оледенения Земли, охватившего значительные территории Европы, Азии, Северной Америки (10–15 тыс. лет до н. э.) [5].
Основным условием технического, а за ним и социально-экономического прогресса явилось стремление первобытных людей в борьбе за существование повысить эффективность своего труда. Ученые лаборатории первобытной техники Санкт-Петербургского института археологии РАН провели эксперимент на берегах Ангары. Сосну диаметром 25 см срубили каменным топором за 75 минут беспрерывной работы, а медным – за 25 минут. Медным или бронзовым ножом можно обстрогать толстый сук в 10 раз скорее, чем каменным, сверлом просверлить березовое полено в 22 раза быстрее и т. д. [3]. Этим подтверждается объективная целесообразность использовать металлические орудия, даже из мягкой меди, вместо каменных.
Граница между каменным веком и веком металла достаточно размыта. В различных районах Земли переход осуществлялся в разное время, что определялось географическими условиями, наличием, видом природных ресурсов и др. Из-за последнего оледенения и миграции населения в южных районах переход к использованию металла происходил раньше, чем в северных.
Считается, что зарождение металлургии на Востоке (современный Ближний Восток) происходило в VII тыс. до н. э., а в Западной Европе – во II тыс. до н. э. В таких южных регионах, как Кавказ, Туркестан, Индия, находят более древние изделия из металла, чем в северных частях Европы и Азии [2, 3]. Аналогичное различие отмечается между континентальными странами и островными, даже крупными, такими как Индонезия, Япония. Общеизвестно отставание в техническом развитии коренных народов таких континентов, как Австралия, Америка к моменту их открытия и колонизации в текущем тысячелетии. Заселены эти материки лишь 20–40 тыс. лет назад. Таким образом, отдельные технические новшества могли появляться в разных местах независимо, одновременно или разновременно, иногда со своими особенностями, отвечающими местным условиям. Во многих случаях прогрессивные приемы распространялись или заимствовались. Однако скорость их распространения, учитывая уровень средств коммуникации и информации в древнем мире, была невелика, и необходимое время иногда исчислялось столетиями. Как отмечал Ф. Энгельс, даже такое революционное открытие для человека, как получение огня трением, распространялось по земле или стало всеобъемлющим в течение тысячелетий.
К началу периода освоения металла человек обладал уже обширным набором технологических приемов обработки камня, кости, глины, дерева и кожи. Это было время, когда люди не только промышляли охотой и собирали дары природы. Они имели каменные ножи, топоры, мотыги, молотки, костяные, из рогов животных, наконечники для стрел, дротиков, иголки для шитья одежды из шкур животных и тканей (было известно ткачество), глиняную посуду для приготовления пищи и сохранения продуктов. Они находили и добывали камень для своих орудий, расщепляли его на кремневые заготовки, затачивали и шлифовали их, по необходимости сверлили в них отверстия и т. д. И в то же время, зачем Древние Египтяне преодолели более тысячи километров, чтобы найти определенный тип породы, когда рядом было много других видов камней, которые можно было использовать? Может быть, они придавали этим камням особую ценность? Почему, имея под рукой сколько угодно гипса (даже сегодня производство статуэток и других изделий из гипса является практически национальной индустрией Египта), эти люди упорно резали диорит – самый твердый из всех камней? Диорит, камень из западной пустыни, черный с тонкими прожилками, иногда беловатыми, имеет показатель твердости, равный девяти по шкале Мооса – а это всего на единицу меньше, чем алмаз! Тем не менее, эти люди резали диорит, как масло. Они умудрялись создавать из него канопы – сосуды, куда помещались внутренности умерших.
Приведу выдержку из лекции Хорхе Анхель Ливраги международной философской школы «Новый Акрополь»: «Один из таких сосудов мне удалось внимательно изучить в нью-йоркском музее Метрополитен. Тогда было с абсолютной точностью установлено с помощью специальных приборов, фотографий, рентгеновских снимков и т. д., что сосуд сверлили инструментом, твердость сверла которого должна была быть на 14 пунктов выше алмаза. Проведя 17 опытов, мы не заметили никаких повреждений на инструменте, резавшем диорит, а ведь если бы это был алмаз, то от нагревания при трении в точке сверления произошла бы деформация. Что ж, это одна из многих технических загадок, которые хранит Египет, и которые проявляются также и в его ювелирном искусстве – в использовании камня, металлов, разноцветного стекла».
Ученые так и не смогли определить из каких же материалов были изготовлены сверла! И все же можно сделать вывод: кроме «техники удара» уже была освоена «техника резания», шлифование, сверление, пиление. Люди умели строить жилища, в том числе, иногда, сложные дома над водой [2], разводить домашний скот, заниматься земледелием.
