Текст книги "Системное мышление – 2022"
Автор книги: Анатолий Левенчук
Жанр: Философия, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 47 страниц) [доступный отрывок для чтения: 15 страниц]
Эволюция (как показывает работа 2022 года Ванчурина, Вольфа, Кацнельсона, Кунина «Toward a theory of evolution as multilevel learning»4141
https://www.pnas.org/doi/10.1073/pnas.2120037119
[Закрыть]) оказывается многоуровневой оптимизацией вот этих неустроенностей, работа эволюции оказывается очень похожа на работу нейронной сети, многоуровнево оптимизирующей свою структуру на каком-то потоке входных данных. Системное мышление из физики (а именно, термодинамики) вернулось в биологию, и принесло объяснительную теорию на основе математики, включая и объяснение существования всё более и более сложных системных уровней в ходе эволюции (от молекул к клеткам, от клеток к организмам, от организмов к популяциям)4242
https://www.pnas.org/doi/full/10.1073/pnas.2120042119
[Закрыть]. Результаты этих догадок физиков безмасштабны, то есть приложимы не только к существам как биологическим системам, но и к их сообществам, а также к сообществам разумных существ (которые ведь тоже физичны!).
Точно так же инженеры в последние несколько лет выяснили, откуда и в технических системах (какая-нибудь система управления авиалайнером), и в биологии (управление велосипедом при спуске по горной дороге) возникают такие сложные обратные связи в поддержании устойчивого управления. Оказалось, что это нужно для достижения точности и скорости одновременно, когда элементная база (техническая или биологическая – не имеет значения) или медленна и точна, или быстра и неточна. Если предусмотреть множество обратных связей в самой системе управления, и достаточную разнородность характеристик элементов по шкалам скорости и точности, то можно предложить удивительно хорошо работающие механизмы и (пока не предложить, но хотя бы уже объяснить) удивительно хорошо работающие организмы. Скажем, танцоры обладают удивительно точным управлением своим телом, при этом биологи удивляются, насколько медленно и неточно работает wetware («мокрое обеспечение», «мясо») при подобных характеристиках скорости и точности. Грубо говоря, большие мышцы быстро и сильно, но неточно двигают руки-ноги-тело к нужному месту в пространстве, а мышцы поменьше, поточнее и помедленней подруливают, управляясь не столько даже многоуровневыми вычислениями, сколько просто запомненными паттернами управляющих мышцами сигналов.
Это исследование команды Джона Дойля4343
https://ailev.livejournal.com/1622346.html – и там много ссылок на работы Джона Дойля и его учеников.
[Закрыть] показало универсальный характер найденных закономерностей того, как должно быть устроено многоуровневое управление с множественными обратными связями на необходимо разнообразных элементах и тем самым выводит заново на идеи кибернетики (хотя слово «кибернетика» в этих исследованиях и не используется). Так что системное мышление обновилось и в части создания надёжных, точных и быстрых систем управления, и знание это тоже безмасштабно (сам Джон Дойль использовал его сначала для создания контроллеров в киберфизических устройствах, затем оказалось, что это хорошая объяснительная теория для биологических систем, а теперь его интересуют общественные системы и даже человечество в целом, которые он рассматривает при помощи того же математического аппарата и тех же концепций, что и найденные им в ходе изучения киберфизических систем).
И это не единственные новинки системного мышления, которые появились за последние пять-десять лет. В нашем учебнике мы затронем ещё несколько современных тем в системном мышлении.
Так что буквально в последние пять-десять лет системный подход активно развивается и появляются объяснительные физические теории (поддержанные математикой и наблюдениями в технике и биологии), демонстрирующие давно замеченные биологами и инженерами закономерности в поведении систем.
Труд: системная инженерия
Наиболее активно после физики, биологии, кибернетики и после этого менеджмента, но до последних наработок по связке физики и биологии системный подход уже в XX веке разрабатывался в системной инженерии (systems engineering).
В русскоязычных переводах инженерной литературы менеджеры часто слово engineering не удосуживаются перевести как «инженерия», так и оставляют «инжинирингом». Можно считать, что «системная инженерия» и «системный инжиниринг» синонимы, но есть маленькая проблема: в России почему-то в тех местах, где занимаются инженерным менеджментом, а не инженерией, называют его тоже «системным инжинирингом» – хотя при этом никаких инженерных (т.е. по изменению конструкции и характеристик системы) решений не принимается, речь идёт только об инженерных решениях по поводу организационной системы. Эти решения в «системном инжиниринге» делаются тоже с активным использованием системного подхода, но касаются организации работ команды проекта по созданию целевой системы. Мы будем считать «инженерию» и «инжиниринг» синонимами, но в случае «инжиниринга» рекомендуем проверять на всякий случай, не менеджмент ли (инженерия организации) имеется в виду вместо инженерной работы с целевой системой (то есть занимаются ли в ходе «инжиниринга» изменением конструкции целевой системы, или это делают в ходе ещё какой-то другой «инженерии» рядом с «инжинирингом»).
Старинная инженерия работала с веществом, в котором не было никаких особых вычислений, кроме простейших каких-то «обратных связей» типа регулятора Уатта на паровой машине. Современная системная инженерия работает главным образом с киберфизическими системами, типичными из которых будут роботы, ракеты, аэролайнеры, автономные автомобили. Но в последнее время системные инженеры заговорили о том, что по факту ограничения на вид систем по их уровням организации/эволюционным уровням/системным уровням нет. То есть и изменение вещества такое, чтобы на выходе появилась мыльница или спичка, и изменение вещества такое, чтобы на выходе случился авиалайнер, и изменение людей (их ведь тоже нужно лечить и учить), и изменение организаций (их нужно проектировать), и сообществ и обществ и даже человечества – все эти изменения физического мира к лучшему это забота инженеров, причём системных инженеров, ибо речь идёт о многоуровневом взгляде на устройство таких сложных объектов как общество. Инженеров послали за парту учиться социальным дисциплинам, чтобы быть готовыми к такому повороту событий.
Жизнь показала, что не столько инженеры побежали за парту, чтобы стать политиками как инженерами общества или менеджерами как инженерами организации (хотя многие стали в том числе и менеджерами), сколько люди, считающие себя политиками и менеджерами, начали работать инженерными методами. Так, в пропагандистских кампаниях вырабатываются требования, проектируется архитектура, далее проектируется собственно кампания, потом проводится кампания, потом проверяются результаты кампании, потом эксплуатируются результаты кампании. Удивительно, но вот такой простой и понятный способ описания работы по изменению окружающего мира и его необходимость были сформулированы в более-менее чёткой форме именно системными инженерами, потому как все эти действия основывались на идее системы как выделяемом из окружения куске мира, который и нужно изменить (материал превратить в деталь, ученика превратить в мастера, неиндоктринированное общество превратить в индоктринированное), причём это изменение выполняется более-менее одинаково при общем системном взгляде на самые разные системы, несмотря на разницу в терминологии в каждой предметной области. Скажем, стратегия предприятия оказывалась примерно тем же, что архитектурные требования к предприятию – и после этого становилось понятно, что знания по разработке требований и разработке стратегии существенно пересекаются.
Так что системная инженерия в современном её понимании – это изменение мира к лучшему, в его разнообразии систем. Труд (который и понимается как изменение мира к лучшему, и раньше был связан с инженерым «заводским» изменением на уровне косного вещества, которое не «оживлялось» компьютерами, вспомните «уроки труда» в школе пятидесятилетней давности, где нужно было изготовить табуретку или выточить деталь на токарном станке) оказался просто разными изводами инженерии самых разных систем. Труд, практика, деятельность, инженерия – всё оказалось более-менее синонимами, если использовать эти слова безмасштабно, для всех возможных системных уровней, хотя у каждого слова и есть какие-то свои оттенки смысла, мы их рассмотрим в курсе дальше.
Самое современное из по факту уже устаревших определений системной инженерии дано в Guide to the Systems Engineering Body of Knowledge (руководство по корпусу знаний системной инженерии4444
http://www.sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_%28SEBoK%29
[Закрыть]) в 2019 году (A transdisiplinary and integrative approach to enable the successful realization, use, and retirement of engineered systems, using systems principles and concepts, and scientific, technological, and management methods.) – это трансдисциплинарный и интегративный подход и способы поддержки успешных воплощения, использования и вывода из эксплуатации инженерной системы, используя системные принципы и понятия, и научные, технологические и менеджерские методы работы4545
http://sebokwiki.org/wiki/Systems_Engineering_%28glossary%29
[Закрыть]). В этом определении можно подчеркнуть:
• Успешные воплощение, использование и вывод из эксплуатации инженерной системы – это те практики, которые поддерживает системная инженерия как особый вид труда. Слово «успешные» (successful) тут крайне важно, и имеет терминологическое специальное значение. Оно означает, что проект учитывает ролевые предпочтения как затрагивающих систему и её проект людей, так и затрагиваемых системой и её проектом людей. Абстрагируемся пока, организованы ли эти люди в какие-то организации, или даже общества, или это отдельные личности, назовём их поэтому «агентами», чтобы не разбираться с этой многоуровневостью. Если предпочтения всех этих агентов в ролях заказчиков, плательщиков, пользователей и других (потребности вредоносных ролей, например, воров, учитываются с обратным знаком) учтены, то это и будет «успех». Тем самым успех тут определяется не бытовым, или финансовым, или экологическим или ещё каким образом, а именно через приемлемость результата проекта для множества агентов-в-ролях, успех определяется как «мы в проекте договорились со всеми, все довольны».
• Слово «системы» используется в очень специальном значении: это «системы» из системного подхода, термин. Для системной инженерии слово «система» примерно то же, что «физическое тело» для ньютоновской механики – если вы сказали про компьютер «физическое тело», то это автоматически влечёт за собой разговор про массу, форму, объём, потенциальную энергию, модуль упругости, температуру и т.д., но уж никак не цену и не быстродействие самого компьютера. Если вы сказали «система» про компьютер, то это автоматически влечёт за собой разговор про системные уровни, задействованные в работе над компьютером и с компьютером роли разных агентов и их предпочтения в важном (важных характеристиках компьютера, concerns), требования и архитектуру, жизненный цикл системы и т. д. Все эти понятия будут подробно рассмотрены в нашей книге.
• Трансдисциплинарный и интегративный/междисциплинарный подход – системная инженерия претендует на то, что она работает со всеми остальными предметными инженерными специальностями (впрочем, не только инженерными). Трансдисциплинарность (transdisciplinary) означает внешнесть, «потустороннесть» по отношению к самым разным другим дисциплинам, а не нахождение в одном ряду, «между» другими дисциплинами. Трансдисциплинарность – это очень сильное заявление, оно означает, что системная инженерия входит во множество самых разных других прикладных практик, она не «равнопредставлена» с ними, а используется прямо внутри рассуждений этих дисциплин. Системная инженерия в силу своей трансдисциплинарности может в одну упряжку впрячь коня и трепетную лань (например, людей в ролях инженеров-механиков, баллистиков, криогенщиков, психологов, медиков, астрономов, программистов и т. д. в проектах пилотируемой космонавтики, которые с использованием системноинженерных понятий будут координировать свои работы). Междисциплинарность означает, что использование системной инженерии объединяет труд людей, работающих по самым разным прикладным практикам. Сегодня становится понятным, что под трансдисциплинарностью понимается фундаментальность знания, его безмасштабность, применимость по отношению к системам любого системного уровня, от молекул до человечества в целом.
• Слово «воплощение» (realization, «перевод в реальность») означает буквально это: создание материальной (физической, размещённой в пространстве-времени, т.е. вещественной/материальной) успешной системы. Речь идёт об изменении физического мира, дело не ограничивается только проектированием и другой информационной работой, проект выходит в физическую реальность и меняет её. При этом, как любят заметить физики, «человек-математик и человек-астрофизик – это тоже вещественные объекты, физические системы», и то же самое относится и к человечеству в целом, оно вполне физично, и можно ставить задачи по его изменению (вопрос в том, можно ли потом эти поставленные задачи выполнить, но в физике это не запрещено, значит о таком можно думать. Например, поставить задачу невымирания человечества на ближайший период от десяти тысяч лет, а там посмотрим).
• Использование принципов и понятий системного подхода говорит само за себя. Не используются эти понятия – не системная инженерия!
• Методы работы системная инженерия берёт не только научные, но и технологические (полученные методом проб и ошибок), и даже менеджерские (но не, например, религиозные).
По-английски «системная инженерия» – systems engineering, хотя более ранние написания были как system engineering. Правильная интерпретация (и правильный перевод) – именно «системная» (подразумевающая использование системного подхода) инженерия, а не инженерия систем (engineering of systems) – когда любой «объект» обзывается «системой», но не используется системный подход во всей его полноте. Под инженерией систем4646
см. проф. Derek Hitchins, «Systems Engineering vs. Engineering of Systems – Semantics?», http://systems.hitchins.net/profs-blog/systems-engineering-vs.html
[Закрыть] (например, control systems engineering, manufacturing systems engineering) понимаются обычные инженерные специальности, там легко выкинуть слово «система», которое лишь обозначает некий «научный лоск». Предметные/прикладные (не системные) инженеры легко любой объект называют «системой», не задумываясь об осознанном использовании при этом системного мышления, то есть не используя системный подход и не согласовывая предпочтения самых разных проектных ролей в важных характеристиках системы и её проекта. В самом лучшем случае про систему предметные инженеры скажут, что «она состоит из взаимодействующих частей» – на этом обычно разговор про «систему» и «системность» заканчивается, он не длится больше двадцати секунд, понятие «система» тут означает примерно то же самое, что «физическая система». Занимающиеся «инженерией систем» очень полезны и нужны, но они не системные инженеры.
А вот из системной инженерии квалификатор «системный» без изменения смысла понятия выкинуть нельзя. Неформально определяемая системная инженерия – это инженерия с системным мышлением в голове (а не любая инженерия, занимающаяся объектами, торжественно поименованными системами просто для добавления указания о сложности этих объектов и научности «как в физике» в их описании).
Справедливо будет сказать, что по факту любая инженерия, которая начинает опираться на знание фундаментальных дисциплин интеллект-стека, становится системной инженерией. Это верно даже по отношению к инженериям, традиционно таковой не считаемым (те же менеджмент или медицина, или образование детей). Все они по факту становятся «системными», даже если в явном виде слово «системный» к ним не приписывать. Но, конечно, вопрос в том, насколько современная версия как системного подхода, так и остальных положений из фундаментальных дисциплин интеллект-стека используется в каждом конкретном случае. Два разных врача могут использовать очень разные версии интеллект-стека, поэтому один может быть едва системен и рационален в своей работе, а другой проявлять и рациональность и системность на уровне не хуже специально обученного системного инженера киберфизических систем.
Интегральность/целостность (полнота охвата всех частей целевой системы согласованным их целым, многоуровневое разбиение на части-целые), трансдисциплинарность (использование самыми разными дисциплинами рассуждений системной инженерии) – это ключевое, что отличает системную инженерию от старинных версий инженерных дисциплин. Роль системного инженера в проекте сегодня отличают по тому, что человек в этой роли занимается всей системой в целом в разбиении на много уровней вниз и вверх от границы системы, а не только отдельными частями системы или только отдельными прикладными инженерными (теплотехника, электротехника) или прикладными менеджерскими (операционный менеджмент, лидерство в отличие от полноценной инженерии предприятия) прикладными дисциплинами.
Более длинное определение системной инженерии включает ещё одну фразу: «Она фокусируется на целостном и одновременном/параллельном понимании потребностей проектных ролей; исследовании возможностей; документировании требований; и синтезировании, проверке, приёмке и постепенном появлении инженерных решений, в то время как в расчёт принимается полная проблема, от исследования концепции системы до вывода системы из эксплуатации»4747
Вторая фраза в определении системной инженерии из SEBoK: It focuses on holistically and concurrently understanding stakeholder needs; exploring opportunities; documenting requirements; and synthesizing, verifying, validating, and evolving solutions while considering the complete problem, from system concept exploration through system disposal.
[Закрыть].
Системная инженерия поначалу применялась главным образом для борьбы со сложностью аэрокосмических проектов, и она была там крайне эффективна. Для того, чтобы маленький проект уложился в срок и бюджет, нужно было на системную инженерию потратить 5% проекта, что предотвращало возможный рост затрат проекта на 18%. Для средних проектов на системную инженерию оптимально тратить было уже 20% усилий всего проекта, но если не тратить – возможный рост затрат проекта был бы 38%. Для крупных и очень крупных проектов оптимальные затраты на системную инженерию оказались 33% и 37% соответственно, и это для того, чтобы предотвратить возможный рост затрат проекта на всяческие переделки плохо продуманного 63% и 92% соответственно4848
Цифры из https://yadi.sk/i/jBxY4Ny5w7j09g
[Закрыть].
Системная инженерия с её практиками в простых небольших проектах «на одного человека» почти не даёт эффекта (там всё хорошо продумывается «в уме» и не требует особых мыслительных практик, не требует многочисленных согласований важных характеристик системы и проекта), но оказывается ключевой в сложных и очень крупных проектах: без системного мышления в них допускаются ошибки, которые потом оказывается очень дорого переделывать. Без системного мышления сталкиваться со сложностью согласно упомянутым в предыдущем абзаце исследованиям выйдет чуть ли не вдвое дороже за счёт дополнительной работы по переделкам допущенных ошибок.
Люди, которые выполняли в проектах роль системных инженеров, строили своё инженерное мышление на основе системного мышления.
В результате системным инженерам удалось выполнить сверхсложные проекты – например, они в 1969—1972 году отправили на орбиту вокруг Луны 24 космонавта, а по самой Луне пешком ходили 12 человек4949
https://en.wikipedia.org/wiki/Apollo_program
[Закрыть]. Да что там пешком, рекорд скорости по Луне на луномобиле составил 18.6 км/час, при этом люди уезжали от ракеты на Луне на расстояние больше 7 километров! Достижения современной космонавтики, думаю, тоже не нужно рекламировать, даже с учётом того, что инженерное развитие в этой области было существенно искажено военными проектами, а инженеры развращены государственным финансированием. Но сложность космических проектов не позволяла добиваться успехов «обычной инженерией». Так, советская школа инженерии не смогла повторить достижений лунной программы, не смогла повторить многих и многих достижений планетарных программ, которых достигли в NASA. Конечно, у отечественной космонавтики есть и отдельные достижения (например, удачные ракетные двигатели), но при росте сложности проекта в целом неудачи начинают резко перевешивать достижения – типа четырёх неудач лунного старта Н-15050
https://ru.wikipedia.org/wiki/Н-1
[Закрыть].
Тут нужно отдельно оговорить, что всё это были достижения ещё первого поколения системного мышления, когда не обращали внимания на успешность системы как удовлетворения предпочтений в важных характеристиках системы и проекта для самых разных проектных ролей. Космические программы имели астрономические бюджеты, и критиковались за то, что вместо помощи больным и голодным людям деньги выкидывались на удовлетворение каких-то политических амбиций (это было верно и для США, и для СССР, поэтому лунные старты и были прекращены на десятки лет!). В книге будет подраздел о том, почему государственные проекты не могут быть успешными по критериям самой системной инженерии.
Тем не менее, технический успех (работоспособность сложных технических систем, если не обращать внимания на цену, заплаченную налогоплательщиками за эту работоспособность) в аэрокосмических программах США был поразительным.
Метод работы западных аэрокосмических инженеров – именно системная инженерия, т.е. инженерия с использованием системного мышления. Системные инженеры (и отчасти программные инженеры) уточняли и развивали положения системного подхода, проверяя их действенность в сложных проектах, а самое важное из этих уточнённых и обновлённых положений попало в международные инженерные стандарты.
По иронии судьбы, стагнация системной инженерии от государственных и военных проектов наблюдается и прямо сейчас. Так, на международном симпозиуме INCOSE в 2021 году собралось много системных инженеров из военных и государственных проектов, и демонстрировались умеренные инженерные достижения. Но не было никаких докладов от SpaceX, хотя фронтир системной инженерии демонстрирует сегодня именно эта фирма. Системная инженерия перестала развиваться в ассоциации, состоящей по факту из чиновников-инженеров, её развитие переместилось в реальные коммерческие проекты. Системное мышление развивается в таких проектах, как становящиеся автономными автомобили Tesla, инфраструктура быстрого космического интернета StarLink от SpaceX, суперкомпьютеры для искусственного интеллекта от NVIDIA и Google.
В отличие от многих и многих вариантов системного подхода, «системноинженерный вариант» в начале 21 века был проверен тысячами сверхсложных проектов, обсуждён десятками тысяч инженеров, унифицирован и доказал свою эффективность на деле. Он не имеет авторства (ибо в его создании участвовало множество людей), он не является «оригинальным исследованием», он не изобретает велосипеды в части самого системного подхода. Он просто отражает всё самое важное, что было накоплено системным движением за десятки лет и оказалось практичным и относительно легко применяемым на практике десятками тысяч людей.
Подробней про практики системной инженерии как безмасштабной фундаментальной дисциплины в составе интеллект-стека можно узнать в курсе системной инженерии ШСМ5151
https://system-school.ru/engineering
[Закрыть]. Наш курс/книга практического системного мышления посвящён безмасштабной версии системного мышления как выборке приёмов мышления, основанных на системном подходе из самых разных фундаментальных мыслительных дисциплин, а курс системной инженерии посвящён самым общим практикам изменения мира: инженерии требований, инженерии системной архитектуры, неархитектурному проектированию и изготовлению, инженерным обоснованиям, эксплуатации.
Наш курс/книга основан главным образом на версии и терминологии системного мышления, принятой именно в системной инженерии киберфизических систем и отчасти в менеджменте как инженерии предприятия, потому что именно этот вариант системного мышления более всего ориентирован на человеческую деятельность, на труд по изменению окружающего мира, а не просто на «понимание», «исследования», «анализ», «науку». Анализ-понимание полезен только в контексте последующего синтеза-созидания или изменения чего-то в нашем физическом мире, в контексте изменяющего физический мир к лучшему труда по созданию новых и модернизации уже имеющихся систем. Так что наш курс/учебник по факту курс трудового/практического/деятельностного системного мышления, что и отражено в его названии «Практическое системное мышление».
Наш курс/книга представляет тот вариант системного мышления, который изначально ориентирован на успешное создание систем (помним о специальном смысле слова «успешные»! ) – будь это «железные» системы (самолёт, атомная электростанция), программные системы, биологические системы (клетки и организмы – ими занимается системная биология, генная инженерия), системы-личности (и там инженерные дисциплины психологии, образования), системы-предприятия (организационные системы), или даже такие нестандартные системы как танец или марафонский бег, а ещё курс применим и по линии безмасштабности: можно говорить и про сообщества (клиентура какой-то фирмы, ассоциация каких-то профессионалов), общества (в том числе и государственное строительство, и вопросы войны и мира) и человечество в целом (изменение его таким образом, чтобы снизить экзистенциальные риски). Нужно понимать, что на этих самых разных уровнях масштаба (размеров в физическом мире!) и эволюционной организации (число и характер частей по линии молекулы – макромолекулы – организм – разумный организм – организация разумных агентов и их инструментов – сообщество – общество – человечество) мы можем использовать более-менее одинаковые паттерны мышления, учитывая при этом особенности систем каждого уровня и особенности терминологии.
Определение системной инженерии в версии 2019 года SEBoK сопровождается фразой «We use the terms „engineering“ and „engineered“ in their widest sense: „the action of working artfully to bring something about“. „Engineered systems“ may be composed of any or all of people, products, services, information, processes, and natural elements», то есть объектом инженерии является something/«что угодно», и авторы определения включают в это «что угодно» даже информацию и процессы, при всей неопределённости этих понятий в их связи с физическим миром. Мы в нашем курсе/книге расскажем, как следовать этим указаниям на всеохватность системного мышления и системной инженерии, не теряя связи с изменением физического мира к лучшему через создание успешных систем.
Главное – это понимать, что мы тут участвуем в эволюции, которая по факту является процессом оптимизации состояния мира, уменьшающем неустроенности/frustrations, вызванные конфликтами взаимодействий разных системных уровней. Системное мышление заключается в том, чтобы понимать этот источник «вечной неустаканенности», «вечных проблем» и предлагать оптимизационные решения (заниматься системным творчеством: находить противоречия и предлагать новые механизмы их снятия). Обычно проблемы не могут быть решены на одном системном уровне из-за этих межуровневых конфликтов, мир устроен сложно, поэтому-то и нужно иметь системное мышление.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?