Электронная библиотека » Александр Волошин » » онлайн чтение - страница 12


  • Текст добавлен: 2 мая 2023, 10:23


Автор книги: Александр Волошин


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 12 (всего у книги 29 страниц)

Шрифт:
- 100% +
Магнитоэнцефалография (МЭГ)

Появившиеся в последние десятилетия современные методы отображения гемодинамических процессов, такие как, функциональная магниторезонансная томография (фМРТ) или позитронно-эмиссионная томография (ПЭТ), позволяют получить точную (до нескольких миллиметров) пространственную локализацию активности участков мозга. Однако их временное разрешение (единицы секунд) на несколько порядков ниже скорости реально протекающих нейронных процессов. В отличие от метода фМРТ, в котором активность нейронов оценивается опосредованно, т. е. по изменению локального кровотока за счёт определения разницы в насыщении крови кислородом (так называемого Blood Oxygen Level Dependent, или BOLD signal), МЭГ способна почти мгновенно обнаруживать источники, связанные с изменением суммарной постсинаптической активности нейронов.

Лишь технологии ЭЭГ и МЭГ, обладающие возможностью непосредственной регистрации электрической нейронной активности, могут обеспечить получение точной временной информации о мозговых процессах неинвазивным путём. ЭЭГ и МЭГ фиксируют, соответственно, электрические и магнитные поля, порождаемые согласованной активностью групп нейронов мозга.

МЭГ – одна из современных технологий нейроимиджинга. Данный метод обладает уникальными характеристиками, позволяющими с высокой точностью локализовать источники активности нейронных популяций коры головного мозга человека в пространстве и времени.

История

Отцом МЭГ общепризнан канадский учёный Дэвид Коэн и, хотя изначально до 1965 года, он был физиком-ускорителем в Аргоннской лаборатории, специализируясь на сильных магнитных полях и использовании мощной ядерной защиты именно он сделал многие из первых новаторских измерений в области магнитных полей, создаваемых органами человека: сердцем, лёгкими и, наконец, мозгом).

На каком-то этапе своей карьеры он заинтересовался измерением очень слабых магнитных полей, которые, например, могли бы создаваться слабыми естественными токами в человеческом теле. Для исследования в качестве детектора он применил гигантскую медную индукционную катушку с миллионами витков провода.

Основной проблемой биомагнетизма оказалась слабость сигнала по сравнению с чувствительностью детекторов и конкурирующим шумом окружающей среды.

В 1963 году Коэн предложил метод использования специального помещения с магнитной защитой для исключения влияния внешних магнитных возмущений, например, магнитного поля Земли и излучений промышленных объектов.

Примерно в то же время появились сообщения о первом «биомагнитном измерении сердечных токов» (магнитокардиограммы).


Рисунок 24 Экранированная комната


В период с 1963 по 1975 год производились многочисленные измерения электрических свойств сердца человека. Существовало процветающее сообщество, изучающее электрическое поле сердца (ЭКГ), так что первые магнитные измерения (магнитокардиограммы), полученные Баулем и МакФи, считались любопытным побочным эффектом процветающей ЭКГ. Считалось что в магнитном поле сердца не может быть новой информации.

Все эти ранние биомагнитные измерения, как правило, были слишком «зашумлёнными», по причине низкой чувствительности детекторов, и неполного магнитного экранирования.

Для решения второй проблемы в 1969 году Коэн построил тщательно экранированную комнату в Массачусетском технологическом институте. Но ему все ещё требовался более чувствительный детектор.

К счастью, Джеймс Циммерман (1923—1989) только что разработал чрезвычайно чувствительный детектор, названный SQUID – сверхпроводящее устройство квантовой интерференции.

Коэн и Циммерман установили этот детектор в экранированной комнате, чтобы исследовать магнитные поля сердца (MCG). Теперь сигналы были почти такими же разборчивыми, как и сигналы ЭЭГ. Это стимулировало интерес физиков, которые искали возможности использования СКВИДов. После этого начали измеряться различные типы спонтанных и вызванных биомагнитных излучений. Так открылась новая эра в биомагнетизме.