Вместе с тем, с незапамятных времен у человека параллельно развивалось эстетическое восприятие окружающего мира, стремление отобразить его в различных формах. Более 30 тысяч лет назад появилось первобытное искусство. К этому времени относятся самые древние образцы наскальной живописи, рисунки в пещерах, например, найденные во Франции (Ориньянская культура) [4].
Освоение металла открывало новые возможности для внедрения искусства в быт людей. В каменном веке сферой применения художественных способностей человека были в основном различные предметы, не имеющие хозяйственного значения: украшения (бусы, браслеты), атрибуты культа (фигурки божеств, амулеты) из кости и камня, а с появлением гончарного дела – многочисленные сосуды из глины. Металл, как материал был пригоден для всех перечисленных изделий, часто обеспечивая им большую прочность и долговечность, позволял повысить их эстетические свойства, превращать в подлинные произведения искусства такие предметы повседневной жизни, как орудия труда, оружие и др. Однако это произошло не сразу – требовалось время для освоения методов получения металла необходимого качества и обработки его.
К первым технологическим приемам получения изделий из металла человек приходил случайно или в результате наблюдения за природными процессами. Если при изготовлении каменного орудия, обтесывая один камень о другой, человек случайно брал в руки самородок меди, привлекший его своим красноватым цветом, то он не мог не заметить, что последний не расслаивается, не крошится, а деформируется под действием ударов каменных инструментов. В итоге, изменяя конфигурацию самородка, можно получить желаемую форму изделия. Так, видимо, произошло зарождение самой древней технологии обработки металлов – кузнечной. Причем задача была облегчена тем, что чистую медь благодаря хорошей пластичности можно «ковать» в холодном состоянии. Вероятно, много позже обнаружилось, что при нагревании, например, на костре, металл легче поддается деформированию.
Почему речь идет о меди как о первом использованном самородном металле, хотя существуют и другие, не менее пластичные, например, свинец, золото, серебро? Дело в том, что она наиболее часто встречается в природе, в том числе и в свободном состоянии, и выгодно отличается от других металлов твердостью и прочностью. Твердость меди почти на порядок выше, чем у свинца, и на 30 % выше твердости серебра; прочность ее больше, чем у серебра и свинца, соответственно в 2,2 и в 17 раз. Самородная медь является продуктом воздействия на коренные медно-сульфидные руды воды, кислорода, углекислоты в естественных условиях. При этом попутно образуются такие не содержащие серы минералы, как малахит, азурит, куприт, из которых при нагревании также можно восстановить медь. И медь, и перечисленные минералы обычно находятся в верхних горизонтах месторождений и имеют характерный цвет, что облегчает их поиск.
Например, самородная медь и куприт имеют красный цвет, малахит – зеленый, азурит – синий.
Самородки меди в древности встречались на Земле значительно чаще, чем теперь, что объясняется их интенсивным сбором и использованием в течение многих столетий. Куски самородной меди могли быть и крупных размеров, а скопления самородной меди иногда достигали 400 т [5]. Из самородной меди древние люди изготавливали путем ковки орудия труда и предметы домашнего обихода: кинжалы, топоры, наконечники копий, рыболовные крючки, украшения и др.
Историки полагают, что египтяне стали использовать медь очень давно, они научились отливать медные изделия для постройки пирамид. О меди впервые говорится в египетских папирусах примерно 4400 лет до н. э., т. е. на 400 лет раньше, чем золото. Колоссальные масштабы строительства из камня пирамид стали возможны лишь благодаря широкому применению медных орудий и инструментов. На росписи гробницы в Фивах XVI–V вв. до н. э. Изображены простые приемы работы древних литейщиков (рис. 2.1).
Рис. 2.1. Египетские литейщики за работой. Роспись из гробницы в Фивах. XVI–XIV вв. до н. э. [5, 49]
Трое рабочих (должно быть, рабов, поскольку за ними наблюдает надсмотрщик с палкой) подносят металл к горну, где происходит плавление. Видны плавильные тигли, кучки древесного угля, корзина, в который он доставлен в «литейный цех». Двое рабочих, обслуживающих мехи и третий, – с «кочергой» разводят и поддерживают огонь в горне. В печь проведены воздуходувные полые трубки, вероятно, тростниковые стебли с глиняными наконечниками. Конец трубки входит в мех; мастеровые, нажимая ногой на один мех, одновременно веревочкой расправляют другой. При помощи прутьев двое рабочих извлекают тигель с расплавленной бронзой из горна и переносят к литейной форме – здесь ведется разливка.
Древний художник сопроводил рисунки текстом: иероглифы поясняют, что изображена отливка больших бронзовых дверей для храма, причем металл по указанию фараона доставлен из Сирии.
