Электронная библиотека » Терри Пратчетт » » онлайн чтение - страница 2


  • Текст добавлен: 24 ноября 2016, 14:20


Автор книги: Терри Пратчетт


Жанр: Зарубежное фэнтези, Зарубежная литература


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 24 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Глава 2. Великие думы

Большие-Пребольшие Штуковины обладают огромной притягательностью, которой не могут противостоять учёные Круглого мира. В основном научное оборудование обходится дёшево, кое-какое – дорого по своей сути, но вот цена отдельных приборов сравнима с бюджетом небольшой страны. Правительства всего мира обожают «Большую науку», поэтому зачастую проще получить добро для проекта на десять миллиардов долларов, чем на десять тысяч. Так же точно какая-нибудь комиссия за пять минут принимает решение о строительстве нового небоскрёба, а потом битый час спорит о цене поданного им к чаю печенья. И мы все знаем почему: ведь чтобы разобраться в проекте и определить стоимость здания, нужно быть специалистом, а в печенье разбирается каждый. К сожалению, с финансированием «Большой науки» дело обстоит примерно так же, если не хуже. Ведь администраторы и политики стремятся обеспечить себе карьерный рост, а «Большая наука» куда престижнее «маленькой», поскольку в ней крутятся большие деньги.

Впрочем, могут существовать и более весомые мотивы для крупных научных проектов: временами «большие» проблемы требуют «больших» ответов. Попытка собрать сверхсветовой двигатель из старых консервных банок на кухонном столе, может, и хороша в научно-фантастическом рассказе, но не в жизни. Чаще всего ты получаешь лишь то, за что заплатил.

Отправной точкой «Большой науки» можно считать проект «Манхэттен» времен Второй мировой войны, подаривший нам атомную бомбу. Эта сверхсложная задача потребовала участия десятков тысяч специалистов в различных областях. Проект раздвинул не только границы науки и инженерного дела, но и, возможно, прежде всего организации и логистики. Мы отнюдь не утверждаем, что поиск эффективных способов стирания людей в порошок – это именно то, что необходимо для успеха, но проект «Манхэттен» убедил всех в огромной важности науки. С тех пор все правительства упорно продвигают «Большую науку». Другие самые известные примеры подобного рода – посадка «Аполлона» на Луну и расшифровка генома человека.

Некоторые научные отрасли вообще жить не могут без Больших-Пребольших Штуковин. Пожалуй, самой главной из подобных отраслей является физика элементарных частиц, обошедшаяся миру в целую серию гигантских машин – так называемых ускорителей, исследующих свойства материи на микроуровне. Самыми мощными из них являются коллайдеры, с помощью которых учёные бомбардируют субатомными частицами неподвижные мишени или сталкивают частицы друг с другом в лоб и смотрят, что из этого получается. По мере того, как физика частиц продвигается вперёд, теоретики предсказывают всё новые и новые гипотетические частицы, которые становятся всё более странными и труднообнаружимыми. Требуется всё больше энергии для расщепления, всё более кропотливые математические вычисления и мощные компьютеры для сбора данных о том, что искомые частицы существовали, хотя бы самый кратчайший миг. Ускорители становятся всё больше и дороже.

Последний и самый внушительный из них – это Большой адронный коллайдер (БАК). Что такое «коллайдер», мы с вами уже знаем, «адрон» – наименование класса субатомных частиц, а прилагательное «большой» полностью оправдывает размеры ускорителя. БАК размещается глубоко под землёй, в двух кольцевых туннелях. Основная часть «колец» находится в Швейцарии, остальная захватывает территорию Франции. Главное кольцо имеет восемь километров в поперечнике, меньшее – около четырёх. В туннелях имеется две трубы, по которым 1624 магнита разгоняют до околосветовой скорости различные интересующие нас частицы: электроны, протоны, позитроны и так далее. Магниты необходимо охлаждать до температуры, близкой к абсолютному нулю, для чего постоянно требуется 96 тонн жидкого гелия. Эти магниты огромны и весят свыше 27 тонн каждый.