Сам Дэвид Коэн утверждал, что ему удалось обнаружить биомагнитные излучения не только отдельных органов, но и «постоянное магнитное поле человека». Интересен и тот факт, что, заставив «тихую комнату» вибрировать с частотой 60 Гц, ему удалось значительно повысить её эффективность в защите от внешних магнитных полей.

Сначала с помощью одного СКВИД-детектора последовательно измеряли магнитные поля перемещая его вокруг головы испытуемого. Это было громоздко и неудобно, поэтому в 1980-х производители МЭГ стали объединять датчики в массивы, покрывающие большую площадь головы. Современные массивы МЭГ устанавливаются в шлемообразной форме, и обычно содержат 306 датчиков, погруженных в термос с жидким гелием при температуре около -269° С.

Сегодня большинство биомагнитных измерений применяется к человеческому мозгу. Обычные амплитуды магнитных полей, создаваемых мозгом, чрезвычайно малы, они не превышают нескольких сотен фемтотесла (10 —15 Тл). Для сравнения, магнитное поле Земли составляет от 10 -4 до 10 -5 Тл, а магнитно-резонансная томография обычно составляет 1,5—3 Тл.

Модель современного помещения с магнитным экраном состоит из трёх вложенных основных слоёв: из чистого алюминия с высокой проницаемостью, ферромагнитного слоя, близкого по составу к молибдену и пермаллоя.

МЭГ регистрирует магнитные поля, создаваемые электрическими токами в головном мозге. Электрический ток всегда связан с магнитным полем, перпендикулярен его направлению согласно правилу правой руки (о том какие токи протекают в нервных клетках мы поговорим позже).

Магнитная проницаемость биологических тканей почти такая же, как у пустого пространства, поэтому магнитное поле не искажается скальпом или черепом. Однако магнитные поля быстро уменьшаются – обратно пропорционально кубу расстояния (как 1 / r 3).

Когда нейроны активируются синхронно, они генерируют электрические токи и, следовательно, магнитные поля, которые затем регистрируются МЭГ вне головы.

Считается что, источником магнитных полей является дендритный ток пирамидных нейронов, которые срабатывают синхронно и параллельно. Аксональные и синаптические токи и их магнитные поля взаимно компенсируются.

Для генерации измеримого сигнала необходимо около 50 000 активных нейронов. Поскольку токовые диполи должны иметь одинаковую ориентацию для создания магнитных полей, усиливающих друг друга, часто это слой пирамидных клеток, которые расположены перпендикулярно поверхности коры головного мозга, что создаёт детектируемые магнитные поля. Связки этих нейронов, ориентированных тангенциально к поверхности кожи головы, проецируют достаточно сильные магнитные поля способные выходить за пределы головы.

Объяснение возникновения магнитных полей, как и электрических в случае ЭЭГ, не слишком вразумительны, но приходится радоваться тому факту, что они реально существуют.


Рисунок 25 Первое измерение МЭГ с помощью SQUID в комнате доктора Коэн


Но современное представление результатов МЭГ это визуализация зон активности групп нейронов на 3D-модели мозга.


Рисунок 26. 3D-модели мозга


При анализе данных МЭГ возникает проблема решения так называемой обратной задачи, которая состоит в восстановлении распределения активности нейронных источников на поверхности коры головного мозга на основе сигналов, принятых большим количеством датчиков. Решение этой задачи по определению некорректно, поскольку любая поверхностная запись может объясняться бесконечным числом различных конфигураций внутренних источников.

Но активно развиваются методы на основе различных вариантов, сканирующих адаптивных фокусирующих лучей, позволяющие достичь пространственного разрешения до 0,5 см. (Напомню, что Уильям Пенфилд, проверяя реакцию нервной системы на открытом мозге, выделял участки с точностью до 1 мм2, т.е. в 5 раз точнее. Но в отличие от экспериментов Пенфилда учёные впервые получили возможность наблюдать реакцию участков мозга на внешние раздражения и мысленные образы.)

Сейчас исследователи работают над совершенствованием методов обработки сигнала в поисках возможности обнаружения глубокой мозговой (то есть некортикальный) активности, однако пока нет клинически полезного результата.

Дальнейшее развитие метода, вероятно, будет направлено и на разработку новых математических алгоритмов обработки сигнала.