По мнению ученых египтологов, во II тыс. до н. э. металлургия меди достигла в Египте солидных масштабов: в стране в то время действовало не менее тысячи медеплавильных печей. Однако затем, как свидетельствуют многочисленные исторические документы, производство этого металла резко сократилось. Неужели египтяне перестали нуждаться в меди? Недавно эту загадку удалось решить: археологические раскопки показали, что древнеегипетская медная «промышленность» пострадала от… энергетического кризиса, охватившего в те далекие времена этот регион. Используемые в качестве топлива для медеплавильных печей пальмы и белые акации, росшие по берегам в дельте Нила, были полностью вырублены и сожжены. Потеря оказалась невосполнимой, и выплавка меди сошла на нет.
Полагают, что своим латинским названием «купрум» медь обязана острову Кипр, где в древности было много медных рудников. Залежи ее существуют во многих частях земного шара, в том числе и на территории СНГ: в Казахстане, на Урале, Кавказе, Алтае, в Забайкалье, Якутии.
Несмотря на высокие пластические свойства (мягкость) чистой меди, несовершенство инструментов и простые технологические приемы обработки (в основном свободная ковка) не позволяли воплотить в первых изделиях вместе с эксплуатационными свойствами и художественные элементы. Все это стало возможно лишь после освоения литейной технологии (рис. 2.1). Однако с ней дело обстояло несколько сложнее, чем с кузнечной. Для получения отливки необходимо, как минимум, расплавить металл и залить его в специальную форму, которая определяет конфигурацию изделия в процессе затвердевания металла. На такой процесс человека могло натолкнуть наблюдение за природой. Римский философ-поэт Тит Лукреций Кар 2000 лет назад в своей поэме «О природе вещей» в кн. 5 излагает такую версию этого события (в переводе И. Рачинского) [5, 11]:
«Пламени жар, от каких бы причин не возник он, Дебри лесов пожирал с ужасающим треском и шумом Вплоть до глубоких корней, и огнем выжигалась там почва. Золото и серебро заструились потоком обильным Всюду из жил раскаленных земли, и стекались в углубления Так же, как медь и свинец. А когда отвердели металлы и на земле засверкали впоследствии цветом блестящим, Люди, плененные блеском и прелестью, их поднимали и замечали при этом, что слитки всегда сохраняли Форму, похожую на замыкающие их углубленья. Было открыто тогда, что металлам, расплавленным жаром, Может дана быть фигура и форма какая угодно.».
Существует также вполне правдоподобная гипотеза о том, что первым искусственным металлургическим процессом было плавление свинца [5]. Окисление (обжиг) наиболее распространенной свинцовой руды – галенита (PbS) до РЬО и восстановление затем из этого соединения свинца происходит в углесодержащей среде уже при 500 °C (свинец плавится при – 327,4 °C). Эти условия достижимы в хорошем костре.
Считают, что свинец был известен в Месопотамии, Египте за VI–VII тыс. лет до н. э. Однако из-за низких механических свойств он не был пригоден для изготовления оружия, орудий труда, других важных изделий. Тем не менее, свинцовые фигурки, хранящиеся в Британском музее, исполнены 3800 лет до н. э.; украшения из свинца, находящиеся в Лувре, – 2500 лет до н. э. [5].
Данных о получении первых расплавов самородной меди нет, хотя медные изделия изготавливали и холодной деформацией, и ковкой с нагревом, что не исключало случаи возможного расплавления меди при нагреве. Ранние изделия из меди имеют структуру кованого металла, содержащего незначительное количество примесей [5].
Известно, что чистые металлы, в том числе и медь, по сравнению со своими сплавами, содержащими более легкоплавкие компоненты, имеют более высокую температуру плавления, что затрудняет плавку чистых металлов, а также пониженную текучесть (или жидкотекучесть, как говорят литейщики). В результате чистые металлы менее четко, чем сплавы, воспроизводят отпечаток формы, особенно сложной конфигурации; поэтому неудивительно, что «кузнечная» технология определенное время была господствующей при получении металлических изделий.
Положение начало меняться, когда были обнаружены более технологические (для литья) свойства сплавов. Первыми были сплавы меди с сурьмой, мышьяком (встречается в природе вместе с медью), свинцом и другими металлами, сопутствующими медным месторождениям. Добавки мышьяка, фосфора, олова значительно (почти на 300–350 °C) снижают температуру плавления меди (1083 °C). Минерал реальгар, содержащий 70 % мышьяка, имеет оранжево-красноватый цвет, почти как медь, что, вероятно, и послужило причиной его случайного использования наряду с самородной медью. При расплавлении меди и этого минерала получалась мышьяковистая бронза с хорошей жидкотекучестью и достаточно пластичная в твердом состоянии. В дальнейшем, видимо, мышьяк стали специально добавлять в медь; предметы из мышьяковистой бронзы встречаются в Египте, во многих странах Европы и Азии.
Однако из-за ядовитых паров, образующихся при плавке мышьяковистой бронзы, мышьяк заменили другими добавками, например фосфором. И, конечно, быстрое вытеснение изделий из чистой меди и других бронз стало происходить после появления оловянистой бронзы, которую вначале получали восстановлением древесным углем из смеси медной и оловянистой руд. Затем был освоен процесс сплавления полученных ранее меди и олова. В Ассирии, Египте, Вавилонии это произошло уже к 3000 г. до н. э. Древнейшее шумерское заклинание к огню содержало слова: «Меди и олова плавитель есть ты…» [18].
Этот сплав, более твердый, чем чистая медь, что повышало качество оружия и некоторых орудий труда. Однако он менее пластичен, что затрудняло получение изделий только ковкой. Оставалась лишь возможность чеканки – отделочных операций предварительно полученных литьем заготовок. Все это привело к повышению роли литейной технологии в изготовлении жизненно важных изделий из металлов. Например, найденный на Кавказе бронзовый резец имел твердость, в 3 раза превышающую твердость серебра и золота [7].
Хорошие литейные свойства бронз, а также возможность варьировать их пластичность путем добавок в медь других металлов позволяли для получения изделия успешно использовать как литейную технологию, так и совместно приемы литья и ковки. В частности, малооловянистые бронзы более пластичны, чем высокооловянистые; значительно снижает пластичность сурьма и т. д.
У многих древних сложных изделий из бронзы различные части имеют одновременно структуру либо литого, либо кованого металла. Конечно, эта особенность сохранялась и при изготовлении украшенных хозяйственных изделий, и чисто художественных отливок.
Литье является одним из наиболее распространенных способов производства заготовок для деталей машин и художественных изделий. Примерно около 70 % изделий получают литьем, а в некоторых отраслях машиностроения, например в станкостроении, 90–95 %. Широкое распространение литейного производства объясняется большими его преимуществами, по сравнению с другими способами производства изделий (ковка, штамповка). Литьем можно получить заготовки практически любой сложности с минимальными припусками на обработку. Это очень важное преимущество именно в изготовлении отливок из литейных сплавов, так как сокращение затрат на обработку разрезанием снижает себестоимость изделий и уменьшает расход металла. Кроме того, производство литых заготовок значительно дешевле, чем, например, производство поковок.
Развитие всего литейного производства, вплоть до наших дней проходило по двум направлениям: изыскание новых литейных сплавов и новых металлургических процессов; совершенствование технологии и механизации производства.
Итак, ученые считают, что в истории развития литейной технологии можно выделить три периода:
Первый (от появления первых отливок до XIV в. н. э.) – это период примитивной технологии. На этом этапе имело место исключительно индивидуальное производство в основном предметов быта, культа, оружия, украшений.
Второй (от XIV в. н. э. до середины XIX в.) – период ремесленной технологии. Литье превратилось в самостоятельное ремесло. Ручная формовка достигла совершенства.
Третий (от середины XIX в. до конца XX в.) – период промышленной технологии. Организовано механизированное массовое производство самых разнообразных отливок.
Такое деление условно, поскольку на протяжении каждого этапа искусство литья испытывало взлеты и падения. Еще в древности создавались уникальные литые изделия.
Как отмечал Л. Н. Гумилев [3], для сравнения древних культур, уровня совершенства их технологий нужно, в первую очередь, учитывать системы ценностей изучаемых народов, и различная степень сохранности материальных остатков не должна мешать этому. Для воинственных кочевников (древних хуннов, скифов, аланов, позже гуннов и викингов) самыми важными были оружие и воинское облачение, поэтому и технический прогресс, и художественное развитие шли в направлении совершенствования технологий изготовления оружия и украшения воинских доспехов. Для земледельческих оседлых народов характерным было украшение жилищ и орудий труда; в сильных развитых государствах (Египет, Китай, Греция) особое развитие получают монументальная скульптура и архитектурный декор.
Почему и как появилось художественное литье? Скорее всего, это объясняется тем, что человек с глубокой древности старался украсить свою одежду, предметы быта, оружие всеми доступными ему способами в соответствии с эстетическими вкусами времени и общества; тайны окружающей природы вдохновляли его на создание магических рисунков и лепных или резных идолов, с помощью которых он пытался победить свой страх перед неведомым; он стремился изобразительными средствами выразить свое понимание того, что его окружало, свой внутренний мир, свое отношение к природе и жизни. Археологические раскопки показывают, что уже у неолитических племен одной из целей межплеменных войн было добывание «богатства» (красивых камней, перламутра, раковин и др.), которое не использовалось, а лишь своим блеском радовало глаз. Потом человек научился создавать красивые вещи из дерева, кости, камня, глины. В век металла появился замечательный вид искусства – художественное литье, которое позволило создавать на века произведения высокой пластики и выразительности, как монументальные, так и обиходные или кабинетные.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?