Трубы пересекаются в четырёх точках, где и происходят столкновения частиц друг с другом. Для физиков это всего лишь проверенный временем метод исследования материи. Сталкиваясь, частицы разлетаются на кусочки, порождая множество новых частиц. Шесть невероятно сложных детекторов, расставленных в разных точках туннелей, собирают данные о столкновениях, которые обрабатываются и анализируются мощными компьютерами.

БАК обошёлся нам в 7,5 миллиарда евро, что равно 6 миллиардам фунтов или 9 миллиардам долларов. Поэтому неудивительно, что проект этот международный, а в его осуществлении оказалась задействована «Большая политика».

Думминг Тупс жаждет обладать Большой-Пребольшой Штуковиной по двум причинам. Во-первых, им движет азарт интеллектуального познания – топливо, на котором функционирует факультет Высокоэнергетической магии. Юные ясноглазые волшебники, работающие там, хотят познать фундаментальнейшие основы магии и разгадать загадки, породившие такие таинственные теории, как квантовая чародинамика или третья производная слуда, а также роковой эксперимент по расщеплению чара, в результате которого случайно возник Круглый мир. О другой причине говорится в предыдущей главе: каждый уважающий себя университет просто обязан иметь подобные штуковины, если, конечно, он хочет считаться университетом.

В Круглом мире та же история. И касается она не только университетов.

Физика элементарных частиц началась со скромного оборудования и большой идеи. Слово «атом» на греческом означает «неделимый». Термин оказался заложником судьбы с самого начала его применения. Больше века назад физики «клюнули» на гипотезу о существовании атомов, но многие тут же начали сомневаться в правильности выбора столь буквалистского термина. И в 1897 году Джозеф Джон Томсон доказал, что сомневающиеся были правы, открыв «катодные лучи» – микроскопические частицы, испускаемые атомами. Они получили название «электроны».

Вы можете сколько угодно бродить вокруг атома, ожидая, когда он начнёт излучать новые частицы. Можете просить его об этом, а можете сделать ему такое предложение, от которого он не сможет отказаться, а именно стукнуть его так, чтобы он разлетелся на кусочки, и посмотреть, куда что полетит. В 1932 году Джон Кокрофт и Эрнест Уолтон соорудили небольшой ускоритель частиц и в один знаменательный день «расщепили атом». Вскоре выяснилось, что атомы состоят всего из трёх типов частиц: электронов, протонов и нейтронов. Они невероятно малы, их не разглядеть даже в самые мощные микроскопы, тогда как сами атомы можно всё-таки «увидеть» в чувствительный микроскоп, использующий квантовые эффекты.

Итак, все элементы – водород, гелий, углерод, сера и так далее – состоят из этих трех частиц. Химические свойства элементов отличаются потому, что их атомы содержат различное количество электронов, протонов и нейтронов. Существует ряд основных правил. В частности, две частицы обладают электрическими зарядами: электрон – «негативным», протон – «позитивным», нейтрон же заряда не имеет. Таким образом, чтобы суммарный заряд оказался нулевым, количество протонов и электронов должно совпадать. Самый простой из атомов – атом водорода – имеет один электрон и один протон. У гелия два протона и два нейтрона.

Химические свойства атома зависят от количества электронов, поэтому нейтронов можно добавлять сколько угодно: свойства вещества почти не изменятся. Вот именно что – «почти». Это слово обуславливает существование изотопов, то есть вариантов какого-либо элемента с почти неуловимыми отличиями. Например, атом самой распространённой формы углерода имеет 6 электронов, 6 протонов и 6 нейтронов, тогда как у его изотопов – от 2 до 16 нейтронов. Углерод-14, который археологи используют для датировки древних органических материалов, имеет 8 нейтронов. Атом обычной серы состоит из 16 электронов, 16 протонов и 16 нейтронов, при этом известно 25 её изотопов.

