Электронная библиотека » Александр Волошин » » онлайн чтение - страница 21


  • Текст добавлен: 2 мая 2023, 10:23


Автор книги: Александр Волошин


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 21 (всего у книги 29 страниц)

Шрифт:
- 100% +

Продолжение истории синапсов

Теперь, когда мы с Вами уже узнали, как работает нейрон, что такое синапс и как нервный импульс передаётся от одного нейрона к другому, что такое нейромедиатор и что такое нейролептики, давайте попробуем прояснить для себя ещё одну тему.

Тема одна, а вопросов много. Адреналин – это что, нейромедиатор или гормон? И почему его используют как антидот (противоядие)? В чём разница между дофамином-нейромедиатором и дофамином-гормоном? Если наш ГЭБ так эффективен, то как действуют нервнопаралитические яды? И самый интересный вопрос – как же работает анестезия?

Нейромедиаторы и гормоны

Ионные каналы мембраны – это шлюзы клетки. Их важнейшее свойство состоит, пожалуй, в том, что они открываются и закрываются, регулируя тем самым движение ионов. Но оказывается, процесс открывания и закрывания так называемый «воротный» механизм, управляем. Он жёстко регулируется тремя факторами: 1) присоединением внутриклеточных или наружных химических веществ, 2) механическим напряжением мембраны и 3) изменением разности потенциалов на клеточной мембране.

Общепризнанно, что большинство нервных клеток общаются друг с другом с помощью химических посредников, известных как нейромедиаторы.

Нейромедиаторы (нейротрансмиттеры, посредники, «медиаторы») – биологически активные химические вещества, посредством которых осуществляется передача электрохимического импульса через синаптическое пространство между нейронами, а также, например, от нейронов к мышечной ткани или железистым клеткам.

Рассмотрим, как это работает на примере передачи команды от нейрона к мышце. Когда нервный импульс достигает нервного окончания, под его воздействием открываются кальциевые каналы и впускают поток ионов кальция в клетку. Это заставляет синаптические везикулы1, наполненные нейромедиатором ацетилхолином2, двигаться в направлении мембраны, сливаться с ней и выбрасывать содержимое в синаптическую щель. Ацетилхолин затем проникает через щель и присоединяется к белкам-рецепторам на мембране мышечного волокна. Присоединение нейромедиатора открывает ионный канал в мембране мышцы, позволяя ионам Na+ входить в клетку. Ионы натрия вызывают изменение электрического потенциала на мембране, что инициирует нервный импульс в мышечном волокне. В мышечной клетке такой импульс вызывает сокращение.

Таким образом, электрический сигнал передаётся от нерва к мышце с помощью химического посредника – ацетилхолина.

1 Синаптические везикулы (или синаптические пузырьки) находятся в пресинаптических границах в нейронах и накапливают нейромедиаторы.

2 Ацетилхолин (лат. Acetylcholinum), сокр. АЦХ – первый открытый нейромедиатор, осуществляющий нервно-мышечную передачу, а также основной нейромедиатор в парасимпатической нервной системе. В организме очень быстро разрушается специализированным ферментом – ацетилхолинэстеразой. Играет важнейшую роль в таких процессах, как память и обучение.

Современные представления о механизмах передачи возбуждения в синапсе:






В зависимости от того, для каких ионов изменяется проницаемость мембран, возможны два варианта постсинаптических потенциалов – возбуждающий (ВПСП) и тормозной (ТПСП).

Возникновение ВПСП основано на повышении проницаемости мембраны для ионов Nа+, а ТПСП – для ионов К+ и Cl-. Характер активности тех или иных каналов определяется химической структурой медиатора, особенностью рецепторного образования, а также связанного с ним вторичного посредника.

Провзаимодействовав с клеткой-мишенью, медиатор должен быть удалён с мембраны. Это осуществляется ферментами, находящимися в синапсе. Ацетилхолин расщепляется ферментом ацетилхолинэстеразой (АХЭ). Для адреналина и норадреналина – такими ферментами являются катехол-окси-метилтрансфераза (КОМТ) и моноаминоксидаза (МАО). Продукты расщепления медиаторов далее либо транспортируются в пресинаптическую область для последующего ресинтеза медиатора, либо просто удаляются из околосинаптической области.

Но что произойдёт с передачей импульсов через синапс, если выделенный нейромедиатор не сработает? Или другой вариант – он сработает, но не будет удалён из околосинаптической области? Рассмотрим эти случаи по порядку.

Если нейромедиатор не срабатывает, то не происходит и передача возбуждения к мышце. Это называется паралич. Как этого добиться? Надо доставить в межклеточное пространство, химическое соединение, которое бы нейтрализовало выделяемые нейронами медиаторы. И такое вполне возможно, природа сама об этом позаботилась. Вещества, которые оказывают такое действие на нервную систему называются ядами. Именно так действует яд кураре, который южноамериканские индейцы наносят на стрелы. Он присоединяется к ионным каналам, участвующим в процессе передачи импульсов в нервных и мышечных волокнах, и блокирует действие естественного медиатора, вызывая паралич.

Второй случай, когда, например, нейромедиатор не удаляется из околосинаптической области. Это приведёт к перевозбуждению постсинаптической мембраны, мышца будет непрерывно возбуждаться. Так действуют боевые отравляющие вещества нервнопаралитического действия, например, Зарин.

В общем, яды воздействуют на активность каналов, присоединяясь к тому же участку, что и естественный медиатор, и блокируя или имитируя действие этого медиатора.

Логика подобного механизма управления каналами лежит в основе действия многих лекарственных препаратов.

Но мы не рассмотрели ещё один способ повлиять на проводимость нервных импульсов через синапс – препятствовать поступлению Са+ в пресинаптическую мембрану. Это должно блокировать прохождение нервного импульса и предотвратить выброс нейромедиатора из везикул нервного окончания. Такой метод широко используется в медицине при местной анестезии. Местные анестетики даже называют «стабилизаторами мембраны». Они действуют на все нервные волокна: чувствительные, двигательные, вегетативные. Первыми реагируют на них волокна меньшего диаметра, затем более крупные. Чувствительность выключается в следующем порядке: болевая, вкусовая, температурная, тактильная.

Со временем выяснилось, что существуют сотни различных медиаторов и каждому конкретному получателю нервного импульса – мышце, железе или другому нейрону присущи свойственные только им нейромедиаторы, а другие игнорируются.

Вероятно, система так защищается от ложных срабатываний. А нейромедиатор далеко из синапса не уходит и быстренько дезактивируется.

Химические соединения, которое при взаимодействии с рецептором изменяют его состояние, приводя к биологическому отклику называют агонистами. Обычные агонисты увеличивают отклик рецептора, обратные агонисты уменьшают его, а антагонисты блокируют действие рецептора.

Агонисты могут быть эндогенными, например, гормоны и нейротрансмиттеры, или экзогенными – лекарства. Эндогенные агонисты в норме производятся внутри организма и опосредуют функцию рецептора. К примеру, дофамин является эндогенным агонистом дофаминовых рецепторов.

Эндокринная система и гормоны

Как прекрасно действуют яды! А почему природа не использует этот механизм в полезных целях? Ещё как использует!

Применение химических веществ для передачи информации от одной клетки к другой не ограничивается нервной системой. Химические мессенджеры широкого действия, известные как гормоны, передают информацию между клетками нашего организма, которые расположены на довольно большом расстоянии. Множество разных гормонов постоянно циркулируют в организме, влияя на наше настроение, поддерживая водно-солевой баланс, стимулируя рост клеток, настраивая нас на борьбу со стрессами и даже регулируя секрецию других гормонов. Возможно, что в процессе эволюции нервы просто адаптировали эту универсальную химическую сигнальную систему для своих целей.

Гормоны – биологически активные вещества, они вырабатываются в специализированных клетках желёз внутренней секреции (эндокринные железы), поступают в кровь, связываются с рецепторами клеток-мишеней и оказывают регулирующее влияние на обмен веществ и физиологические функции. Гормоны являются гуморальными —переносимыми с кровью – регуляторами определённых процессов в различных о́рганах.

Гормоны оказывают дистантное действие: попадая с током крови в различные органы и системы организма, они регулируют деятельность о́ргана, расположенного вдали от синтезирующей их железы, при этом даже очень малое количество гормонов способно вызвать значительные изменения деятельности о́ргана.

Однако нервная система не полностью устраняется из процесса регулирования. В целом происходит это так. Внешние или внутренние раздражители того или иного рода воздействуют на рецепторы организма и порождают в них импульсы, поступающие сначала в центральную нервную систему, а затем в гипоталамус.

В данном отделе мозга вырабатываются первичные активные вещества удалённого гормонального действия – так называемые рилизинг-факторы, которые, в свою очередь, направляются к гипофизу.

Под действием рилизинг-факторов либо ускоряется, либо замедляется выработка и выделение тропных гормонов гипофиза. Последние, попав в кровь и достигнув с ней конкретной эндокринной железы, оказывают влияние на синтез требуемого гормона.

На последнем этапе процесса гормон доставляется по системе кровообращения к тем или иным о́рганам либо тканям (т. н. «мишеням») и вызывает определённые ответные реакции в организме, будь они физиологическими или, к примеру, химическими.

Заключительный этап, связанный с воздействием гормонов на обмен веществ внутри клетки, в течение довольно продолжительного времени являлся наименее изученным из всех составляющих вышеописанного процесса. Ныне известно, что в соответствующих тканях-мишенях имеются специфические химические структуры с участками, предназначенными для связывания гормонов – так называемые гормональные рецепторы.

Связывание гормонов рецепторами вызывает определённые биохимические реакции, за счёт чего, собственно, и реализуется итоговый эффект гормона.

Описанный нами выше механизм регулирования через гормоны осуществляет эндокринная система.

Интересные факты

Нервные клетки не восстанавливаются, но…

Особенностью живого организма является использование недолговечных материалов для создания долговечных систем. Решение этой, сложной, проблемы природа нашла в постоянном обновлении организма. Применительно к долгоживущим нервным клеткам это действует так – каждый нейрон, находится в состоянии непрекращающегося ремонта, когда старые молекулы заменяются новыми. В результате структура в целом живёт много лет, в то время как молекулы постоянно заменяются новыми. Эти процессы особенно интенсивны в мозге, который обновляется на 80% всего за две недели.

Анатомия

Анатомически мозг представлен двумя субстанциями: серым веществом и белым. Серое вещество имеет высокое содержание нейронов, большая его часть находится на поверхности мозга, в извилистой оболочке, называемой корой. Большая часть серого вещества расположена вблизи поверхности; две трети коры остаётся невидимой снаружи, скрытой в складках под поверхностью.

Кора представляет собой слой серого вещества толщиной 2—3 мм, который содержит в среднем около 14х109 (от 10 до 18 миллиардов) нервных клеток, нервных волокон и нейроглии. Благодаря многочисленным изгибам и бороздам поверхность коры достигает 0,2 м2. Если вы развернёте и разгладите кору, она будет размером с подушку, но толщиной всего в пару миллиметров.

Среди нейронов встречаются самые крупные клеточные элементы организма. Размер их поперечного сечения колеблется от 6—7 мкм (мелкие зернистые клетки мозжечка) до 70 мкм (мотонейроны головного и спинного мозга). Нейроны сильно разнятся по форме и размеру, который колеблется от 1 до 1000 мкм (т. е. они могут различаться по величине в 1000 раз).

Плотность их расположения в некоторых отделах центральной нервной системы очень велика. Например, в коре больших полушарий человека насчитывается почти 40 000 нейронов на 1 мм3. Тела и дендриты нейронов коры головного мозга в общей сложности занимают около половины их объёма.

Кровоснабжение нервных клеток

Высокая потребность нейронов в кислороде и глюкозе обеспечивается интенсивным кровотоком.

Кровь течёт через мозг в 5—7 раз быстрее, чем через бездействующие мышцы. Мозговая ткань обильно снабжается кровеносными сосудами. Их самая плотная сеть находится в коре больших полушарий и занимает около 10% объёма коры. В отдельных слоях средняя длина капиллярной сети у человека достигает одного метра на 1 мм3 ткани. Каждый большой нейрон имеет несколько собственных капилляров у основания клеточного тела, а группы небольших клеток окружены общей капиллярной сетью. Когда нервная клетка находится в активном состоянии, ей требуется повышенный запас кислорода и питательных веществ, поступающих через кровь. В то же время жёсткий скелет черепа и низкая сжимаемость нервной ткани препятствуют резкому увеличению кровоснабжения мозга во время работы. Это компенсируется процессами перераспределения крови, выраженными в головном мозге, в результате чего активная часть нервной ткани получает значительно больше крови, чем покоящаяся. Возможность перераспределения крови в головном мозге обеспечивается наличием больших пучков гладких мышечных волокон – сфинктерных валиков в основаниях артериальных ветвей. Эти валики могут уменьшать или увеличивать диаметр кровеносных сосудов, тем самым обеспечивая раздельную регуляцию кровоснабжения различных частей мозга.

Работа мышц вызывает снижение тонуса стенок мозговых артерий. По мере развития физической или умственной усталости повышается тонус артериальных сосудов, что приводит к уменьшению кровотока через нервную ткань.

Мозг имеет сложную систему анастомозов между различными артериями, между венозными сосудами и между артериями и венами. Эта система уменьшает пульсацию внутричерепного кровотока, вызванную ритмичными сокращениями сердца и дыхательными движениями грудной клетки. Уменьшение пульсовых колебаний способствует улучшению тканевого кровотока. Из-за наличия артериовенозных анастомозов пульсовые колебания кровотока передаются от артерий головного мозга к венам в обход капилляров. Кроме того, это обеспечивает постоянство кровотока головного мозга при любом положении головы по отношению к туловищу и положению тела в пространстве.

Энергопотребление нервной систем

Основной особенностью обмена веществ в нейроне является высокая скорость обмена и преобладание аэробных процессов. Потребность мозга в кислороде очень велика (в состоянии покоя поглощается около 46 мл/мин кислорода). Хотя вес мозга по отношению к весу тела составляет всего 2%, потребление кислорода мозгом достигает в состоянии покоя у взрослых людей 25% от общего его потребления организмом, а у маленьких детей – 50%.

Мозг устроен намного эффективнее компьютера: для полного моделирования работы мозга необходим суперкомпьютер, потребляющий приблизительно 12 ГВт, в то время как потребляемая мощность самого мозга составляет всего около 20 Вт.

Даже кратковременное нарушение доставки кислорода кровью может вызвать необратимые изменения в деятельности нервных клеток: в спинном мозгу – через 20 – 30 мин., в стволе головного мозга – через 15 – 20 мин., а в коре больших полушарий – уже через 5 – 6 мин.

Энергозатраты мозга составляют 1/6 – 1/8 суточных затрат организма человека. Основным источником энергии для мозговой ткани является глюкоза. Мозг человека требует для обмена около 115 грамм глюкозы в сутки. Содержание её в клетках мозга очень мало, и она постоянно черпается из крови.

Деятельное состояние нейронов сопровождается трофическими процессами – усилением в них синтеза белков. При различных воздействиях, вызывающих возбуждение нервных клеток, в том числе при мышечной тренировке, в их ткани значительно возрастает количество белка и РНК, при тормозных же состояниях и утомлении нейронов содержание этих веществ уменьшается. В процессе восстановления оно возвращается к исходному уровню или превышает его. Часть синтезированного в нейроне белка компенсирует его расходы в теле клетки во время деятельности, а другая часть перемещается вдоль по аксону (со скоростью около 1– 3 мм в сутки) и, вероятно, участвует в биохимических процессах в синапсах.

В отличие, например, от клеток печени, мозг работает только «на кислороде», и аэробный гликолиз – это единственный возможный вариант существования всех без исключения нейронов. В том случае, если в течение 10—12 секунд питание нейронов прекращается, то человек теряет сознание, а после остановки кровообращения, находясь в состоянии клинической смерти, шансы на полное восстановление функции мозга существуют только на протяжении 5—6 минут.

Это время увеличивается при сильном охлаждении организма, но при нормальной температуре тела окончательная гибель мозга происходит через 8—10 минут, поэтому только интенсивная деятельность ГЭБ позволяет нам быть «в форме».

Выделение тепла

Процесс нервного возбуждения сопровождается выделением небольшого количества тепла, доказано: один импульс повышает температуру нервного волокна на четыре миллионных градуса. Сколько нервных импульсов проноситься по нашей нервной системе ежесекундно? У думающего человека голова должна быть горячее чем у не думающего. Ура! Мы изобрели «Дуромер». На самом деле не всё так просто. Дело в том, что все тепло выделенное нейроном при прохождении нервного импульса по прошествии импульса тут же потребляется.

Генетическая память

Имеется много данных о генетически запрограммированных формах поведения. Например, давно известно, что все животные демонстрируют такие локомоторные и поведенческие реакции, которым они не могли обучиться на собственном опыте. Такое поведение, называемое инстинктивным, позволяет предположить, что анатомическая и физиологическая организация, лежащая в основе сложных многих нервных функций, может быть запрограммирована генетически. Такое поведение может видоизменяться под влиянием опыта лишь в незначительной мере.

Вес мозга составляет около 2% массы тела человека, но на нервную систему приходится 50% информации закодированной в ДНК.

О необходимости холестерина

22% сухого веса миелина составляет белок, 78% – липиды, из которых 42% фосфолипидов, 28% цереброзидов, 25% холестерина, остальное сульфатиды.

Так что, за исключением мозга другого о́ргана или ткани с подобным содержанием этой вредной пищевой субстанции просто не существует.

История нейронауки

Мы так часто употребляем слово «нейронауки», что, пожалуй, следует определиться с этим понятием.

Современная наука о нервной системе объединяет многие научные дисциплины, наряду с классическими: нейроанатомией, неврологией, нейрохирургией и нейрофизиологией, важный вклад в изучение нервной системы вносят молекулярная биология и генетика, химия, кибернетика и ряд других наук. Такой междисциплинарный подход к изучению нервной системы нашёл отражение в термине – нейронаука (neuroscience). Тем не менее в русскоязычной научной литературе в качестве синонима часто используется термин «нейробиология». И большинство представителей нейронауки России – по-прежнему составляют выпускники биологических факультетов.

Главной целью нейронауки является объяснение процессов, происходящих как на уровне отдельных нейронов, так и нейронных сетей, итогом которых являются различные психические процессы: мышление, эмоции, сознание. В соответствии с этой задачей изучение нервной системы ведётся на разных уровнях организации начиная с молекулярного и заканчивая изучением сознания, творческих способностей и социального поведения.

Нейробиология (она же нейрология, не путать с неврологией) – наука, изучающая устройство, функционирование, развитие, генетику, биохимию, физиологию и патологию нервной системы. Изучение поведения является также разделом нейробиологии.

Гистология – наука о микроскопическом и субмикроскопическом строении, развитии и жизнедеятельности тканей животных организмов. Гистология включает в себя, кроме прочих разделов, цитологию – раздел биологии, в настоящее время выступающий как самостоятельная наука, изучающая структурные, функциональные и генетические особенности клеток организмов.

Физиология – наука, изучающая функции и процессы, протекающие в организме и механизмы их регуляции, обеспечивающие жизнедеятельность живого организма во взаимосвязи с внешней средой.

Неврология – раздел медицины, занимающийся вопросами возникновения заболеваний центральной и периферической нервной системы, а также изучающий механизмы их развития, симптоматику и возможные способы диагностики, лечения или профилактики.

Нейрохирургия – раздел хирургии, занимающийся вопросами оперативного лечения заболеваний нервной системы, включая головной и спинной мозг, а также периферическую нервную систему.

Нейроанатомия – это область биологических наук, изучающая анатомическое строение (структурная нейроанатомия) и функциональную организацию (функциональная нейроанатомия) нервных систем различных животных, обладающих ею.

Кроме вышеперечисленных «традиционных» направлений нейронауки в последние годы, появляются новые дисциплины. Приведу далеко не полный их список:

– Вычислительная нейробиология – наука, использующая вычислительные процессы для того, чтобы понять, как биологические системы продуцируют поведение.

– Нейроинженерия – научная дисциплина, входящая в состав биомедицинской инженерии, использующая различные инженерные методы для изучения, восстановления, замены или укрепления нервной системы.

– Нейроинформатика – подраздел информатики, занимающийся обработкой данных о нервной системе, а также их анализом и моделированием.

– Нейролингвистика – наука, занимающаяся изучением нейронной основы лингвистических процессов.

Нейропсихология – наука, целью которой является изучение мозговой организации высших психических функций.

– Нейроэвристика – новый подход к нейронаукам, рассматривающий мозговые процессы с точки зрения взаимодействия генетических факторов и окружающей среды путём объединения редукционистских и целостных подходов. Лежит на пересечении нейробиологии и эвристики.

– Нейроэтология – подраздел нейронаук, изучающий то, как центральная нервная система переводит реакцию на биологически значимые раздражители в естественное поведение.

– Нейроархитектура – мультидисциплинарный подход, опирающийся на знания нейропсихологии, нейромаркетинга, архитектуры и дизайна.

– Нейроэтика – этика нейробиологии и нейронауки, междисциплинарная область исследований, изучающая влияние современной нейронауки на самосознание человека, развитие биомедицины, политико-правовой и моральной сфер жизнедеятельности человека.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации