Электронная библиотека » Александр Волошин » » онлайн чтение - страница 23


  • Текст добавлен: 2 мая 2023, 10:23


Автор книги: Александр Волошин


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 23 (всего у книги 29 страниц)

Шрифт:
- 100% +
Исследование каналов биологических мембран

В 1998 году Родерик Маккиннон (Roderick MacKinnon) с коллегами смог получить трёхмерную молекулярную структуру биологического калиевого канала с помощью кристаллографии и раскрыл селективность канала, а именно – почему в момент прохождения нервного импульса канал пропускает только ионы калия, а более мелкие ионы натрия, которые также имеют положительный заряд, не проходят.

Маккиннон с помощью выращенных им же кристаллов белка калиевого канала смог экспериментально объяснить этот феномен.

Рентгенограмма созданной им структуры показывала в мельчайших деталях, как работает калиевый канал, как он обеспечивает практически беспрепятственный перенос ионов калия, и в то же время задерживает более мелкие ионы натрия.

Вообще-то ещё со времён открытия теории диссоциации известно, что все ионы в растворах окружены толстым слоем воды, и нужны некоторые усилия, чтобы сбросить её. Напомним, что и калий, и натрий являются очень активными щелочными металлами, у каждого из атомов есть по одному валентному электрону, с которыми они легко расстаются и превращаются в ионы. Различие лишь в том, что у натрия этот электрон находится на 3-й орбите, а у калия на 4-й. Вследствие этого обстоятельства, калий сравнительно легко сбрасывает с себя окружающие его молекулы воды и проскакивает через мембранный канал. С натрием же дело обстоит иначе, он хотя и меньше калия, но не в состоянии скинуть водяную рубашку. А вместе с рубашкой натрий просто слишком велик, чтобы пройти канал.

В 2003 Родерику Маккиннону вместе с П. Эгром присуждена Нобелевская премия «за открытия, связанные с ионными каналами в клеточных мембранах: за изучение структуры и механизма действия ионных каналов».

Итог истории нервного импульса

Сначала были только предположения – гуморы, животные духи, да некие жидкости подобные крови. Первые реально научные открытия природы нервного импульса совпали по времени с первыми открытиями в электричестве. И, возможно, значительные успехи физиков в области электричества сильно повлияли на ход мыслей исследователей нервной деятельности. Не потому ли со времён открытия Гальвани до наших дней мы считаем, что информация по нервам передаётся как электричество?

Последняя жирная точка в исследованиях нервного импульса поставлена в 1949—1952 годах с появлением мембранно-ионной теории, которую сформулировали Ходжкин и Хаксли. Все последующие исследования в области физиологии нервного волокна строились на базе модели Ходжкина – Хаксли и сводились к объяснению её правильности.

Если бы электроника развивалась с такой же скоростью как нейронауки, мы бы до сих пор набирали тексты на печатных машинках и считали с помощью арифмометров, а не на компьютерах.

Может, исследования в какой-то момент свернули не на ту дорогу? И чем дальше мы по ней идём, тем дальше уходим от истины, тем меньше встречаем открытий, тем меньше желающих идти в этом направлении?

Существует раздел науки, занимающийся микро и даже нано исследованиями строения нейрона, называется он – морфология. Результаты исследований в этом направлении просто колоссальны.

И только описание того, как работает нейрон больше напоминает некое вре́менное объяснение. Базовая теория описывающая прохождение нервного импульса основанная на потенциале действия и ионных каналах, по сути, представляет собой не описание работы нейрона, а математическую модель нашего представления об этом процессе.

А эта модель похожа на японский театр теней. Можно ли изучать собаку по её тени? Конечно, можно, например, узнать её размер, количество лап и хвостов, можно узнать откуда и куда она бежит. Так и с нервным импульсом – мы узнали откуда и куда он распространяется, но не вполне понимаем, его природу.

Возможно, именно поэтому нет ответа и на главные вопросы – как информация хранится в памяти и как извлекается из неё, как происходит забывание.

Проблема неисследованоости нервного импульса в том, что медики плохо знают физику, а физики мало интересуются медициной. Например, и рентген, и томография, и УЗИ, придуманы физиками, а не медиками и уже потом применены к медицине.