Последние разработки в области аппаратного совершенствования нацелены на повышение портативности сканеров MEG за счёт использования SERF-магнитометров. Магнитометры SERF достаточно малы, при этом им не нужны громоздкие системы охлаждения. В то же время их чувствительность, эквивалентна СКВИДам.

ПЭТ

Позитро́нно-эмиссио́нная томогра́фия (позитронная эмиссионная томография, она же двухфотонная эмиссионная томография) – радионуклидный томографический метод исследования внутренних органов человека или животного. ПЭТ также называют функциональной томографией.

Метод основан на регистрации пары γ-квантов, возникающих при аннигиляции позитронов с электронами.

По сути, ПЭТ-сканер представляет собой трёхмерный детектор γ-частиц, вылетающих из тела пациента. Ключевой компонент метода – радиофармпрепарат – вещество содержащее изотоп, способный к позитронному β-распаду. Кроме того, это вещество-метаболит, должно быть способно к накоплению в исследуемой ткани. Так, для исследования тканей мозга, активно поглощающих глюкозу, а также для поиска некоторых типов опухолей часто используют 18F флудеоксиглюкозу (фтор-18).

В момент β-плюс (позитронного) распада протон ядра превращается в нейтрон, одновременно испуская нейтрино и позитрон. Нейтрино свободно улетает, никак не взаимодействуя с тканями, а вот позитрон далеко улететь не может. Он очень скоро встречается с электроном, происходит их взаимная аннигиляция, с испусканием пары γ-частиц. Эти частицы и фиксируются сцинтилляционными детекторами, установленными в кольце ПЭТ-сканера.

Первую установку, использующую γ-датчики для локализации опухолей мозга, описал Уильям Свит в 1953 году. Практически в то же время Фрэнк Ренн с соавторами опубликовал в Science результаты исследования опухолей мозга с использованием аннигиляции. Однако современная ПЭ-томография стала возможна только с появлением методов реконструкции изображения на основе множественных сечений. Эту работу начали Дэвид Кул и Рой Эдвардс в конце 1960 года, а закончили в 1975 году Тер-Погосян, Фелпс и Хоффман постройкой первого полноценного томографа.

Большинство современных изотопов для ПЭТ имеют очень короткий период полураспада, их даже изготавливают на циклотроне непосредственно перед введением в организм.

Введение радиофармпрепарата в организм человека проводится внутривенно. После того, как препарат попал в кровь, пациенту нужно находиться в полном спокойствии на протяжении 30—60 минут, что обеспечит оптимальное распределение введённого вещества.

После подобного «отдыха» пациента перевозят в камеру томографа, именно там при помощи специального детектирующего оборудования (ПЭТ-сканера) можно отслеживать распределение в организме биологически активных соединений, меченных позитрон-излучающими радиоизотопами.

При сканировании ПЭТ-КТ облучение может быть значительным – около 23—26 мЗв (для 70 кг веса). Для пациентов с большей массой тела доза вводимого радиофармпрепарата увеличивается.

В общем ПЭТ можно скорее назвать методом поиска опухолей мозге, нежели методом исследования. Но если вспомнить, что для рентгена мозг прозрачен, а кости черепа экранируют ультразвук, то этот метод обследования по-своему уникален. И уж точно менее опасен, чем введение в мозг воздуха (пневмоэнцефалография) или контрастного вещества (ангиография) [19].

Генное исследование мозга. Транскриптом

В сентябре 2003 года Пол Аллен видный филантроп и один из основателей «Майкрософта» основал Институт исследований мозга Аллена, выделив 100 миллионов долларов на изучение того, как работает человеческий мозг, конкретнее – на том, каким образом гены создают мозг.

Но для начала выбрали модель попроще – мозг мыши. И в 2004 году стартовал проект – Атлас транскриптома головного мозга мыши (Allen Mouse Brain Atlas). Завершились работы в сентябре 2012 года.

Транскрипт – молекула РНК, образующаяся в результате экспрессии соответствующего гена или участка ДНК. Соответственно, транскрипто́м – это совокупность всех транскриптов, синтезируемых одной клеткой или группой клеток.

Итогом стала база данных (фотографий срезов мозга, и цифровых трёхмерных изображений), в которой была собрана информация о том, в каком участке мозга какие гены работают. Все результаты по решению участников проекта были размещены с сети Интернет для открытого доступа (www.brain-map.org). [29].

Работа над генной картой мозга мыши позволила Институту Аллена благодаря приобретённому накопить достаточный опыт и создать технологии позволившие приступить к созданию основного проекта – построению транскриптомной карты головного мозга человека. [30]

Транскриптом мозга человека

Схема работы над генным атласом человеческого мозга мало отличалась от таковой для мозга мыши. Для исследования экспрессии генов был использован метод РНК-микрочипов (тогда как в случае мозга мыши применялся метод гибридизации in situ). После исследования структуры, срезы разделялись на более мелкие фрагменты – в итоге их было чуть более 900 для каждого из двух образцов. Затем из ткани выделялись все молекулы РНК, и полученный раствор наносился на специально разработанные микрочипы. В общей сложности было использовано 20 тысяч разных проб, покрывающих 93% известных генов человека (такое странное число можно объяснить тем, что, несмотря на почти полностью прочтённую последовательность генома человека, некоторые гены все ещё не представлены в молекулярных базах последовательностей).

Следующим этапом после всестороннего молекулярно-биологического исследования был биоинформационный анализ данных. Данные по транскриптому были сопоставлены с конкретными зонами мозга. После этого было проверено, существуют ли зоны и отделы мозга, идентичные по своему транскриптому, и можно ли выделить внутри традиционных анатомических зон мозга области с разными профилями экспрессии.

Между транскриптомами отдельных зон мозга были выявлены большие различия. А вот все клетки коры больших полушарий человеческого мозга экспрессируют один и тот же набор генов, независимо от принятого деления на функциональные зоны (зрительные, соматосенсорные, моторные).

Поразило исследователей и сходство между транскриптомами мозга двух людей (пока были исследованы только двое).

Благодаря двум проектам стало известно, что на построение мозга взрослого человека экспрессируется около 84% всех его генов и у мыши примерно столько же. При том, что в построении всех других органов задействовано лишь оставшиеся 16 процентов генов. А если учесть ещё и гены, которые были активными в процессе развития нервной системы, но потом замолкли, – создаётся впечатление, что практически весь геном находится на службе у мозга. [30]

Сегодня ещё рано судить обо всех возможностях, открывающихся с появлением атласа транскриптома мозга человека, однако не будет преувеличением сказать, что нейробиологи получили новый мощный инструмент для своих исследований. По своему масштабу проект Алленовского атласа человеческого мозга сопостави́м с проектом «Геном человека».

Коннектом

Какова цель исследований мозга? Вероятно, это всё то же его картирование – составление подробной карты. А каков предел детализации этой карты? Полное описание структуры связей нейронов в нервной системе организма или – Коннекто́м.

Область исследований, включающая в себя картографирование и анализ архитектуры нейрональных связей, называется «коннектомика».

Понятие о коннектоме как совокупности всех связей в мозгу ввели в 2005 году. Олаф Спорнс, Джулио Тонони вместе с Рольфом Кёттером из Фогтовского института исследований мозга в Дюссельдорфе опубликовали программную статью, которая называлась «Человеческий коннектом. Описание структуры мозга человека» [31]. В том же году независимо от них Патрик Хагман в тезисах своей кандидатской диссертации использовал то же слово и дал то же определение: «Коннектом мозга – совокупность всех связей в нем как единое целое». Мы не можем понять, как работает прибор, пока не получим его схему.

На смену лозунгу «Я – это мой геном» пришёл новый: «Я – это мой коннектом». В самом деле, геном – это лишь точка отсчёта, а карта связей в мозге человека – итог реализации генетической программы, взаимодействия индивида со средой, нечто более близкое к ответу на вопрос «что есть личность».

Появление коннектомики стало возможным благодаря появлению современных инструментов исследования, позволивших построить картину связей между нейронами. Это направление называется микроконнектомикой. Понятно, что любые методы установления связей между отдельными нейронами чрезвычайно трудоёмки – проделать такую работу для целого мозга в обозримом будущем нереально.

Полный коннектом, до клеточного уровня, пока расшифрован только для нематоды Caenorhabditis elegans (C. elegans) – прозрачного червячка длиной около миллиметра. Caenorhabditis elegans – прекрасный объект для исследования. Его геном был расшифрован ещё в 1998 году, а теперь настала очередь коннектома.


Нематода Caenorhabditis elegans – один из самых популярных модельных объектов не только нейробиологов, но и биологов вообще. С помощью этого довольно примитивно устроенного червя учёные смогли разобраться в механизмах программируемой клеточной гибели, ответить на многие вопросы биологии развития, поведения и других областей биологии. И вот, наконец, получилось полностью расшифровать его коннектом, о чем исследователи рассказали в журнале Nature. Точнее, два коннектома: обоих полов. [32]

Этого червя совсем нетрудно выращивать в лаборатории, но главное их свойств это – удивительное постоянство клеточного состава. Например, в теле взрослых самцов всегда насчитывается ровно 1031 клетка, из которых 302 – это нейроны. За годы изучения учёные смогли изучить червя буквально по-клеточно.

Жёстко фиксированное число нейронов у C. elegans и относительная простота устройства его нервной системы открыли перед учёными заманчивую перспективу – построить полный коннектом его нервной системы, то есть установить абсолютно все нейронные связи.

По серии электронных микрофотографий послойных срезов тела червя была построена модель коннектома, правда некоторые «белые пятна» всё же были восполнены методом экстраполяции.

Полученные сетевые карты можно изучать методами теории графов. Весь коннектом нематоды был представлен как граф из 579 узлов, в узлах которой расположены нейроны, мышечные или другие возбудимые клетки. Ребра, соединяющие вершины такого графа – это синапсы, причём, их число также чётко фиксировано у всех особей, в данном случае мужского пола.

Но кроме микроконнектомики продолжают развиваться исследования связей между разными структурами мозга – «региональная коннектомика».

Для этого есть несколько методов, самый популярный из них – трактография, с помощью которой определяют ход пучков нервных волокон и моделируют картину связей между разными областями живого мозга.


Рисунок 27 Коннектом мужской особи нематоды


Исследования в области коннектомики ведут несколько проектов, один из крупнейших – Human Connectome Project. Он был запущен в 2009 году, рассчитан на пять лет, а финансировался Национальным институтом здравоохранения США. В проекте участвовало 1200 взрослых добровольцев.

Для каждого из участников средствами магнитно-резонансной томографии были составлены карты анатомических и функциональных связей мозга, а к 2018 году планировалось полное секвенирование их геномов.

Коннектомика уже сейчас изменяет наши взгляды на психические заболевания. Есть предположение, что многие из них, по сути своей – коннектопатии, связанные с нарушением связей, а не с патологиями тех или иных структур или областей мозга.

Когнитом

Ещё не создан коннектом человека, но мысли и фантазии уносят нас вперёд.

Где хранятся наши врождённые способности дышать, есть, двигаться и чувствовать? Заложены они уже в структуре нервной системы или записаны поверх неё? Наконец, где и как записываются и хранятся наши приобретённые социальные навыки, например, речь и вершина всего – самосознание.

Так родилась идея когнитома.

(Когнитивность, от латинского cognitio, «познание, изучение, осознание», – способность к умственному восприятию и переработке внешней информации.)

«Когнитом в нашем понимании, – рассказывает автор теории Анохин Константин Владимирович, – это весь набор когнитивных элементов мозга, которые составляют нашу личность. Мы полагаем, что каждый из этих элементов представлен в мозге, в нашем коннектоме, в виде функциональной системы. И в этом основная сложность исследования когнитома. Когнитивная единица не лежит на полочке той или иной структуры мозга, каждая из них – это распределённая сеть клеток, причём клетки одной структуры могут входить в самые разные элементы субъективного опыта. А каждый элемент субъективного опыта – масса синхронно активируемых в определённый момент нейронов в разных областях мозга. Элементы когнитома, так же, как и весь когнитом, – это не статическая картина, это постоянно развивающаяся система. В результате нового опыта, обучения в эту сеть добавляются те или иные новые элементы, меняющие как структуру когнитома, так и связи между уже существующими элементами».

Как можно обнаружить эти когнитивные единицы? Как выделить среди миллиардов нейронов мозга группу, отвечающую за элемент субъективного опыта, найти материальный носитель воспоминания, представления, навыка?


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации