Текст книги "Универсальное устройство"
Автор книги: Брайан Мерчант
Жанр: Документальная литература, Публицистика
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 31 страниц) [доступный отрывок для чтения: 10 страниц]
Хуппи проводит параллель с известным визитом Джобса в Xerox PARC, где они впервые увидели ГИП (графический интерфейс), окна и меню, которые затем десятилетиями наводняли компьютерные пользовательские интерфейсы. «Многое было именно так… Та небольшая экскурсия обернулась крупной инновацией, изменившей все, и просто удивительно, как она прижилась, – говорит Хуппи. – С тем же успехом она могла остаться незамеченной, но не осталась».
Именно небольшая экскурсия, совершённая командой ИНСВ, вдохнула жизнь в прототип пользовательского интерфейса, которым вы так часто пользуетесь: рабочий стол вашего смартфона, упорядоченные ярлычки, которые открываются касанием пальца, смахиваются, закрепляются или просто ждут прикосновения.
«Теперь такое взаимодействие естественно как вода, – говорит Имран Чаудри, – но это не всегда было очевидным фактом».
На самом деле даже до сих пор это не такой уж очевидный факт. Пользовательский интерфейс iPhone может казаться универсальным, но течение этой «воды» только выглядит простым и спокойным. За устойчивым к царапинам и способным к мультитачу экраном скрывается обширная и сложная система. Следующий раздел освещает железную начинку iPhone: крохотную батарею, камеру, процессор, Wi-Fi-чип, датчики и прочее, – всё то, что заставляет работать наше универсальное устройство.
Глава 5
Литий-ионные батареи
Подключаемся к современному источнику питания
Чилийская пустыня Атакама – самое бесплодное место на всей Земле, если не брать в расчёт промёрзшие полюса. Осознание этого факта не заставляет себя ждать. Сперва чувствуешь, как сохнет задняя стенка горла, затем сухость добирается до нёба, а после заполняет носовые пазухи, которые сразу же начинают напоминать кожу животного, блуждавшего неделю под палящим солнцем. Клаудио везёт меня и моего помощника Джейсона к югу от Каламы, одного из крупнейших шахтёрских городов Чили; в окнах нашего пикапа горбятся угрюмые буро-рыжие скалы Анд.
Мы направляемся к Салар-де-Атакама, крупнейшему в мире месту добычи лития. SQM, или Чилийская горнодобывающая и химическая компания, представляет собой некогда государственную, а теперь принадлежащую зятю бывшего директора компанию, ведущую разработку местного солончака. Она – лидирующий производитель калиевой селитры, йода и лития, и её руководство согласилось устроить мне и Джейсону частную экскурсию.
С виду Атакама не выглядит такой уж рекордно засушливой: зимой вдали можно различить снежные шапки гор. Однако на всю пустыню площадью почти в сто тысяч квадратных километров за год выпадает в среднем пятнадцать миллиметров осадков. А кое-где ещё меньше. Здесь находятся метеорологические станции, по данным которых рекордная засуха, когда вовсе не случалось дождей, длилась более ста лет.
В самых обезвоженных регионах Атакамы почти никто не обитает, даже микробы. Мы останавливаемся в одной из самых известных пустынных зон: Валье-де-ла-Луна (Лунной долине). Она настолько сильно похожа на Марс, что NASA проводила здесь испытания луноходов для «красной планеты» и оборудования для поиска жизни. И именно этому пустынному неземному месту наши iPhone обязаны своей работой.
Чилийские рудокопы трудятся в этой чуждой человеческому глазу местности каждый день, добывая литий из обширных испаряющихся озёр солончака. Солончак представляет собой естественный насыщенный соляной раствор, скапливающийся в огромных подземных резервуарах. Более тысячи лет минеральные отложения стекали со склонов Анд в мокрые солончаки, образуя водоемы с высоким содержанием лития. Литий – самый лёгкий металл, обладающий наименьшей плотностью, и, хотя его используют по всему миру, в чистом виде в естественных условиях его не встретишь: слишком уж он химически активный. Он добывается из сложных горных пород и растворов, поэтому его получение, как правило, дорогостоящий процесс. Однако высокая концентрация лития в солончаке, приправленная чрезвычайно сухим климатом, позволяет рудокопам получить очень чистое сырье для растущего в цене металла с помощью старого доброго выпаривания.
Атакама полна лития: на данный момент Чили производит треть мировых поставок и хранит четверть всех известных на данный момент запасов. Именно из-за Атакамы Чили часто называют «литиевой Саудовской Аравией». (Надо сказать, что многие, очень многие страны можно назвать «литиевой Саудовской Аравией» – в соседней Боливии лития ещё больше, но они его не добывают… пока что).
Литий-ионные аккумуляторы являются оптимальным источником питания ноутбуков, планшетов, электромобилей и, конечно, смартфонов. Те, кто знают об особой позиции лития в индустрии, всё чаще называют его «белой нефтью». В период с 2015 по 2016 год цены на него подскочили в два раза, так как сильно возросло его прогнозируемое потребление.
Хотя на Земле есть и другие места добычи лития, самое лучшее из них здесь, в высокогорных просторах Чили.
Мы едем, и я замечаю у дороги крест, усыпанный цветами, обставленный фотографиями и небольшими реликвиями. Затем ещё один, и ещё.
«Да, это место зовётся Дорогой смерти, – рассказывает нам водитель Клаудио. – Семьи едут, но не знают дороги – устают и съезжают с неё, срываются. Или дальнобойщики, которые слишком долго просидели за рулём».
Чтобы добраться до металла, который оживляет наши iPhone, нужно сперва проехать по Дороге смерти.
* * *
За разработку литий-ионных аккумуляторов взялись в 1970-х годах, так как эксперты боялись, что зависимость человечества от нефти ведёт его не к метафорическому, а к вполне конкретному концу. Учёные, общественность и даже нефтяные компании стали активно искать альтернативы. До этого момента батареи почти сотню лет были неразвивающейся технологией.
Первую настоящую батарею придумал в 1799 году итальянский учёный Алессандро Вольта, он пытался доказать, что его коллега Луиджи Гальвани заблуждался насчёт лягушачьего накопителя энергии.
Гальвани пропустил электрический ток через нервную систему мёртвой лягушки – этот ряд экспериментов вдохновил Мэри Шелли написать «Франкенштейна» – и решил, что у земноводных есть внутренний накопитель «животной электроэнергии». Он заметил, что, когда он железным скальпелем разрезал лапку, подвешенную на медном крюке, она начинала дёргаться. Вольта полагал, что опыты его друга демонстрируют наличие электрического заряда, пробегающего от одного металлического инструмента к другому через проводник. (Они оба оказались правы: живые мышцы и нервные клетки на самом деле обладают биоэлектричеством, и в то же время мясистая лягушка являлась проводником между электродами.)
Батарея состоит из трёх основных частей: двух электродов (анод с отрицательным зарядом и катод с положительным) и электролита, находящегося между ними. Чтобы опробовать свою теорию, Вольта соорудил столб из цинковых и медных дисков, чередующихся друг с другом, и ткани, смоченной солевым раствором и зажатой между каждым из них. Эта аляповатая башня и являла собой первую батарею.
Она работала точно так же, как большинство современных батарей, путём окисления и восстановления. Химические реакции приводят к накоплению электронов в аноде (в башне Вольты это был цинк), которые затем стремятся перейти на катод (медь). Электролит – будь то смоченная соленым раствором ткань или мёртвая лягушка – препятствует им. Однако, если вы соедините проводом анод с катодом, то замкнёте цепь, и анод станет окисляться (терять электроны); электроны направятся к катоду, генерируя в процессе электрический ток.
Развивая концепт Вольты, Джон Фредерик Даниель создал батарею, которую можно использовать как удобный источник электричества. Первичный источник тока, сделанный Даниелем, получил широкую известность в 1836 году и привёл, помимо всего прочего, к расцвету электрического телеграфа.
С тех пор эволюция батареи продвигалась очень медленно: от медно-цинковых электродов Вольты до свинцово-кислотных аккумуляторов, используемых в автомобилях, а от них – до современных основанных на литии батарей. «Простота устройства батареи – всего несколько частей – одновременно и помогала, и препятствовала попыткам учёных усовершенствовать детище Вольты, – пишет Стив Левайн в книге „Источник энергии“[22]22
Ориг. назв. The Powerhouse. – Прим. ред.
[Закрыть]. – В 1859 году французский физик Гастон Планте изобрёл перезаряжаемую свинцово-кислотную батарею», которая использовала свинцовые электроды и серную кислоту в качестве электролита. «Разработка Планте мало чем отличается от первоисточника – по сути, это та же башня Вольты, сделанная на другой манер… Батарейки Energizer, вышедшие на рынок в 1980 году, – пишет Левайн, – можно считать ближайшим потомком изобретения Планте. За век с лишним наука не сдвинулась с места». Что несколько обескураживает, потому как батарея остаётся одним из крупнейших, хоть и незаметных, инструментов, определяющих наше взаимодействие с технологиями.
Однако нефтяные взлёты в 1970-х – когда нефтяное эмбарго заставило подскочить цены акций и ослабило экономику – наряду с появлением нового водородного аккумулятора, которым Форд собрался оснастить автомобили будущего, придали ускорение гонке на изобретение лучших батарей.
* * *
Многие считают чудовищной нелепостью факт, что изобретатели литий-ионного аккумулятора до сих пор не получили Нобелевскую премию. Литий-ионная батарея не только вдыхает жизнь в наши гаджеты, она является краеугольным камнем электротранспорта. Ирония же состоит в том, что её придумал учёный, нанятый самой скандально известной нефтяной компанией.
Во время своей работы в Стэнфорде в начале семидесятых, после защиты докторской, химик Стэн Уиттингем открыл способ поместить ионы лития на листы сульфида титана, что привело к созданию перезаряжаемой батареи. Вскоре он получил предложение на частное исследование альтернативных энергетических технологий в компании Exxon. (Да, та самая Exxon, известная сегодня своими попытками подвергнуть сомнению глобальное изменение климата, а также соперничеством с Apple за звание крупнейшей корпорации мира.)
Защита окружающей среды овладела умами общества после выхода в свет книги Рейчел Карсон «Безмолвная весна», где раскрывалась опасность ДДТ, утечки нефти в Санта-Барбаре и пожара на реке Кайахога. Форд обратил внимание на упреки, что его машины загрязняют воздух в городах и высасывают нефть, и начал экспериментировать с более экологичными эклектромобилями, что дало импульс разработке батарей. Тем временем казалось, что нефтяная промышленность начала достигать пика. Нефтяные компании нервно всматривались в будущее и искали способы вложить капитал в альтернативные предприятия.
«Я пришёл в Exxon в 1972 году, – рассказывает мне Уиттингем. – Они решили стать энергетической компанией, а не просто нефтяной и химической. Они заинтересовались батареями, топливными элементами, солнечными элементами, – говорит он, и „в какой-то момент они были крупнейшими в США производителями фотоэлектрических элементов“». Они даже построили гибридный дизельный автомобиль за десятки лет до появления Toyota Prius.
Уиттингем получил доступ к почти безграничным ресурсам. Перед ним поставили задачу «подготовить компанию к тому, что нефть скоро закончится».
Его команда знала, что в Panasonic придумали неперезаряжающиеся литиевые батареи, которые стояли в плавучих светодиодных лампах для ночной рыбной ловли. Но эти батареи охлаждались водами океана – немалый плюс, – потому что литий очень нестойкий, и при реакции выделяется очень много тепла.
Чтобы батарея стала полезной всем, у кого под рукой нет океана или иного обширного источника охлаждения, она не должна перегреваться. Литий или нет, но батареи могут перегреться, если от анода одновременно перебегает слишком много электронов, и в те времена существовал только один путь для этих электронов – через цепь. Команда Уиттингема изменила это.
«В Exxon мы разработали концепцию интеркаляции и создали первые перезаряжающиеся литиевые элементы, работавшие при комнатной температуре», – рассказывает Уиттингем. Интеркаляция – это процесс введения ионов между слоями сложного вещества; ионы лития в аноде переходят к катоду, создавая электричество, а так как реакция обратима, ионы лития могут вернуться обратно к аноду, перезаряжая батарею.
Всё так и есть: компания, которая почти все время в 2015–2016 годах мелькала в заголовках газет, уличаемая в том, что пытается заставить замолчать собственных учёных, предупреждавших о реально нависшей угрозе изменения климата, в ответе за появление на свет батареи, которая используется в современных электромобилях.
«Они мечтали стать «Лабораториями Белла» в энергоиндустрии», – рассказывает Уиттингем. Лаборатории Белла были до сих пор широко известны благодаря своей разработке транзистора, а также целому ряду изобретений, оказавших на мир большое влияние. «Они говорили: „Нам нужен электротранспорт. Давайте сами уйдём с рынка и не дадим никому вытеснить нас оттуда“».
«Шесть десятилетий неперезаряжаемый цинк и углерод являлись стандартным химическим составом батарей для бытовой техники, – пишет Левайн. – Никелево-кадмиевые батареи тоже были в ходу. Однако детище Уиттингема стояло на совершенно ином уровне. Мощное и лёгкое, оно могло бы зарядить энергией бытовую электронику куда меньших размеров (сравните iPhone и кассетный плеер Sony Walkman) – если бы только заработало».
Прорыв в области батарей взбудоражил головное подразделение. «Меня позвали в Нью-Йорк на собрание совета директоров Exxon, чтобы я объяснил им, чем мы занимаемся и к каким результатам могут привести наши разработки, – рассказывает мне Уиттингем. – Они сильно заинтересовались».
Впрочем, оставалась одна неразрешимая проблема: его батарея легко воспламенялась. «С возгораемостью было плохо, – говорит Уиттингем. – У нас случилось несколько пожаров, в основном когда мы разбирали батареи». Помимо этого батареи были слишком дорогими и сложными для производства, к тому же ужасно воняли, в самом прямом смысле слова».
Благодаря пожарам, запаху и пошедшему на спад нефтяному кризису Exxon так и не стала первым разработчиком электротранспорта, технологии батарей и источника альтернативной энергии. Вместо всего этого они с новыми силами бросились на нефть. Однако работа Уиттингема не канула в небытие, её продолжил человек, который сделал возможным расцвет бытовой электроники.
* * *
Салар-де-Атакама не так уж прекрасен, в отличие от местности вокруг. «Но какой же здесь ужасный запах!» – проносится у меня в голове, когда я бегло оглядываю розовые горы на плоском сухом море, покрытом колючими, пыльными солевыми кристаллами. Они похожи на погибшие коралловые рифы, поросшие грязью.
Быть бы этим кристаллам снежно-белыми, если бы ветер не приносил с гор земляную пыль, говорит Энрике Пенья, главный инженер литийдобывающих работ в Атакаме. Вокруг нас, во все стороны, насколько хватает глаз, простираются соляные поля.
«Так и представляю себе, как скачет испанский конкистадор по просторам Чили, вдруг заезжает сюда и ошалело: „Это ещё что за чертовщина?!“» – говорит Пенья. Пятьдесят квадратных километров бесплодного солончака. Пенья – молодой человек лет тридцати, с окладистой бородой и строгим деловым выражением лица, которое, впрочем, легко сменяется добродушной улыбкой. Его карьера в SQM быстро пошла в гору, и теперь он присматривает за тем, что ласково называет «мои пруды». Каждую неделю он покидает Сантьяго, где живёт его семья, и отправляется на удаленную разработку в высокогорной пустыне.
Добыча ископаемых прямиком из центра соляной пустыни выглядит необычно. Здесь нет никаких выдолбленных ходов в шахты и тёмных тоннелей, ведущих в глубины земли. Вместо них – ряды огромных испаряющихся соляных озёр ядовитого цвета, в которых отражаются горы, обрамляющие горизонт. Озёра отделены друг от друга соляными насыпями – побочным продуктом добычи.
Под всеми этими махровыми пластами соли, одним-тремя метрами ниже, находится гигантский резервуар с соляным раствором, жидкостью, в которой содержится высокая концентрация лития.
Представители SQM сопровождают нас в шикарный лагерь, где обычно останавливаются руководители, приезжающие проведать место добычи. Представьте себе крохотный пятизвёздочный отель с десятком комнат и личным шеф-поваром, внезапно возникший посреди очень фантастической, совершенно внеземной пустыни. Отсюда начинает свой путь современная литиевая батарея.
И думаю, именно отсюда лучше всего позвонить её изобретателю.
* * *
Когда я рассказываю Джону Гуденафу, что звоню с литиевого рудника в пустыне Атакама, тот отзывается гулким смешливым «охо-хо». Гуденаф – большая величина в своей области исследований, со времён литиевого открытия Уиттингема именно он породил большинство важнейших батарейных инноваций, и я слышу, как его смех становится всё громче и громче. В свои девяносто четыре года он всё ещё ходит на работу почти каждый день и теперь рассказывает мне, что стоит на пороге нового открытия, которое перенесёт нас в перезаряжающийся мир.
Гуденаф – ветеран боевых действий, он изучал физику в Чикагском университете под руководством Эдварда Теллера и Энрико Ферми и начал свою карьеру в лаборатории Линкольна при МТИ, работая над магнитным запоминающим устройством. К середине семидесятых, подобно Уиттингему, он из-за энергетического кризиса начал изучать энергосбережение и энергетические накопители. Затем Конгресс урезал финансирование его исследований, и Гуденаф отправился через океан в Оксфорд, где продолжил свою деятельность. Он знал, что Exxon наняла Уиттингема, чтобы тот создал литий-титанатный аккумулятор. «Но попытка была обречена на провал, – говорит Гуденаф, – потому что по всему легковоспламеняющемуся жидкому электролиту этой батареи формировались и росли дендриты, что могло приводить к взрывам».
Гуденаф полагал, что знает, как помочь делу. В своих ранних работах он обнаружил, что литий-магниевые оксиды формируют слоистую структуру, поэтому он начал разбираться, сколько лития можно добыть из различных оксидов прежде, чем они станут нестабильными. Литий-кобальтовый и литий-никелевый оксиды оказались тем, что надо.
К 1980 году его команда разработала литий-ионную батарею, используя в качестве катода литий-кобальтовый оксид. Такая комбинация оказалась в своём роде панацеей – или, как минимум, позволила удерживать большой заряд при малом весе, а к тому же оказалась намного более стабильной, чем другие оксиды.
И это основной химический состав, который вы найдёте внутри ваших iPhone. Ну, почти основной.
Впрочем, прежде чем стать краеугольным камнем беспроводной революции, литий-ионная батарея помогла разрешить более прозаичные проблемы с электроникой. Sony столкнулась затруднением, возникшим в новом многообещающем рыночном товаре: в видеокамерах. К началу девяностых видеокамеры съёжились, превратившись из гигантских наплечных чудовищ в компактные ручные устройства. Однако никель-кадмиевые батареи, которые использовались в индустрии, были громоздкими и неуклюжими. «Sony нуждалась в мощной батарее, которая поддерживала бы работу камеры, но при этом была достаточно мала, чтобы вместиться в эту самую камеру», – объясняет Сэм Джефф из аналитической компании Navigant Research. Новый ультралёгкий перезаряжаемый аккумулятор подходил по всем параметрам. Прошло не так уж много времени, и технология перескочила от брэндовых Sony Handycam к сотовым телефонам, а там уже и на остальную бытовую технику.
«К середине 1990-х почти во всех камерах использовались перезаряжаемые литий-ионные батареи, – объясняет Джефф. – Они вышли на рынок аккумуляторов для ноутбуков, а вскоре – и на стремительно растущий рынок сотовых телефонов. Тот же фокус сработал и с планшетами, электроинструментами и портативными компьютерными устройствами».
Доработанные исследованием Гуденафа и получившие широкое распространение через продукцию Sony, литиевые батареи образовали отдельную нишу мировой индустрии. За 2015 год они принесли рыночную прибыль в тридцать миллиардов долларов. И тенденция продолжается благодаря тому, что к их использованию подключились гибридный и электротранспорт. Такое глобальное и стремительное завоевание рынка, случившееся в 2015-2016 годах, напрямую связано с одним большим событием: открытием гигафабрики Tesla, которая готовится стать крупнейшей в мире фабрикой по производству литий-ионных аккумуляторов. Согласно исследованиям компании Transparency Market Research, к 2024 году мировой оборот литий-ионных батарей на рынке увеличится более чем в два раза и составит 77 миллиардов долларов.
* * *
Время прогуляться к озеру. Точнее, к озёрам. Из лития.
Моя беседа с Гуденафом затянулась дольше, чем я ожидал, и команда уже ждёт сигнала отправляться в путь, к литиевым прудам, которые являются центром всего процесса добычи.
– Прошу прощения, – подхожу я к Энрике. – Я просто заговорился с изобретателем литий-ионной батареи.
– И что он говорит? – спрашивает Энрике, стараясь не выдать своего жгучего интереса.
– Говорит, что придумал батарею получше.
– Понадобится ещё литий?
– Нет, – говорю. – Натрий.
– Чёрт.
* * *
Мы едем к озёрам по безлюдным дорогам пустыни; соль ощущается в воздухе, скрипит под колёсами, громадными кучами свалена то тут, то там – куда ни упадёт взор. Покрытые коркой просторы и промышленная машинерия создают впечатление, что мы прибыли на покинутую разработку. Кажется, подобная атмосфера сказывается даже на рабочих; Пенья говорит, что они очень суеверны.
«Они рассказывают, что видели тут чупакабру, – сообщает он, – и что люди пропадают». Суровый климат, бескрайняя пустыня, полузабытая группка зданий, беспощадная засуха, тянущиеся вокруг соляные озёра – очень воодушевляющее зрелище для буйной фантазии. Так что я их понимаю. «Ну и пришельцы. Как правило, все рассказы о них. Рабочие рассказывают, что видят тут НЛО, – смеётся Пенья. – Наверное, залетели сюда за батарейками».
Наша первая остановка, ряд труб, окаймляющий ярко-белые озёра. Буры SQM впиваются в солончак, точно как буры нефтяных компаний. В Салар-де-Атакама 319 скважин, из которых в секунду выкачивается 2743 литра обогащённого литием соляного раствора.
Как и нефтяные компании, SQM всегда бурит пробные скважины для обнаружения новых залежей. По словам Пеньи, у них в общей сложности 4075 исследовательских и производственных буровых скважин, некоторые из которых глубиной семьсот-восемьсот метров.
Соляной раствор выкачивается в сотни огромных испаряющихся озёр, где он – не будем затягивать интригу – выпаривается. В сухой пустыне высокогорья процесс проходит очень быстро. Техники промывают трубы водой дважды в день, чтобы очистить их от наросшей изнутри соли. Из соляных отходов они строят всё, что только возможно: дорожки, столики, ограждения. Я вижу, как на стыке трубы, промытой несколько часов назад, прорастают новые кристаллы.
У испаряющихся озёр Энрике говорит: «Метод всегда один и тот же: выкачиваешь и вкачиваешь». Сначала рабочие начинают процедуру выпаривания, в ходе которой осаждается каменная соль. Качают. Затем они получают калиевую соль. Качают. В конце концов они концентрируют соляной раствор, пока концентрация лития не составит примерно шесть процентов.
Такая обширная сеть ярких, от синего до неоново-зелёного, озёр – всего лишь первый этап получения лития, который заключён в ваших аккумуляторах. После того как нужный уровень концентрации установлен, литий по побережью в автоцистернах отправляется на аффинажный завод в Салар-дель-Кармен.
Транспортировка – наверное, самая опасная часть всего процесса. Местность вокруг Атакамы пронизана сетью магистралей, и на следующий день Энрике, Джейсон и я тратим несколько часов на спуск по частным горнодобывающим дорогам, встречая по пути полугрузовики и цистерны, везущие литий и калий или же спешащие обратно к солончаку на погрузку. На дорожных обочинах нас встречает множество памятников, отмечающих места смертельных аварий. В редких случаях виной тем авариям был дождь, сильные потоки воды могут парализовать всю работу и вмешаться в отлаженную схему всего канала поставок. Но большинство несчастных случаев приходится на долю уставших водителей, решивших совершить лишнюю поездку, чтобы подзаработать побольше, или превысивших скорость.
В Салар-дель-Кармен нет захватывающей дух белой пустыни, а всего лишь ряд цилиндрических башен, пара озёр и ряды монотонно гудящей техники.
Увидеть процесс очищения – всё равно что попасть в зимнюю страну чудес. На реакторах растут солевые кристаллы, а литиевые снежинки, как самый настоящий снег, опускаются мне на плечи. Всё потому, что здесь каждый день получают 130 тонн карбоната лития, который затем отправляется в чилийские порты. Всего 48 000 тонн лития в год. Так как в одном iPhone содержится менее одного грамма лития, таких объёмов хватит на создание примерно сорока трёх миллионов iPhone.
Процесс переработки начинается с концентрированного раствора, который доставляется из Атакамы и сгружается в бассейн-хранилище. Он готов к очистке, и его отправляют на сложные процессы фильтрации, карбонизации, сушки и уплотнения.
Карбонат натрия смешивают с этим раствором, чтобы получить карбонат лития, самый востребованный вид продукции. На создание одной тонны карбоната лития требуется две тонны карбоната натрия, вот почему литий не очищается прямо на месте, в Атакаме. SQM пришлось бы устроить целый переезд, чтобы отправить всё это наверх, в пустыню; так что куда проще спустить соляной раствор в Салар-дель-Кармен.
Я бреду сквозь метель из литиевых снежинок, на голове защитная каска, в ушах беруши, а вокруг змеятся поросшие солью трубы и бешено скачут насосы, и вдруг меня поражает осознание того, что большая часть батарейного электропитания мира зарождается прямо здесь. Я вытягиваю ладонь, схватываю пригоршню снежинок и перебираю их в руках. Я касаюсь крохотной ниточки из гигантской сложно сплетённой паутины, образующей сеть поставок, благодаря которым создаётся iPhone: всё это требуется для того, чтобы очистить один из ингредиентов сложного ряда технологий iPhone.
Отсюда литий отправят в ближайший портовый город, а оттуда – к изготовителям аккумуляторов, скорее всего в Китай. Как и большинство составляющих частей iPhone, литий-ионная батарея выпускается за океаном. Apple не раскрывает имена поставщиков, снабжающих её батареями, но ведущие компании, от Sony до Dynapack в Тайпее, производят их уже многие годы.
Даже сегодня тип батарей, который сходит с конвейерных линий, не так уж сильно отличается от оригинальной задумки Вольты: к примеру, в аккумуляторе iPhone 6 катодом служит оксид лития-кобальта, анодом – графит, а электролитом стал полимер. Всё это подключено к крохотному компьютеру, защищающему батарею от перегрева и выработки слишком большого количества энергии, которое может привести к нестабильности.
«Батарея является ключом к психологическим процессам, не зависящим от самого устройства», – обращает внимание Кайл Винс из iFixit. Когда батарея разряжается слишком быстро, люди нервничают и не знают, как быть с устройством, которое она питала. Если же с батареей всё хорошо, то всё хорошо и с телефоном. Как и следовало ожидать, литий-ионная батарея является предметом постоянного перетягивания каната: потребителям хочется приложений и развлечений побольше и получше, больше видео с высоким разрешением, но в то же время мы жаждем долго работающую батарею. И, ясное дело, что первое существенно истощает второе.
А Apple тем временем желает создавать всё более тонкие телефоны.
«Сделай мы iPhone хоть на миллиметр толще, – говорит Тони Фаделл, глава отдела аппаратного обеспечения первого iPhone, – и мы смогли бы увеличить время его работы вдвое».
* * *
Спустя два часа после того, как мы побывали на крупнейшем в мире очистительном заводе лития, наши с Джейсоном аккумуляторы украли. Вместе с устройствами, в которых они находились. Мы только-только покинули гостеприимную обитель SQM и шофёр высадил нас у автобусной остановки.
Комплекс зданий завода со стороны похож на обшарпанный торговый центр, чей душный воздух, будто из самого пекла, долетает даже до автостанции. Я отлучился на поиски еды, а Джейсон остался сторожить наши вещи. К нему подошёл старик и спросил, куда следует автобус, который только что остановился. Пока они разговаривали, его сообщник подхватил мой рюкзак и поспешил к выходу. Когда я вернулся пару секунд спустя, мы поняли, что случилось, и побежали по станции, выкрикивая на испанском всем встречным людям: «Синий рюкзак?» Без толку.
Мы потеряли два ноутбука, записывающую аппаратуру, запасные iPhone 4, а также множество книг и тетрадей с записями. Но! Я не потерял мою книгу – вот она, здесь, – потому что в настройках iCloud я давно прописал автоматическое сохранение файлов.
Оставшуюся часть поездки мне пришлось брать интервью и делать записи с помощью одного только моего iPhone: диктофон, быстрый набор заметок, фото, – и будь на нём побольше места, работа была бы абсолютно комфортной.
«Телефон, кошелёк, паспорт, – повторял Джейсон, когда мы пересекали границы или покидали гостиницы и проверяли нехитрые наши пожитки, сумевшие пережить ограбление. – Три вещи, которые у нас есть и нам важны». Его слова сделались нашей утешающей мантрой: хоть мы и лишились множества ценных вещей, тем не менее у нас осталось всё нужное, чтобы продолжать прежнюю работу.
В чилийской полиции у нас с охотой приняли заявление о пропаже, однако посоветовали двигаться дальше: продукция Apple встречается в Чили редко и высоко ценится, так что, скорее всего, наши устройства уже перепродали на чёрном рынке.
Такой же революционный, как его литий-ионный собрат, новый и лучший аккумулятор – тот, которому понадобится натрий вместо лития, – уже не за горами, таково мнение Гуденафа. «Мы на пороге разработки ещё одной батареи, которая выведет общество на новый уровень», – говорит он. Натрий тяжелее лития и более изменчивый, но он дешевле и его проще достать. «Натрий добывают из океанов, просторы которых широки, так что ни армиям, ни дипломатам не требуется присматривать за химической энергией, заключённой в натрии, как за химической энергией в горючих ископаемых и литии», – поясняет Гуденаф. Есть немалый шанс, что ваш новый iPhone будет работать на обычной соли.
На что обозреватели продукта со всего мира скажут: «Хорошо, но станут ли батареи наших iPhone лучше? Будут ли дольше служить?» Уиттингем полагает, что да. «Думаю, что они могут вдвое увеличить продуктивность того, что есть сегодня, – говорит он мне. – Вопрос в том: захотят ли за неё платить?»
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?