В силу скромной физико-математической подготовки большинству биологов трудно понимать физические процессы, лежащие в основе биологических явлений. При этом они порой яростно противостоят вмешательству «физиков» в биологию и медицину.

Проблема эта похоже настолько очевидна, что с 2018 года для поступления в медицинский вуз абитуриенты должны сдавать не базовый экзамен по математике, а углублённый.

С грустью и завистью исследовал я истории открытий и биографии учёных XIX века, когда в одной личности сочетались и физик, и биолог, и врач, и химик. Безусловно, время это ушло навсегда, но, возможно, чаша весов истории уже дошла до точки абсолютной специализации в науке и скоро хоть чуть-чуть вернётся назад, к универсализации.

Часть II

«… кому дорога истина вообще, т. е. не только в настоящем, но и в будущем, тот не станет нагло ругаться над мыслью, проникшей в общество, какой бы странной она ему ни казалась.»

(Иван Сеченов)


Фантастическое интервью

Вы наверняка сталкивались в новостных лентах с публикациями о том, что созданы системы, в которых человек силой мысли управляет курсором на экране компьютера? Зачастую это вполне безобидная утка, ложь которая никому не навредит. На самом деле, работают такие системы по принципу отслеживания движения зрачков глаз видеокамерой, встроенной в компьютер.

Более серьёзные результаты демонстрируют исследователи, использующие в качестве сигналов электрофизиологической активности мозга данные электроэнцефалографии или магнитоэнцефалографии. Но информативность ЭЭГ и МЭГ для этих целей, мягко говоря, недостаточна.

Самыми перспективными выглядят инвазивные (внедрённые в мозг) нейрокомпьютерные интерфейсы, позволяющие получать сигналы множественной нейронной активности непосредственно от нервных окончаний. Но эти технологии находятся в младенческом состоянии.

Так что, заявления о возможности создать управляемые силой мысли протезы в наше время это по большей части рекламная акция бизнеса, нацеленная на повышение статуса компаний.

Всё это даёт надежду миллионам людей на улучшение качества их жизни. Но к сожалению, нет таких технологий. Нет, но скоро могут появиться. Об этом наш сегодняшний рассказ (интервью).

…До сих пор наши представления о нервной системе основаны на экспериментах, в которых производилось воздействие на аффекторные мотонейроны. Другими словами, с помощью электрического раздражения воздействовали на нейрон, который передавал возбуждение к мышечной ткани, та, в свою очередь, сокращалась. Это, по сути, эксперимент Гальвани которому без малого 300 лет. Из чего, в общем-то, и родилась наша вера в миф об электрической природе нервного импульса.

Мы обратили внимание на то, что не только электрический раздражитель вызывает такую реакцию. Механическое воздействие, раздражение кислотой, некоторыми солями и даже ультразвуком1 даёт похожие результаты.

Проведённые исследования подтвердили наше предположение о несколько иной, чем принято думать природе нервного сигнала. Не буду раскрывать все детали открытия, но в результате нам удалось сделать следующее:

– Подать контрольное раздражение на рецептор, например, уколоть палец иголкой.

– Считать нервный сигнал на выходе первого нейрона.

– Записать (сохранить) этот сигнал.

– Воспроизвести сохранённый сигнал на вход следующего нейрона.

– Сравнить ощущения от укола пальца и реакцию на сначала записанный, а потом воспроизведённый сигнал.

Пока мы держим в секрете – «что» записать, каким устройством сохранить и как воспроизвести. Наше открытие состоит в том, что мы отказались рассматривать нервный импульс как чисто электрический сигнал (хотя и не отрицаем наличие электрических потенциалов в клетках). Тем не менее наше представление о природе нервного импульса основано на уже известных физических явлениях. Никакой эзотерики, никаких неведомых торсионных полей и связей с космосом. Только физика и немного химии.

Сейчас мы работаем над Второй задачей – подать записанный (а может быть и не записанный, а прямой) сигнал с выхода аксона одного испытуемого на вход дендрита другого. То есть уколоть одного человека, а боль от укола должен почувствовать другой (или тот же человек, но на другой руке).