Электроны имеют особенно важное значение для химических свойств атома, поскольку находятся на внешней его оболочке и могут вступать в контакт с другими атомами, образуя молекулы. Протоны и нейтроны группируются в центре атома, формируя его ядро. Ранее считалось, что электроны движутся вокруг ядра по орбитам, словно планеты вокруг Солнца. Затем эта модель была заменена другой, в которой электрон был представлен в виде смазанного вероятностного облака, демонстрируя нам не место, где находится частица в данный момент, а то, где она, возможно, будет находиться, если вы за ней понаблюдаете. В настоящее время такая картинка также считается чрезмерным упрощением некой чрезвычайно сложной математической модели, согласно которой электрон одновременно находится везде и нигде.

Эти три частицы (электрон, протон и нейтрон) связывают физику и химию. С их помощью была расшифрована вся таблица химических элементов – от простого водорода и наиболее сложного природного элемента калифорния до куда более странных короткоживущих синтезированных элементов. Всё, что требуется, чтобы вполне определить материю во всём богатстве её разнообразия, – это коротенький список «фундаментальных» частиц, то есть таких, которые невозможно расщепить на более мелкие. Вроде бы просто и понятно.

Не тут-то было. Во-первых, для объяснения целого ряда экспериментальных наблюдений на микроуровне потребовалось изобретение квантовой механики. Затем обнаружились новые фундаментальные частицы вроде фотона (частица света) или нейтрино (электрически нейтральная частица, которая настолько мало взаимодействует с остальным веществом, что может свободно пройти сквозь тысячемильную толщу свинца). Бесчисленные нейтрино, испущенные Солнцем в ходе ядерных реакций, постоянно проходят сквозь Землю, в том числе и сквозь нас с вами, не оказывая никакого влияния.

Нейтрино и фотоны были лишь началом. Уже через несколько лет количество фундаментальных частиц превысило количество химических элементов, что вызвало лёгкую панику, так как объяснение становилось куда сложнее явления, которое физики пытались объяснить. Впрочем, в конце концов они выяснили, что некоторые частицы фундаментальнее других. К примеру, протон состоит из трёх частиц помельче, называемых кварками. То же самое касается и нейтрона, хотя комбинация кварков в нём иная. Как бы то ни было, электроны, нейтрино и фотоны остаются фундаментальными частицами. Насколько нам известно, они не делятся на более простые составляющие.[5]5
  Начиная с 70-х годов прошлого века физики строили догадки, из чего же состоят кварки и электроны. Предлагались: альфоны, гаптены, гелоны, маоны, прекварки, примоны, кинки, ришоны, субкварки, твидлы и Y-частицы. В настоящее время для всех подобных весьма гипотетических частиц принято собирательное название «преоны».


[Закрыть]

Одной из главных причин создания БАКа был поиск последнего недостающего звена так называемой стандартной модели, которая, несмотря на непритязательное название, похоже, объясняет почти всё в физике элементарных частиц. Предъявляя веские доказательства, сторонники этой модели настаивают, что атомы состоят из 16 истинно фундаментальных частиц. Шесть из них – кварки, имеющие совершенно дикие названия: нижний/верхний, странный/очарованный, прелестный/истинный. Нейтрон состоит из одного «верхнего» кварка и двух «нижних»; протон – из одного «нижнего» и двух «верхних».

Следующие шесть – лептоны – также состоят из трёх пар: электронов, мюонов и таонов (тау-лептонов), каждый со своим собственным нейтрино. Оригинальное нейтрино теперь называется электронным нейтрино и идёт в паре с электроном. Все двенадцать частиц (кварки и лептоны) в совокупности носят название фермионов, данное им в честь великого итальянского физика Энрико Ферми.

Оставшиеся четыре частицы связаны с физическими силами, которые удерживают всю материю вместе. Физики различают следующие основные природные силы: гравитация, электромагнетизм, сильное ядерное взаимодействие и слабое ядерное взаимодействие. Гравитация не играет особенной роли в стандартной модели, поскольку не вписывается в квантово-механическую картину мира. Остальные три силы связаны с особыми частицами, известными как бозоны. Своё название они получили в честь индийского физика Сатьендры Ната Бозе (Шотендроната Бошу). Разница между бозонами и фермионами принципиальна: у них различные статистические свойства.

Четыре бозона выступают в качестве «связующего звена» сил, словно теннисисты, играющие пара на пару. Для электромагнетизма таким «связующим звеном» служит фотон; для слабого ядерного взаимодействия – W± и Z-бозоны, а для сильного ядерного взаимодействия – глюон. Такова стандартная модель: 12 фермионов (6 кварков и 6 лептонов) удерживаются вместе четырьмя бозонами.

Итого, у нас получается 16 фундаментальных частиц.

Ах, да! Ещё есть бозон Хиггса – семнадцатая фундаментальная частица. Если, конечно, эта легендарная, как её часто называют, частица действительно существует. По крайней мере, до 2012 года это было весьма сомнительно.

Несмотря на свою популярность, стандартная модель не в состоянии объяснить наличие у частиц массы (в общепринятом смысле этого слова). Бозон Хиггса был придуман в 60-х годах XX века, когда некоторые физики смекнули, что новая частица с особыми свойствами может пролить свет на один важный аспект этого противоречия. Среди них был и Питер Хиггс, рассчитавший кое-какие свойства гипотетической частицы и предсказавший, собственно, её существование. Бозон Хиггса создаёт поле Хиггса, так называемый «хиггсовский океан». Важно то, что сила поля Хиггса не равна нулю даже в пустом пространстве. Когда частица движется сквозь всепроникающее поле Хиггса, то взаимодействует с ним, и этот эффект можно истолковать как массу. В качестве аналогии представьте, что вы перемешиваете ложкой патоку. Правда, в таком случае за массу выдаётся сопротивление перемешиванию, поэтому сам Хиггс скептически относится к подобному способу объяснения своей теории. Другая аналогия представляет самого Хиггса в качестве знаменитости, притягивающей к себе толпу поклонников.

Доказательство существования (или несуществования) бозона Хиггса являлось главной, хотя и не единственной, причиной, по которой миллиарды евро были потрачены на строительство БАКа. Как раз в июле 2012 года две независимые команды экспериментаторов объявили об обнаружении неизвестной ранее частицы: бозона массой около 126 ГэВ (миллиард электронвольт – стандартная единица, используемая в физике частиц). Их наблюдения совпадали, в том смысле, что свойства частицы, по крайней мере те, которые можно было измерить, соответствовали предсказанным Хиггсом.

Долгожданное открытие бозона Хиггса, если, конечно, оно подтвердится, логически завершит стандартную модель. Оно никак не могло быть сделано без «Большой науки» и, возможно, стало главным триумфом БАКа. Основное влияние открытие оказало на теоретическую физику. Существует бозон Хиггса или нет, для всей остальной науки безразлично, поскольку там давно уже принято, что частицы имеют массу. Иначе говоря, можно утверждать, что такое же количество денег, будучи затраченным на менее впечатляющие проекты, почти наверняка позволило бы получить куда более полезные с практической точки зрения результаты. Но такова уж натура Больших-Пребольших Штуковин: если деньги не тратятся на них, маленьким научным проектам они тоже никогда не достаются.

Видите ли, на маленьких научных проектах политической или чиновничьей карьеры не сделаешь.

Открытие бозона Хиггса демонстрирует нам, как именно учёные видят мир, а кроме того, служит примером, раскрывающим природу научных знаний. Доказательством существования этого бозона служит всего лишь крошечный пичок на статистическом графике. Насколько мы можем быть уверены, что за этим пичком действительно скрывается новая частица? Можно дать лишь сугубо формальный ответ. Непосредственно наблюдать бозон Хиггса невозможно, потому что он спонтанно и чрезвычайно быстро расщепляется на целое облако других частиц. При этом они сталкиваются друг с другом, создавая полнейший беспорядок. Чтобы различить в этом хаосе характерный след бозона Хиггса, требуются очень сложная математика и очень быстрые компьютеры. А для того, чтобы убедиться, что увиденное – не случайное совпадение, необходимо понаблюдать события подобного типа множество раз. Поскольку они редки, нужно повторять эксперимент за экспериментом, пока результаты не окажутся достаточными для непростого статистического анализа. И только тогда, когда вероятность того, что выброс на графике является случайным совпадением, будет меньше одного на миллион, физики позволят себе выразить уверенность, что бозон Хиггса существует.

Мы говорим об одном конкретном бозоне Хиггса, хотя имеются альтернативные теории с восемнадцатью, девятнадцатью или даже двадцатью фундаментальными «хиггсоподобными» частицами. Впрочем, сейчас нам хоть что-то известно, тогда как совсем недавно уверенности не было ни в чём.

Для понимания всего изложенного требуется значительный опыт в некоторых известных лишь посвящённым областях теоретической физики и математики. Проблему представляет уже осмысление самого понятия «масса», как и того, с какими частицами она может быть связана. Для успешного проведения подобного эксперимента, в дополнение к основательной подготовке в области экспериментальной физики требуется целый комплекс инженерных знаний и навыков. Даже слово «частица» обладает специальным значением, не имеющим ничего общего с привычным образом крошечного шарика. Так почему же учёные смеют утверждать, что они разбираются в поведении Вселенной на микроуровне, если человек не в состоянии увидеть всё это собственными глазами? Это далеко не то же самое, что обнаружить в телескоп четыре маленьких небесных тела, вращающихся вокруг Юпитера, как в своё время сделал Галилей. Или, подобно Роберту Гуку, рассмотреть в микроскоп, что живая материя состоит из клеток. Доказательства существования бозона Хиггса, как и доказательства большинства основных научных положений, косвенны и, скажем так, не бросаются в глаза.

Для того чтобы справиться с сомнениями, давайте взглянем на природу научного знания, используя примеры более знакомые, чем бозон Хиггса. И, таким образом, разделим два фундаментально различных типа мировоззрения. Это разделение будет красной нитью проходить через всю книгу.

Науку часто представляют как коллекцию «фактов», соответствующих неким однозначным суждениям об окружающем мире. Земля вращается вокруг Солнца. Призма разделяет свет на составляющие его цвета. Если нечто крякает и ходит вперевалку, значит, это утка. Зазубрите все факты, изучите технический жаргон (как-то: орбита, спектр, семейство Anatidae), расставьте, где нужно, галочки – и готово, вы – учёный. Чиновники от образования часто придерживаются именно такого воззрения, ведь этих самых «галочек» они могут уверенно сосчитать и внести в отчёт (семейство врановые, вид – Corvus monedula (Галка обыкновенная)… Ладно, замнём).

Как ни странно, больше всего против такого понимания науки протестуют сами учёные. Они-то знают, что наука не имеет с этим ничего общего. Нет никаких раз и навсегда установленных фактов. Каждое научное утверждение носит условный и неокончательный характер. Вот только политикам подобное совсем не по нраву. Могут ли они в таком случае доверять учёным? Ведь если появятся новые данные, те просто-напросто изменят своё мнение, а денежки – тю-тю?

Конечно, одни научные утверждения менее условны, чем другие. Никто из учёных не думает, что общепринятое описание формы Земли в одночасье изменится с круглой на плоскую. Однако они хорошо помнят, что когда-то оно сменилось с плоской на круглую, а с круглой – на приплюснутый сфероид, а со сфероида совершенного – на неровный. В последних пресс-релизах говорится, что Земля по своей форме напоминает, скорее, бугристую картофелину[6]6
  При условии, что все неровности умножены в 7000 раз. http://www.newscientist.com/article/dn20335-earth-is-shaped-like-a-lumpy-potato.html


[Закрыть]
. С другой стороны, никто особо не удивится, если новые измерения покажут, что семнадцатую сферическую гармонику формы Земли (один из элементов её математического описания) потребуется увеличить на 2 %. Большинство перемен в науке происходит постепенно, шаг за шагом, не меняя одним махом всю картину.

Однако иногда научное мировоззрение изменяется действительно кардинальным образом. Четыре элемента превращаются в 98, а после того как люди научились создавать новые, – в 118. Ньютоновская гравитация, загадочная сила, действующая на расстоянии, трансформировалась в эйнштейновское искривлённое пространство-время. Фундаментальные частицы вроде электрона из крошечных твёрдых шариков сначала превратились в вероятностные волны, а затем – в локализованные возбуждения квантового поля. В этом представлении поле – это море частиц, а сами частицы – отдельные волны этого моря. Возьмём, к примеру, океан Хиггса. Он состоит из бозонов Хиггса, и вы не сможете отделить одно от другого. Если вы хотите стать специалистом в физике элементарных частиц, вам придётся хорошенько разобраться и в физике квантовых полей. Таким образом, термин «частица» волей-неволей приобретает различные значения.

Научные революции меняют не Вселенную. Они меняют её человеческое толкование. Значительное количество научных диспутов касаются не так называемых «фактов», а их интерпретаций. Многие креационисты не подвергают сомнению достоверность определения последовательности ДНК[7]7
  Напомним, что ДНК – это дезоксирибонуклеиновая кислота, молекула, которая лихо закручивается в двойную спираль, напоминая две переплетённые винтовые лестницы. «Ступеньки» этих лестниц бывают четырёх типов, называемых «основаниями». Последние похожи на буквенные коды. Последовательность оснований варьируется от организма к организму, представляя собой его генетический код.


[Закрыть]
. Вместо этого они спорят о трактовке данных результатов как доказательства эволюции.

Люди вообще горазды на интерпретации. Это позволяет им выпутываться из всяких неловких ситуаций. В 2012 году в ходе теледебатов, посвящённых сексизму в религии и спорам по поводу женщин-епископов в англиканской церкви, один из участников процитировал 1-е послание апостола Павла к Тимофею: «Пусть женщины учатся тихо, в полной покорности. Я не позволяю женщине учить или же руководить мужчиной; ей следует молчать. Ведь первым был сотворен Адам, а потом Ева, и обманут был не Адам, а женщина, именно она поддалась лжи и совершила грех». На первый взгляд сложно интерпретировать эти строки иначе чем указание на подчинённое положение женщины и на то, что она должна слушаться мужчину и помалкивать в тряпочку. Более того: вина за грехопадение целиком и полностью лежит на женщине, а не на мужчине, ведь именно Ева поддалась на искушение змея. Но, несмотря на столь очевидное толкование, другой участник решительно утверждал, что в процитированном тексте не содержится ничего подобного. Вопрос интерпретации, только и всего. Всё это происходило за несколько месяцев до того, как Генеральный Синод высказался против изменения церковного законодательства.

Интерпретации нужны потому, что факты редко объясняют то, как Вселенная соотносится с нами самими. Солнечное тепло производится ядерными реакциями, в основном трансформацией водорода в гелий. Это факт. Но нам-то хочется большего. Мы желаем знать, почему так происходит. Появилось ли Солнце специально для того, чтобы обеспечивать нас теплом? Или напротив: мы обитаем на этой планете потому, что солнечное тепло создало среду, в которой такие, как мы, могут развиваться? Как видите, факт один и тот же, а вот его интерпретация зависит от того, кто именно интерпретирует.

Будем считать, что наша интерпретация – это человеческий взгляд на мир. Что, конечно, неудивительно. Если у кошек есть мировоззрение, они, безусловно, смотрят на мир со своей кошачьей точки зрения. Естественно, что человеческий способ существования оказал решающий эффект на то, как именно мы размышляем о мире, какие объяснения находим убедительными, и даже на то, что конкретно мы о нём думаем. Наш мозг воспринимает мир в человеческом масштабе, интерпретируя эти представления, исходя из их важности для нас самих.

Акцентирование внимания на человеческом масштабе кажется довольно логичным. Как ещё мы можем воспринимать наш мир? Но риторические вопросы заслуживают лишь риторических ответов, тогда как для нас, в отличие от других животных, имеются альтернативы. Человеческий мозг в состоянии сознательно изменить собственный образ мышления. Мы можем научить самих себя размышлять на разных уровнях, как на большом, так и на малом. Научиться избегать психологических ловушек, вроде веры в то, что мы хотим чего-то просто потому, что хотим. Можем даже думать в совершенно чуждом для нас ключе: математики, например, постоянно размышляют о пространствах, имеющих больше чем три измерения, о фигурах столь сложных, что не имеют какого-нибудь значимого объёма, о поверхностях с одной стороной или о размерах бесконечности.

Люди могут думать не по-человечески.

Такой способ мышления называется аналитическим. Такое мышление не появляется само собой, его результаты не всегда утешают, тем не менее думать таким образом вполне возможно. Это путь, приведший нас к современному миру, в котором аналитическое мышление становится всё более необходимым для выживания. Если вы уютно устроились у себя в кресле, убеждая себя, что мир таков, как вам хочется, скорее всего, вас ждут неприятные сюрпризы, причём тогда, когда уже поздно будет что-то менять. К сожалению, необходимость аналитического мышления воздвигает прочный барьер между наукой и бесчисленными человеческими желаниями, равно как убеждениями, возрождающимися с каждым новым поколением. Сражения, которые учёные наивно полагали окончательно выигранными ещё в XIX веке, разгораются вновь и вновь. Ведь рациональности и доказательной базы ещё недостаточно, чтобы одержать победу в человеческих умах.

Наши прирождённые способы мышления появились не случайно. Они эволюционировали вместе с нашим биологическим видом, поскольку были полезны для выживаемости. Миллион лет назад жизнь предков человека, бродивших по африканским саваннам, изо дня в день зависела от того, найдётся ли достаточно пищи. Кроме того, надо было постараться самим не стать чьим-либо обедом. Огромную важность для них приобрели соплеменники, животные и растения, которых они ели, а также звери, евшие их самих.

Впрочем, окружавший их мир включал много чего другого: камни; моря, озёра, и реки; погоду; огонь (вероятно, начавшийся с молнии); Солнце, Луну и звёзды… Однако даже эти неживые вроде бы объекты обладают неким подобием жизни: одни – движутся; вторые внезапно изменяются, словно по собственной воле; третьи могут вообще тебя убить. Неудивительно, что в развившейся человеческой культуре мир представлялся результатом сознательной деятельности живых существ. Солнце, Луна и звёзды стали богами – наглядным доказательством существования высших сил, обитающих на небесах, а раскаты грома и вспышки молнии – зримыми свидетельствами их гнева. Эти факты можно было наблюдать ежедневно, что делало их совершенно неоспоримыми.

Центральное место в жизни первых людей занимали животные и растения. Достаточно полистать книги с египетскими иероглифами, чтобы заметить, сколько среди них изображений зверей, птиц, рыб и растений. Ну, или их, скажем так, частей. Египтяне представляли богов в виде существ с головами животных; в одном совсем уж запущенном случае на человеческом торсе в качестве головы красовался целый навозный жук. Так рисовали бога Хепри – одну из ипостасей бога Солнца. Жуки-скарабеи угодили в божества из-за своего странного поведения: они скатывают шарики из навоза и закапывают их в землю. Точно так же гигантский небесный скарабей толкает шар-Солнце. Желаете доказательств? Солнце тоже каждый вечер скрывается под землёй, в «Нижнем мире».

У физика, а по совместительству писателя-фантаста, Грегори Бенфорда есть несколько очерков о тенденции человеческого мышления к разделению на два типа[8]8
  Gregory Benford. «А creature of double vision», in «Science Fiction and the Two Cultures: Essays on Bridging the Gap between the Sciences and the Humanities», edited by Gary Westfahl and George Slusser, McFarland Publishers 2009, pages 228-236.


[Закрыть]
. В рамках первого Вселенная рассматривается на фоне человечества, а в рамках второго – человечество на фоне Вселенной. Конечно, любой человек, в принципе, может мыслить и так, и эдак, однако большинство из нас обычно придерживается какого-то одного способа. Основная масса попыток разделить людей на две определённые категории – полнейшая чепуха. Это как в одном бородатом анекдоте: «Все люди делятся на два типа: те, кто думает, что люди делятся на два типа, и те, кто так не думает». Но всё же в оригинальном варианте, предложенном Бенфордом, есть здравое зерно, и даже более.

Его идею можно изложить следующим образом. Многие люди видят окружающий мир, то есть Вселенную, как источник ресурсов, а кроме того – как отражение самих себя. Для них самое важное, что в центре системы помещается человек, иначе говоря, она антропоцентрична. «Какую пользу мне может принести Вселенная?» – вот единственный вопрос, имеющий для них смысл. С этой точки зрения понять что-либо – значит выразить в терминах человеческой деятельности. При этом на первое место выступает человеческое предназначение Вселенной и то, зачем она нужна нам, любимым: дождь идёт только затем, чтобы хорошо росли наши посевы, а также для обеспечения нас пресной водой; Солнце светит, чтобы нас согревать. С самого начала, когда задумывалась Вселенная, подразумевалось наше существование, поэтому она была сконструирована таким образом, чтобы нам в ней было удобно жить. И если бы нас не было, в существовании Вселенной не было бы никакого смысла.

Отсюда рукой подать до взгляда на человека как на венец творения, повелителя планет и хозяина Универсума. Мы можем так считать, даже не сознавая того, насколько антропоцентрическое мировоззрение ограничено. И утверждать, что думаем подобным образом лишь из смирения, а вовсе не из гордыни, ведь мы все подвластны творцу Вселенной. Последний же – эдакий «супермен» (король, император, фараон, господин), чья власть простирается далеко за пределы нашего воображения.

Альтернативная точка зрения представляет человечество как пылинку в бескрайнем космосе, большая часть которого функционирует вне человеческого масштаба и независимо от наших на неё упований. Дожди на Земле идут миллиарды лет, в то время как земледелие существует всего около сотни веков. В структуре космоса люди – всего лишь одна из незначительных подробностей поверхности каменного шарика, бо́льшая часть бытия которого прошла ещё до того, как мы с вами появились и смогли заинтересоваться происходящим вокруг. Мы, может быть, и пуп земли в той микроскопической части Вселенной, которая касается нас непосредственно, но за пределами нашей планеты ничто происходящее от нас не зависит. Ну, кроме разве что забавных крупинок металла и пластмассы, брошенных на поверхности Луны и Марса или болтающихся на орбитах Меркурия, Юпитера, Сатурна и окраинах Солнечной системы. Мы могли бы сказать, что Вселенной безразлично наше существование, однако и это утверждение отдаёт самолюбованием, поскольку оно наделяет космос человеческим свойством – безразличием. Там нет никого, кто способен испытывать безразличие. Мир функционирует вне человеческих правил и категорий.

В дальнейшем мы будем называть эти два типа мышления «антропоцентризмом» и «космоцентризмом». Множество споров, которыми пестрят заголовки статей, в большей или меньшей степени берут своё начало в принципиальном различии между этими двумя подходами. Вместо того чтобы априори принять превосходство одного над другим, а затем бурно дискутировать, какой же из них кого превосходит, сначала нужно бы изучить, в чём, собственно, их отличие. В различных случаях оба способа мышления могут иметь свои преимущества. И лишь когда они начинают наступать друг другу на любимые мозоли, возникают проблемы.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации