Текст книги "Математическое и гуманитарное. Преодоление барьера"
Автор книги: Владимир Успенский
Жанр: Математика, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 4 страниц)
XII
Из только что сказанного как бы напрашивается вывод, что главная цель обучения гуманитариев математике состоит в обучении их математическим моделям или хотя бы в создании фундамента для такого обучения. Однако это не так.
Главная цель обучения гуманитариев математике – психологическая. Эта цель состоит не столько в сообщении знаний и даже не столько в обучении методу, сколько в изменении – нет, не в изменении, а в расширении психологии обучающегося, в привитии ему строгой дисциплины мышления (слово «дисциплина» понимается здесь, разумеется, не в значении ‘учебный предмет’, а в смысле приверженности к порядку и способности следовать этому порядку). Как сказал Ломоносов, «математику уже за то любить стоит, что она ум в порядок приводит».
Помимо дисциплины мышления я бы назвал ещё три важнейших умения, выработке которых должны способствовать математические занятия. Перечисляю их в порядке возрастания важности: первое – это умение отличать истину от лжи (понимаемой в обсуждённом выше объективном математическом смысле, то есть без ссылки на намерение обмануть); второе – это умение отличать смысл от бессмыслицы; третье – это умение отличать понятное от непонятного.
Вливание элементов математической психологии в сознание гуманитариев (недруги такого вливания назвали бы его индок-тринизацией, а то и интоксикацией) может осуществляться как в прямой форме, путём обучения в классах и аудиториях, так и в форме косвенной, путём проведения совместных исследований, участия математиков в проводимых гуманитариями семинарах и т. п.; к косвенным формам влияния относятся даже вопросы, задаваемые математиками на лекциях на гуманитарные темы. Здесь на память приходит известный случай из истории психологии. В конце XIX века в одной из больших аудиторий Московского университета была объявлена лекция на тему «Есть ли интеллект у животных?». Просветиться на такую интригующую тему собралось несколько десятков, а то и сотен слушателей. Председательствовал заслуженный ординарный профессор математики Московского университета Николай Васильевич Бугаев – президент Московского математического общества (с 1891 года по 1903 год) и отец Андрея Белого. Перед началом доклада он обратился к аудитории с вопросом, знает ли кто-либо, что такое интеллект. Ответ оказался отрицательным. Тогда Бугаев объявил, что, поскольку никто из присутствующих не знает, что такое интеллект, лекция о том, есть ли он у животных, состояться не может. Это типичный пример косвенного воздействия математического мышления на мышление гуманитарное. Подобные формы воздействия также являются одним из элементов математического образования.
За последние полвека произошло заметное уменьшение количества непонятных или бессмысленных утверждений в отечественной литературе по языкознанию; полагаю, что это произошло не без влияния – как прямого, так и главным образом косвенного – математики. Случается, впрочем, и языковедам поправлять математиков. Наиболее существенную из таких поправок осуществил в отношении математика Фоменко лингвист Зализняк.[12]12
А. А. Зализняк. Лингвистика по А. Т. Фоменко // Успехи математических наук. 2000 г., т. 55, вып. 2. С. 162–188. И подробнее: А. А. Зализняк. Из заметок о любительской лингвистике. – М.: Русскш мфъ, 2009. —240 с.
[Закрыть]
Разумеется, математики не претендуют на то, чтобы ответить на проблемы, возникающие в гуманитарных науках (хотя именно математику Колмогорову принадлежит первое научное определение лингвистического понятия ‘падеж’ —см. выше). Но они помогают гуманитариям лучше уяснить суть этих проблем и критически отнестись к попыткам их решения.
Роль математики в подготовке гуманитариев можно сравнить с ролью строевой подготовки в обучении воина. Все эти ружейные артикулы, повороты, строевой шаг и иные движения, которым обучают молодого бойца, вряд ли находят применение в реальном бою. Но во всех армиях мира они рассматриваются как необходимая основа всякого военного обучения, поскольку приучают выполнять команды. (Кстати, оперирование с математическими алгоритмами также приучает выполнять команды. «Сначала я вам скажу, что я делаю, а [только] потом объясню зачем» – это программное заявление содержится в одной из книг по методике математики.)
Строевая подготовка тренирует дисциплину – только не дисциплину мышления, как это делает математика, а дисциплину действий.
Другая аналогия – тренировка моряков на парусных судах. Не знаю, как сейчас, но во времена моей молодости всякий, кто обучался в гражданских мореходных вузах, в обязательном порядке проходил плавание на парусниках – и это притом, что применять полученные парусные навыки впоследствии ему вроде бы не приходилось. Тем не менее, обучение этим навыкам считалось (а может быть, и считается до сих пор) необходимой частью морской подготовки, необходимым тренингом. Сходным тренингом – тренингом мышления, наведением порядка в мозговых извилинах – служит математика.
XIII
Спросите «человека с улицы», в чём состоит аксиома о параллельных прямых и в чём состоит открытие Лобачевского. Эксперимент показывает, что на первый вопрос ответ будет в большинстве случаев таким (причём и в России, и в Америке): аксиома состоит в том, что параллельные прямые не пересекаются. А на второй вопрос ответ будет, скорее всего, таким: Лобачевский доказал, что параллельные прямые пересекаются. При этом отвечающий, как правило, знает, что прямые называются параллельными, если они лежат в одной плоскости и не пересекаются. В значительном числе случаев ответившего можно убедить в ошибочности обоих ответов. В случае вопроса об аксиоме многие (но не все!) понимают, что коль скоро слово «параллельные» – это синонимичное название для непересекающихся прямых, то объявлять непересекаемость параллельных аксиомой довольно бессмысленно (это всё равно как объявить такую аксиому: «всякий красный предмет является красным»; впрочем, ощутимое количество людей не имеют ничего против такой аксиомы). Что до открытия Лобачевского, то, в чём бы оно ни состояло, ясно, что прямые линии, называемые параллельными, пересечься не могут.
Вопрос про аксиому о параллельных не является, разумеется, вопросом на испытание памяти. Точно так же вопрос об открытии Лобачевского не является вопросом на проверку эрудиции. Оба вопроса – на понимание смысла делаемых утверждений. Строго говоря, вся ситуация лежит здесь не в сфере математики, а в сфере упоминавшейся выше логики русского или иного естественного языка. И это довольно типично: значительная часть того, что происходит на уроках математики для гуманитариев, как раз и должна, по нашему разумению, состоять в обсуждении этой логики, а отчасти и в обучении ей. Математики впитывают семантику неосознанно, поскольку занятия математикой невозможны без чётко сформулированных утверждений. Столь же неосознанно у гуманитариев семантика размывается – не без влияния расплывчатых текстов гуманитарных наук. (И для гуманитария такая размытость семантики зачастую необходима.)
Диалог математика с гуманитарием о параллельных прямых мы считали бы полезным и поучительным для обеих сторон. Вот ещё пример такого полезного и поучительного диалога.
Математик. Возьмём прямую линию и точку на ней. Существует ли на этой прямой точка, ближайшая к нашей точке и лежащая справа от неё?
Гуманитарий. Да, существует.
Математик. Вы не возражаете, если исходную точку мы обозначим буквой A, а ближайшую к ней справа буквой B?
Гуманитарий. Не возражаю.
Математик. Вы согласны с тем, что любые две различные точки можно соединить отрезком?
Гуманитарий. Согласен.
Математик. Значит, можно соединить точки A и B и получить отрезок AB. Правильно?
Гуманитарий. Правильно.
Математик. А согласны ли вы с тем, что всякий отрезок имеет середину?
Гуманитарий. Согласен.
Математик. Значит, и у отрезка AB есть середина. Но ведь эта середина явно ближе к точке A, чем точка B. Меж тем, точка B – ближайшая к A. Как быть?
Гуманитарий. (Не знает, что сказать.)
Математик. Я лишь хотел обратить ваше внимание, что не могут одновременно быть истинными все три утверждения о существованиях: «Для всякого отрезка существует его середина», «Любые две различные точки можно соединить отрезком» и «Для точки на прямой линии существует ближайшая к ней точка справа».
Надо признать, впрочем, что ответ «Да, существует» на вопрос о ближайшей точке встречается хотя и весьма часто, но всё же реже, чем приведённые выше ответы о сущности аксиомы о параллельных и открытия Лобачевского.
Результатом диалога о ближайшей точке должно стать отнюдь не только уяснение гуманитарием того, что для данной точки не существует ближайшей к ней точки справа; несуществование такой точки – это, в конце концов, всего лишь математический факт. Не менее, а скорее даже более важным является уяснение математиком тех деталей психологии гуманитария, которая заставляет его считать, что такая точка существует. Дело в том, что представление о ‘ближайшем’ формируется у гуманитария (как и у всякого человека) не на основе изучения такого сложного образования, как континуум точек на прямой, а на основе наблюдений материальных предметов окружающего мира. Наблюдение же, скажем, окон дома или кресел в театральном зале не оставляет сомнений в наличии ближайшего справа окна или кресла (предвидя ехидное возражение мелочного педанта, прибавим: если только исходное окно или кресло не является крайним). Из сказанного можно сделать такое заключение: наш пример с ближайшей точкой есть конкретное проявление некоей общей трудности, имеющей философский характер. Трудность состоит в следующем. Математика изучает идеальные сущности (такими сущностями являются, в частности, точки), но обращается с ними, как если бы они были реальными предметами физического мира (например, применяет к точкам понятие ‘ближайший’). Но в таком случае математик обязан отдавать себе отчёт, что подобный квазиматериальный подход к абстракциям, если не сделать специальных оговорок, влечёт перенесение на эти абстракции шлейфа таких представлений, которые абстракциям не свойственны, а заимствуются из обращения с физическими предметами. Что до упомянутых «специальных оговорок», они делаются явно, а подсознательно впитываются математиками в процессе их обучения. В случае точек на прямой указанный шлейф включает в себя представление о точках на прямой как о мельчайших бусинах, нанизанных на натянутую нить. Разумеется, в рамках такого представления естественно предполагать наличие ближайшей точки и даже быть уверенным в таком наличии. Порядок точек на прямой является, в математической терминологии, плотным порядком; термин «плотный» означает, что для любых двух участвующих в этом упорядочении объектов, каковыми в данном случае служат точки прямой, найдётся объект (в данном случае точка) между ними. В окружающем нас материальном мире плотных порядков не встречается.
Вот другой пример на ту же тему. Одной из математических абстракций является пустое множество. Само понятие ‘множество’, подобно понятию ‘натуральное число’, является одним из первичных, неопределяемых математических понятий, познаваемых из примеров. Синонимом математического термина множество является слово совокупность; объекты, входящие в какую-либо совокупность, она же множество, называются её (соответственно его) элементами. Слово «множество» может навести на мысль, что в множестве должно быть много элементов – тем более, что главное общеязыковое значение этого слова действительно выражает эту мысль, как, например, во фразе «Можно указать множество причин…». Эта ложная мысль разрушается уже заявлением, что «множество» (в математическом смысле) и «совокупность» суть синонимы: ведь количество элементов в совокупности может быть и малым. Заметим, кстати, что переводы термина «множество» на французский язык («ensemble») и на английский язык («set») не содержат идеи ‘много’. Зададимся теперь вопросом, может ли совокупность состоять из одного элемента. Математик ответит категорическим «да». Для гуманитария же минимально возможное количество элементов совокупности – это два. Но математики свободно оперируют и пустым множеством, вовсе не содержащим элементов. На занятиях по математике гуманитарии быстро усваивают это понятие (в частности, соглашаются, что пустое множество единственно: пустое множество крокодилов и пустое множество планет – это одно и то же множество).
Для математика наименьшим числом, возможным при ответе на вопрос «Сколько?», является число ноль. Для нематематика же наименьшим числом, возможным при ответе на вопрос «Сколько?», является число один. Скажем, если в зоопарке всего лишь один слон, то слово «один» будет естественным ответом на вопрос «Сколько слонов в этом зоопарке?». Хотя нематематик поймёт ответ «ноль» на вопрос «Сколько в этом бассейне крокодилов?» и даже, возможно, сам в состоянии дать подобный ответ, но всё же он скорее ответит так: «Да нет тут никаких крокодилов!». И уж точно он не задаст вопрос «Сколько?», не спросив предварительно «Есть ли в этом бассейне крокодилы?», и только после положительного ответа спросит, сколько их.
Как в примере с точками, так и в примере с пустым множеством общение математика с гуманитарием здесь более поучительно для математика, нежели для гуманитария. Потому что заставляет математика осознать, что он, математик, даже в таких простых, казалось бы, вопросах, ушёл в мир абстрактных сущностей и тем самым удалился от общечеловеческого словоупотребления и образа мыслей.
Поэтому математику негоже с высокомерием относиться к высказываниям гуманитария. Напротив, ему полезно осознать, что это он приписывает своим абстракциям такие свойства, которые в жизни не встречаются. Заметим, что именно неограниченное, а потому незаконное перенесение на математические абстракции слов и смыслов, заимствованных из реальной жизни, и приводит, в конце концов, к математическим парадоксам, а именно к так называемым парадоксам теории множеств. Эти парадоксы появляются там, где с чрезвычайно высокими абстракциями начинают обращаться так, как обращаются обычно с реальными предметами.
Заметим, что ту же, по существу, природу – природу незаконного перенесения – имеют и парадоксы, которые обычно называют логическими, хотя правильнее было бы называть их лингвистическими. Так мы и будем их называть. Как только что отмечалось, математические парадоксы возникают при попытке оперировать с математическими сущностями путём обычных словоупотреблений. Лингвистические парадоксы возникают, напротив, при попытке оперировать с обычными словоупотреблениями так, как если бы они выражали точные математические понятия. Обычные словоупотребления, как правило, имеют расплывчатый смысл, и попытка придания им точного смысла как раз и приводит к парадоксам. Приведём для ясности три известных лингвистических парадокса.
Парадокс кучи. Это один из самых известных и древних парадоксов. Ясно, что если из кучи песка удалить одну песчинку, то то, что останется, всё еще будет кучей. Но ведь производя удаление достаточное количество раз, мы дойдём до одной единственной песчинки, каковая кучу не образует. Где же граница между кучей и не кучей? Ответ очевиден: слово «куча» имеет расплывчатый смысл, и потому искать точные границы этого смысла бесполезно.
Парадокс наименьшего числа. Возьмём «наименьшее натуральное число, которое не допускает определения посредством фразы, содержащей менее ста слов». С одной стороны, это число не допускает определения посредством менее ста слов. С другой стороны, взятая в кавычки фраза является его определением, причём таким, которое содержит менее ста слов. Разгадка в том, что мы обращаемся с выражением «определять натуральное число» так, как если бы оно имело точный смысл, какового в действительности оно не имеет. Достаточно задаться вопросом, какие слова можно использовать в определении. Можно ли, например, использовать названия редких растений, известные лишь узкому кругу ботаников, или специальные математические термины, или собственные имена людей (притом, что каждое такое имя принадлежит, как правило, нескольким людям)? Наш парадокс как раз и показывает, что обсуждаемому выражению точный смысл придать невозможно.
Парадокс гетерологичности. Назовём прилагательное гомологическим, если оно обладает тем свойством, которое это прилагательное выражает; в противном случае назовём его гетерологическим. Примеры: прилагательное «многосложный» само многосложно, и потому оно является гомологическим; прилагательное «односложный» не односложно, и потому оно является гетерологическим. Гомологическим или гетерологическим является прилагательное «гетерологический»? Если оно гомологическое, то, значит, оно обладает тем свойством, которое оно выражает, а свойство это —‘гетерологичность’; значит, рассматриваемое прилагательное – гетерологическое. Если же оно гетерологическое, то, обладая выражаемым им своством гетерологичности, оно должно квалифицироваться как гомологическое. Всё дело в том, что слова «гомологический» и «гетерологический» не обладают точным смыслом, в презумпции какового происходит рассуждение. Толкование этих слов опирается на толкование словосочетания «свойство, выражаемое прилагательным», а при толковании этого словосочетания возникают значительные трудности. Возьмём, для примера, прилагательное простой. Возможно ли недвусмысленно указать свойство, выражаемое этим прилагательным? Где граница между простыми и непростыми сущностями? И подпадают ли под это свойство простые дроби, простые числа, простые вещества, простые эфиры и василистник простой (являющийся растением семейства лютиковых)?
XIV
Вернёмся, однако, к тому, чем математика может быть полезна всем – в частности, гуманитариям.
К воспитываемой на уроках математики дисциплине мышления относится осознание отчётливого различия между истиной и ложью (в вышеуказанном математическом значении слова «ложь»), между доказанным и всего лишь гипотетическим: ведь нигде эти различия не проявляются с такой чёткостью, как в математике. Автору очень хочется сказать, что математика – единственная наука, где достигается абсолютная истина, но он всё же на это не решается, так как подозревает, что абсолютность истины не достигается нигде. Но в любом случае математические истины ближе к абсолютным, чем истины других наук. Поэтому математика – наилучший полигон для тренировки на истину. Истина – основной предмет математики.
Духовная культура состоит не столько в знаниях, сколько в нормах. Нормы проявляются прежде всего в противопоставлениях. Эстетика учит нас противопоставлению между прекрасным и безобразным, высоким и низким. Этика – между должным и недолжным, между нравственным, моральным и безнравственным, аморальным. Юриспруденция – между законным, правовым и незаконным, неправовым. Логика – между истинным и ложным. Но логика сама по себе не создаёт истин. Её законы носят условный характер: если то-то и то-то истинно, то неизбежно истинно то-то и то-то. (Точно также теория вероятностей ни для какого события не назначает и не может назначать вероятности этого события, а лишь указывает, как по одним вероятностям вычислять другие. Например, она не утверждает, что при бросании монеты выпадение двух орлов подряд имеет вероятность одна четвёртая; она утверждает лишь, что если при одном бросании монеты выпадение орла имеет вероятность одна вторая и если результаты бросаний не зависят друг от друга, то выпадение двух орлов подряд имеет вероятность одна четвёртая.) Знаменитый силлогизм про смертность бедного Кая не утверждает, что Кай смертен, а утверждает лишь, что если все люди смертны и если Кай человек, то и он, Кай, смертен.
Истину же поставляют конкретные науки, в том числе математика. Кажется, что математика становится тем самым на одну доску с другими науками. Но нет, это не так: её и только её истины могут претендовать на приближение к абсолютности, и если они даже не абсолютны, то «почти» абсолютны.
Приходится, однако, признать – математику со вздохом, гуманитарию с удовлетворением, – что в этой приближённости математических истин к абсолютным состоит некоторая ограниченность математики. Потому что тот мир, который дан нам в ощущениях, более адекватно отображается скорее в истинах, достаточно удалённых от абсолютных. Даже казавшиеся незыблемыми законы Ньютона оказались пригодными лишь для сравнительно узкой полосы между микро– и макромирами, а вне этой полосы требующими замены законами теории относительности. Что уж говорить о так называемых прописных истинах гуманитарной сферы, будь то истины моральные или эстетические, которые с трудом поддаются, а то и вообще не поддаются оценке в терминах «верно» и «неверно».
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.