Наши опыты, по сути своей, очень просты и не требуют использования сверхтехнологий.

В своих исследованиях мы исходим из того, что нервный импульс не просто безликий электрический сигнал, нет мы считаем, что каждый нервный импульс уникален и может нести в себе гораздо больше информации, чем сейчас принято думать. Нервный импульс представляет собой пакет сигналов, похожий на штрихкод, упакованный в один, с которым мы до сих пор и имели дело.

Это открытие даёт нам надежду на возможность понять информационную составляющую нашей нервной системы. Откуда и куда проходят нервные импульсы наука ответила уже давно. Загадкой до сих пор оставался Язык, на котором общаются нейроны, возможно, сегодня мы… нет не открыли его первую букву, но сделали предположение об основах такого языка.

Если наши предположения окажутся верны, то основанные на них технологии вырвутся на просторы науки. Тогда открытия и новинки в неврологии будут нас радовать с такой же частотой как сейчас мобильные гаджеты.

Каковы перспективы данной работы? От фантастических как, например, лечение человека не медикаментами, а путём целенаправленного воздействия на соответствующие группы нервов или отдельные нейроны (абсолютный контроль терапии, никакой химии, никаких побочных эффектов, никаких аптек – всё будет доступно через информационные системы). До самых фантастических как, например, пакетная передача Знаний через информационные системы. Или решение проблем старения и долгожительства через управление вегетативной нервной системой.

Боюсь, что такие технологии в руках современного человека могут оказаться пострашнее ядерной дубины.

Да, человечество взрослеет, играя во всё более взрослые игрушки. Опасность велика. Но альтернативы, увы, нет…


1 Недавно несколько исследовательских групп независимо друг от друга сообщили о неожиданном открытии, что ультразвуковая стимуляция может вызывать нервные импульсы.

Скептический взгляд на мембранную теорию распространения нервного импульса

Современной науке известно много конкретных недостатков в модели Ходжкина-Хаксли, но отказаться от неё невозможно, за неимением иного объяснения. А найти новое, невозможно не отказавшись от имеющейся комфортной модели.

Сила научного метода и состоит прежде всего в его способности опровергать гипотезы. Считается, что наука движется вперёд за счёт нескончаемых и постоянно совершенствуемых циклов предположений и опровержений. Один учёный выдвигает новую идею об устройстве природы, а затем другие занимаются поиском опытных данных, которые подтвердят или опровергнут эту идею. Но, всё это не относится к теории Ходжкина—Хаксли.

Написано множество статей, учебников и диссертаций, объединённых единой целью – доказать правильность теории основанной на механизме распространения потенциала действия. И всё это варится в едином котле взаимного цитирования и поощрения.

Но на мой взгляд, все они похожи на присягу их авторов в лояльности к единственной верной теории нервного импульса и на декларацию того, что авторы поняли саму идею. И эта идея, безусловно, очень элегантна. Нобелевскую премию она заслужила. Что не означает её безоговорочную правильность.

Вспомним Птолемееву систему мира (Земля в центре Мира) – эта система столетиями удовлетворяла потребностям человечества, величайшие умы принимали её как догму, существовал математический аппарат в поддержку и объяснение этой теории, были созданы изумительные механические модели, демонстрирующие работу такой системы. В конце концов она была естественно понятна человеку. Были в ней некоторые неувязки, не всё можно было объяснить с её помощью, но ведь если есть основной посыл, то какие могут быть сомнения, объяснения всегда можно найти.

Напомню, теорию распространения потенциала действия предположили в начале ХХ века, а окончательно сформулировали, внимание!, в 1949—1952 годах.

С этого момента история исследования природы нервного импульса остановилась. Модель Ходжкина-Хаксли принята за безусловную, необсуждаемую истину в последней инстанции. Почему? Возможно, в силу гипнотического авторитета Нобелевской премии, а может в силу особенной консервативности научного сообщества. Как бы то ни было, на сегодняшнем этапе развития нейронаук, все исследования отталкиваются от неоспоримой правоты модели Ходжкина—Хаксли.

Примечание. Но не стоит забывать, что, примерно в то же время была присуждена Нобелевская премия за открытие лоботомии. Правда, с последним варварским методом «лечения» покончили довольно быстро.

Примерно в то же время появились первые черно-белые ещё ламповые телевизоры и первые транзисторы. С тех пор электронные технологии сильно изменили нашу жизнь. А что изменилось для человечества вцелом и каждого человека в отдельности в результате развития нейронаук?

Между тем до сих пор, полвека спустя никто не провёл такого простого эксперимента: 1) записать естественный, а не возбуждённый искусственно нервный импульс, 2) сохранить его и 3) воспроизвести, передав его назад в живую клетку. Этого просто невозможно сделать, нет смысла записывать электрические нервные импульсы, ведь все они одинаковы.

Не принято вспоминать о том, что в естественных условиях нервное волокно возбуждается в результате непосредственного действия механических, химических, температурных и других раздражителей на нервное окончание или тело нервной клетки. В экспериментах традиционно используют раздражение исключительно электрическим током. А в современных учебниках в лучшем случае можно прочитать следующее «Давление – это пример механического стимула. Давление на участок мембраны приводит к расширению и (по пока не понятным причинам) вызовет в этом месте деполяризацию. Высокая температура приводит к расширению мембраны, холод сокращает её, и эти механические изменения тоже вызывают деполяризацию.» [49]

Многие годы гигантский аксон кальмара служит идеальной моделью нервной клетки. В каждой книге, в каждом учебнике написано об этом препарате. Но! Какой это нейрон афферентный или эфферентный, несёт ли он информацию от рецептора в ЦНС или наоборот? Кто-то скажет, что это не важно. И действительно. Но при том, что этот факт не имеет значения для экспериментов, возможно он оказал влияние на нашу субъективную оценку результатов. У первых исследователей не было повода задуматься – что было первичным источником возбуждения? Для них ответ был очевиден – ЦНС. Гигантский аксон кальмара был частью эфферентного нейрона. Он проводит импульсы от нервного центра к реактивному органу. Стечение обстоятельств не позволило задуматься о природе первичной генерации нервного импульса. Ведь мозг не может быть источником механического стимула.


Известно, нервный импульс не затухает и не меняет амплитуды, а нервная клетка практически не устаёт. Официально признано что, нервные волокна обладают «относительной неутомляемостью». Ещё Н. Е. Введенский показал, что нерв в атмосфере воздуха сохраняет способность к проведению возбуждений даже при многочасовом непрерывном раздражении (около 8 часов).

Относительная неутомляемость нерва объясняется тем, что нерв тратит при своём возбуждении исключительно мало энергии. Благодаря этому процессы ресинтеза в нерве способны покрывать его относительно малые расходы при возбуждении даже в том случае, если это возбуждение длится много часов. Но…

Продолжают ли работать ионные насосы в препарированном аксоне кальмара «инвитро»? И даже на воздухе? И даже после того как внутриклеточная жидкость была заменена на другой электролит? (см. Исследования А. Ходжкина)

Сама частота следования нервных импульсов может поставить под сомнение ионную модель Ходжкина-Хаксли. После прохождения импульса мембрана должна восстанавливаться с колоссальной скоростью.

И чем объяснить восстановление потенциала после прохождения нервного импульса? Работой ионных насосов или восстановлением за счёт перераспределения ионов внутри клетки?

Количество импульсов, которое может пробежать по нервному волокну за одну секунду, хотя и велико, но ограничено длительностью рефрактерного периода. Тонкие нервные волокна имеют рефрактерный период около 1/250 доли секунды, иначе говоря волокно может провести двести пятьдесят импульсов в одну секунду. Миелинизированные волокна могут за то же время провести в десятки раз больше импульсов.

Но даже приняв частоту следования импульсов равной 250 Гц, и зная, что ионные насосы работают по принципу «конформа́ции молекул белков», придётся допустить чрезвычайно высокую производительность ионных насосов, независимо от того как мало ионов диффундировало при передаче одного нервного импульса.

Можно конечно допустить возможность неравномерной (но при этом измеряемой и управляемой) концентрации ионов в микроскопически малых объёмах внутриклеточного пространства вблизи мембраны.


Если же предположить, что источником энергии для нервного импульса является само раздражение его электричеством, то развитие такой идеи приведёт к переосмыслению причин и следствий мембранных процессов в клетке. (Возможно, ветер дует не от того, что деревья качаются?)

Есть в модели Ходжкина-Хаксли и ещё один не бросающийся в глаза изъян. Нет описания того, как потенциал действия проходит через сому – тело клетки. Обычно описывается момент раздражения уже в аксоне и дальнейшее распространение ПД. Но что является спусковым крючком, запускающим этот механизм в естественных условиях? Как передаётся сигнал от дендрита к аксону? Ведь возникает он только в районе аксонного холмика. А на мембране в районе сомы ПД нет. Объективно говоря, в современной литературе говорится, что мембранный потенциал присутствует на мембране в районе сомы. Но этим утверждением все и заканчивается.

Современной науке известно много конкретных недостатков в модели Ходжкина-Хаксли, но отказаться от неё невозможно, за неимением иного объяснения. А найти новое объяснение невозможно, не отказавшись от имеющейся модели.

Альтернативная версия нервного импульса
Источники

Помните, рассматривая историю мембранной теории, мы выделили в качестве предпосылок её появления: 1) открытие осмоса, 2) теорию электролитической диссоциации, 3) гипотезу Бернштейна и 4) кабельную теорию Томсона.

Ходжкин и Хаксли обобщили эти идеи и родилась современная мембранная теория, объясняющая природу нервного импульса.

В этой главе, мы, не отбрасывая ни одной из выше перечисленных предпосылок, дополним их ещё тремя: 1) биоэлектрогенез, 2) солитоны и 3) пульсовые волны.

Биоэлектрогенез

Я уже упоминал, как американские биологи Кол и Кертис для исследования мембранных потенциалов догадались использовать водоросли нителлы.

Для того чтобы сохранить за собой возможность критически оценивать теорию мембранных потенциалов при распространении нервного импульса, сто́ит заострить внимание на открытиях, сделанных задолго до Кола и Кертиса.

Биоэлектрогенез – это способность живых организмов к генерации электрических потенциалов. Он является универсальным свойством всех живых организмов, включая растения.

Дело в том, что электрические потенциалы возникают на любых живых мембранах, разделяющих среды с неодинаковой плотностью электролита. Исследовано множество жизненно важных процессов, в которых этот потенциал участвует. Хотя, возможно, первый из них – поддерживать упругость живой клетки, за счёт создания внутреннего осмотического давления.

Если у животных величина потенциала покоя на мембране клетки колеблется в диапазоне —50 до —80 мВ, то у растений он примерно в два раза выше, около —150 мВ, а у некоторых водных растений он может достигать целых —270 мВ.

Может показаться странным, но в клетках растений присутствуют не только потенциалы покоя, но и потенциалы действия. Причём последние по современным представлениям являют собой импульсную, распространяющуюся электрическую реакцию, возникающую в ответ на действие неповреждающих раздражителей, таких как импульсное или постепенное охлаждение, механическое воздействие, действие раствора кислоты на корни или участок стебля без эпидермиса и др.

На способность высших растений генерировать электрические импульсы учёные обратили внимание ещё в конце XIX века. Возможно самым первым, описал потенциалы действия у растений индийский учёный Джагадис Чандра Бозе (Jagadish Chandra Bose), изучавший растение с двигательными реакциями – Mimosa pudica, которую иногда называют «электромимозой».

Известны также описания опытов XIX века английского исследователя Бэрдена Сандерсона, проводимых на Венериной мухоловке. А начало систематического исследования возбудимости у высших растений связано с именем Боса, который в 1964 году впервые экспериментально обосновал, что в проводящих тканях мимозы может возникать и распространяться потенциал действия.

В течение долгого времени предполагалось, что распространение электрических потенциалов, в ответ на действие внешних раздражителей, присуще только растениям с быстрыми локомоторными функциями, а остальные растения не обладают таким свойством. Однако усилиями преимущественно отечественных учёных в 60—70 годах XX века было доказано существование ПД и у «обычных» высших растений.

На сегодняшний день распространение ПД в тканях растений так же, как и в нервных клетках, считается электротоническим. Однако среда распространения несколько иная. Если в нерве, распространение происходит преимущественно вдоль нервного волокна, то у растений такой средой является, по-видимому, симпласт, т. е. единое пространство, образованное цитоплазмами клеток, соединённых плазмодесмами1. Надо отметить, что такая среда распространения ПД не является уникальной чертой растений. Так, например, синцитий, по которому происходит распространение ПД в клеточных образованиях мышцы сердца, представляет собой похожую структуру – совокупность связанных между собой клеток.

Выделяют следующие особенности ПД у растений, отличающие их от ПД, развивающихся в возбудимых клетках животных:

– бо́льшая продолжительность, которая варьирует от десятых долей секунды (локомоторные растения) до десятков секунд (нелокомоторные) и длительный (от десятков минут до нескольких часов) период рефрактерности;

– отсутствие овершута у большинства генерирующих ПД растений, максимум потенциала действия у которых лежит в области от —60 до —40 мВ;

– низкая скорость распространения – в пределах от нескольких миллиметров в секунду у нелокомоторных до десятков сантиметров в секунду у локомоторных;

– в стимулируемом участке могут формироваться серии импульсов, но распространяется при этом лишь одиночный ПД.

Таким образом, ПП и ПД в растительных и животных клетках очень похожи, действуют по общим физическим и химическим принципам и в современной науке описываются математическими моделями подобными моделям для нервных импульсов.

Но к счастью, у растений присутствует ещё один тип мембранных потенциалов – вариабельный.

Вариабельным потенциалом (ВП) называют уникальную, характерную только для высших растений, распространяющуюся на значительные расстояния электрическую реакцию на повреждающее воздействие. Так же как и потенциал действия, вариабельный потенциал представляет собой переходную деполяризацию плазматических мембран. Однако ВП имеет ряд характерных особенностей, отличающих его от ПД, но главное отличие, благодаря которому его выделили в отдельный тип – это, то что он возникает в ответ на повреждающее воздействие (а ПД – на неповреждающее).

Характе́рные черты, отличающие его от ПД.

– Генерация в ответ на повреждающие раздражители. – Бо́льшая длительность (до 1/2 часа) и высокая вариабельность фазы реполяризации. – Способность проходить, через участки повреждённой и даже мёртвой ткани. – Меньшая скорость распространения.

Первые све́дения о ВП были получены в работах Montemartini в 1907 году. Он описывал медленно распространяющиеся электрические реакции у «обычных» растений, вызванные путём раздавливания, разрезания или ожога листа, с помощью электродов, контактирующих с жилкой листа на некотором расстоянии от места повреждения.

Поскольку, ВП не совсем то же самое, что ПД, у учёных хватило смелости заявить, что механизмы генерации ВП неизвестны. И как следствие были выдвинуты три базовые гипотезы их природы:

Электротоническая, которая предполагает, что ВП распространяется так же, как и ПД, но, возможно, по другим структурам листа.

Химическая, которая предполагает, что при повреждении выделяется некое раневое вещество или «фактор Рикка», вызывающий при диффузии вдоль стебля местные электрические ответы.

Гидравлическая, в соответствии с которой повреждение вызывает локальное повышение давления воды в ксилеме и эта волна повышенного давления, распространяясь от зоны повреждения, вызывает генерацию ВП. [50]

Несмотря на накопление богатого экспериментального материала, све́дения о потенциале действия у высших растений и сегодня носят фрагментарный характер. Наибольшие успехи достигнуты сегодня в изучении механизма генерации потенциала действия в сравнительно гигантских по размерам клетках некоторых водорослей, в первую очередь, харовых (что не удивительно, ведь именно с них Кол и Кертис начали исследования мембранных потенциалов). Эти представления спроецированы на понимание механизма ПД у высших растений. Их также связывают с возникновением пассивных потоков ионов хлора и калия. В то же время имеющихся данных недостаточно для формирования целостной картины механизма генерации ПД в клетках высших растений.

В ещё меньшей степени сегодня изучен другой тип потенциалов возбуждения – вариабельных потенциалов, характерных исключительно для высших растений. Практически не раскрыты механизмы его генерации и распространения.

1 Плазмоде́смы – цитоплазматические мостики, соединяющие соседние клетки растений.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации