Электронная библиотека » Давид Бессис » » онлайн чтение - страница 2


  • Текст добавлен: 11 сентября 2024, 09:21


Автор книги: Давид Бессис


Жанр: Математика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Кое-что посерьезнее

Ложка – это только начало. Дальше уже идут серьезные вещи. Мы учимся надевать ботинки и завязывать шнурки. Чистить зубы и стричь ногти. Кататься на велосипеде и на роликах. Чистить лук и варить кофе. Собирать конструкторы Playmobil и пришивать пуговицы. Водить машину и чистить кофеварку от накипи. Часто бывает немного сложно в начале, потом становится проще.

Точно так же, как ложка или велосипед, наши орудия в конце концов становятся продолжением нас самих. Мы пользуемся ими не задумываясь. Они преобразуют нас. Дополняют нас. Делают нас теми, кто мы есть. Без наших орудий мы уже мало что из себя представляем.

Самое трудное – научиться говорить. Неслыханный, необычайно долгий, ужасающе тяжелый труд. В полтора года мы практически не можем пролепетать ничего внятного. И все же тренируемся весь день напролет.

Есть много поводов отчаяться, и все же мы не перестаем. Никто не думает: «Разговаривать – это не мое. Оно того не стоит. Слишком уж тяжело дается». Никто из родителей не говорит: «Она такая милая с соской, заставлять ее так трудиться – сердце разрывается. В общем, мы решили с ней не разговаривать».

Речь не инструмент по выбору. Это не занятие, доступное лишь избранным, – богатым или гениям.

Если нужно обозначить дату, с которой началось человечество, то это день, когда наши предки решили приобщить всех к речи. Задолго до десяти заповедей мы выбрали себе закон: «Научи разговаривать детей своих».

Радикальный успех

Ближе к нашему времени, около полутора веков назад, было принято еще одно основополагающее решение: учить всех чтению и письму.

Это решение настолько фундаментальное, что уже трудно представить, как вообще выглядел бы наш мир, если бы оно не было принято. Если бы, как до этого времени, доступ к чтению был лишь у крошечной доли населения.

Во времена иероглифов в Древнем Египте искусство письма было сродни магии. Писцы образовывали потомственную касту и передавали свои тайны из поколения в поколение.

В средневековой Европе письменность была призванием. Молодые люди становились монахами, удалялись от мира и посвящали свою жизнь переписыванию рукописей.

Что думали обо всем этом неграмотные крестьяне Средневековья? Казалось ли им, что, чтобы научиться читать и писать, нужен особый дар, особый склад ума, которого у них нет? Считали ли они несправедливым и унизительным, что им это недоступно? Или просто говорили себе, что у них нет времени, денег и желания и вообще читать им нечего?

Сегодня уже никто не думает, что для чтения и письма нужен особый дар. Никто не думает, что это ни к чему. За редкими исключениями все режимы, вне зависимости от верований и идеологии, отдают начальному образованию высший приоритет.



Радикальный проект по насаждению грамотности по всей Земле имел оглушительный успех. Конечно, неграмотность не исчезла, но теперь она – удел меньшинства. За несколько поколений человечество смогло осуществить глобальную программу когнитивного преобразования, которой нет равных в истории.

Настоящая катастрофа

В то же самое время, когда начался великий проект по насаждению грамотности в планетарном масштабе, было принято еще одно радикальное решение: теперь основы математики преподаются всем.

Сегодня в начальных, средних и старших классах всего мира более миллиарда мальчиков и девочек изучают математику.

И это настоящая катастрофа.

Сегодня в начальных, средних и старших классах всего мира более пятисот миллионов мальчиков и девочек молча страдают. Им кажется, что они ничего не понимают, и в их душе сменяют друг друга скука (они совершенно не улавливают, чем интересен этот предмет) и унизительное чувство, что они недостаточно умны.

Когда американских подростков спрашивают, какой предмет самый трудный, математика идет во главе списка – 37 % ответов. Она же, с большим отрывом, самый ненавистный предмет. Но когда их спрашивают о любимом предмете, математика снова стоит первой – 23 %. А для некоторых это даже самый легкий предмет.

Нам всем знаком этот странный феномен. Он стал частью повседневности, и мы привыкли считать его нормальным. Мы считаем нормальным, что есть те, кто любит математику и находит ее простой, а есть те, кто ее ненавидит и считает недоступной пониманию. А еще мы считаем нормальным, что между этими крайностями практически ничего нет.

Мы считаем такое положение вещей настолько нормальным, что возможные варианты отношения к математике вошли в наши культурные стереотипы: «ботаник», который ее обожает (непременно прыщавый); клевая девчонка, которая интересуется модой (непременно полный ноль в математике); еще вон та девчонка, которая решает все задачи не раздумывая (непременно аутичная); лентяй и хулиган (непременно полный ноль в математике).

Эти стереотипы нелепы и оскорбительны. Я знаю лентяев и хулиганов, которые стали великими математиками. Старшеклассница имеет полное право быть хорошенькой, иметь кучу друзей и мгновенно решать любые задачи по математике. А еще она имеет полное право стать великим математиком.

Мы привыкли к этой ситуации, но она совершенно ненормальна. Более того, это крайне странно. Такое не должно было произойти.

Чтобы осознать это, проще всего сравнить изучение математики с освоением других основных навыков.

Разве нам казалось бы нормальным, что некоторые подростки считают крутым не уметь читать? Что они полагают, будто те, кто читает бегло, кому не приходится разбирать каждую букву, например, не может ни с кем подружиться?

Разве нам казалось бы нормальным, что половина определенной возрастной группы оканчивает школу, не умея правильно есть ложкой? Или не умея завязывать шнурки?

Решать математические задачи старших классов школы должно быть так же просто, как завязывать шнурки, и если это не так, значит, с преподаванием математики есть большая проблема.

Две гипотезы

Чтобы объяснить, почему существуют, с одной стороны, «способные к математике», а с другой – «неспособные к математике», обычно приводят две гипотезы.

Первая гипотеза: это вопрос мотивации. Если человек полный ноль в математике, то это потому, что он ее не любит, а не любит он ее потому, что не понимает, зачем она ему нужна в повседневной жизни. Но разве люди правда верят, что в повседневной жизни им пригодится история? И все же это не делает ее непостижимой, и уроки истории никого не повергают в панику. Никто никогда не видел, чтобы школьник плакал, потому что не может понять, что такое война или революция.

На самом деле такие «нули» отлично поняли, что разбираться в математике зачем-то да нужно, хотя бы для того, чтобы хорошо учиться в школе и поступить в хороший университет. Они же не идиоты. Они прекрасно поняли, что неспособность к математике закрывает им доступ ко многим профессиям из числа самых высокооплачиваемых и самых престижных. Возможно, они не понимают всю важность математики, но они знают, что она так или иначе важна. И чувствуют себя исключенными из нее, что дает им прекрасный повод ее ненавидеть.

Вторая гипотеза более жестока. Она предполагает, что существует некий загадочный тип интеллекта – математический интеллект, крайне неравномерно распределенный среди населения. Это якобы объясняется биологией. Есть математическая железа или математический ген. Способные к математике просто такими родились, а неспособным просто не повезло.

Тот факт, что эта идея так популярна, сам по себе удивителен. Казалось бы, нам следовало научиться с подозрением относиться к таким идеям. Было время, когда люди считали, что определенным расам предназначено природой работать на хлопковых плантациях, а другим – владеть этими хлопковыми плантациями. Еще недавно можно было услышать, что женщины генетически не способны пилотировать истребители. Сейчас эти идеи уже дискредитированы.

Если вы все еще сомневаетесь, то в следующей главе узнаете, что у вас есть все необходимые умственные способности, позволяющие достичь очень высокого уровня в математике.

Биологическое неравенство существует, но оно не похоже на то, что я только что описал. Проще всего понять его, предложив выпускному классу пробежать стометровку. Кто-то справится за 11 секунд, кто-то за 13 или 18. Возможно, кому-то понадобится целых 30 секунд, чтобы пробежать эту дистанцию.

Этот разрыв можно объяснить многими факторами, такими как мотивация, тренированность, здоровый образ жизни, – и, конечно, генетикой. Мы генетически неравны в предрасположенности к бегу. Но на стометровой дистанции эти генетические факторы помогают выиграть лишь несколько секунд.

А теперь представьте, что кто-то добежал за 11 секунд, но половина класса не пришла к финишу и через неделю. Примерно так выглядит разброс уровня в математике к выпускному классу школы.

Вы идете искать отставших. Некоторые так и сидят на старте. Они объясняют вам, что стометровка – это худшая вещь на свете. Они не понимают, зачем она может им пригодиться в повседневной жизни, и считают, что физрук – просто злобный садист.

И из этого можно сделать вывод, что все дело в генетике? Серьезно?

Мне хотелось бы убедить вас, что единственное возможное объяснение – гигантское недопонимание. «Неспособные к математике» неспособны к ней, потому что никто не потрудился дать им четкие указания. Никто не сказал им, что математика – это физическая активность. Никто не сказал, что в математике нужно не заучивать, а делать.

Они берут ложку не с того конца, потому что никто не объяснил им, как надо, и они никогда не видели, как ее берут с подходящего конца.

Фразы, которые произносятся на уроке математики, – это не информация, которую надо запомнить. Это советы и указания для невидимых действий, которые каждый должен скрытым образом произвести в своей голове.

Слушать урок математики так, как мы слушаем урок истории или биологии, – так же нелепо, как конспектировать занятия йогой – тщательно, чтобы точно ничего не забыть. Если вы не делаете даже простейших дыхательных упражнений, это ровным счетом ничего не даст.

Глава 3
Силой мысли

Представьте себе круг – идеально правильный, без единого недостатка. Круг – проще некуда. Вы его видите?

В реальной жизни идеальных кругов не существует. Когда мы рисуем круг на бумаге, у него всегда есть небольшие неровности. Не бывает идеально круглых вещей: ни колеса велосипеда, ни солнечный диск, ни круги на воде не идеальны.

Но это совершенно не мешает вам понять, о чем я говорю, и вообразить идеальный круг.

Вы можете не только его представить, но и буквально увидеть его. Вы можете его мысленно перемещать. Увеличить или уменьшить. Да вообще делать с ним все, что пожелаете.

Эта способность видеть предметы, которых не существует в реальности, ощущать их прямо здесь, перед вами, и манипулировать ими в мыслях так же свободно, как если бы вы могли к ним прикоснуться, – и есть одна из ваших волшебных способностей.

Путь, который позволит вам по-настоящему понять математику, начинается отсюда.

Наша удивительная способность к абстракции

Идеальный круг – это математическая абстракция. Круги выглядят для вас знакомыми предметами потому, что вы, как и все люди, обладаете природной способностью к математической абстракции.

Ваша способность к абстракции не ограничена математикой.

Хотите вы того или нет, вы все время смотрите на мир абстрактным взглядом. Это физиологическое свойство вашего тела. Ваш мозг – машина для извлечения абстракций и мысленных манипуляций с ними, так же как ваши легкие – машина для извлечения кислорода из воздуха и передачи его в кровь.

Как такое возможно? Об этом пойдет речь в главе 19, где мы увидим, как структура нашего мозга от природы позволяет создавать абстракции и манипулировать ими.

А до тех пор, даже если вы не вполне понимаете, как возможно такое чудо, приходится признать очевидное: вы способны увидеть круг.

Наша удивительная способность к рассуждению

Может ли прямая линия пересекать окружность в трех точках? Не торопитесь. Тут нет подвоха. Просто попробуйте составить собственное мнение. Попробуйте представить все способы, которыми прямая может пересекать окружность, и увидеть, возможны ли в некоторых случаях три точки пересечения.

Нет, прямая не может пересекать окружность в трех точках.

Ответ кажется вам очевидным? Это потому, что вам, как и всем людям, присуща удивительная способность к математическому рассуждению.

Вы не просто способны вообразить абстрактные объекты, такие как прямые и окружности, – вы способны задаваться абстрактными вопросами об этих объектах и манипулировать ими у себя в голове, чтобы найти ответ.

Ответ для вас очевиден, но что вы будете делать, если кто-то скажет вам, что не понимает?

Вам захочется начать объяснения со слов «ну ты же видишь…», но это не сработает. Если кто-то не понимает, значит, этот кто-то не видит окружности и прямые так же ясно, как вы. Объяснять математику – значит помогать другим увидеть то, что они еще не умеют видеть.

Ваше рассуждение происходит интуитивно и визуально. У вас в голове оно похоже на мультик, где персонажи – окружность и прямая. Такой тип рассуждения очень эффективен, но его трудно передать словами. Слова никогда не могут в полной мере объяснить тонкости того, что вы видите.

Получая математическое образование, вы научитесь преобразовывать свою визуальную интуицию в строгие доказательства. Преобразование никогда не будет идеально точным. Чтобы выразить понятные выводы интуиции, нужно много слов. У вас в голове все так просто. Но стоит это написать – и все становится жутко техничным и сложным.

Наша удивительная интуиция

Вы – единственный, кто способен видеть, что происходит у вас в голове. Пусть это трудно, но только постаравшись строго перевести все это в слова и символы, вы сможете поделиться этим с другими. А еще эти усилия по переводу – единственный способ проверить, что ваша интуиция не ошиблась.

Потому что иногда она ошибается.

Вы это знаете и не любите, когда вам об этом напоминают. Самый верный способ задеть кого-то – посмеяться над его внешностью. Но заставить его усомниться в своей интуиции – вот способ поистине действенный. Обычно срабатывает один из двух защитных механизмов: или человек решает, что он полное ничтожество, зарабатывает комплекс неполноценности и перестает рефлексировать, или же говорит себе, что он все равно прав, а остальные – просто болваны (и тоже перестает рефлексировать).

Однако есть и третий путь. Когда Эйнштейну или Декарту говорят, что их интуиция ошибочна, они не чувствуют себя задетыми. Не считают себя ничтожествами. И тем более не считают других болванами. Они реагируют иначе. Как именно? Это одна из центральных тем данной книги.

Когда в школе вас научили не доверять интуиции, учителя совершили две ошибки. Две величайших ошибки, затормозивших ваше интеллектуальное развитие.

Первая ошибка – все преувеличивать. Вам создали комплексы на пустом месте. Да, ваша интуиция иногда ошибается – но не всегда. Зачастую она права. И вы можете сделать так, чтобы она как можно реже ошибалась. Вы можете научить ее видеть яснее и точнее. Начиная на том же уровне, что и вы, математики создают себе сильную и надежную интуицию. Они делают это с помощью простых методов, таких как те, что описаны в этой книге.

Вторая ошибка школы – вам рассказали о недостатках интуиции, но забыли напомнить о ее сильных сторонах. Вы усвоили посыл, что интуиция несовершенна. Но школа забыла передать вам куда более важный посыл: интуиция – ваш самый могущественный интеллектуальный ресурс. В каком-то смысле это ваш единственный интеллектуальный ресурс.

Это не пустые слова. У меня нет цели польстить вам, рассказывая небылицы.

За всем этим кроется глубинная биологическая истина, к которой мы еще вернемся. А еще это вполне познаваемая на практике реальность, и вы испытывали это тысячи раз. Вы прекрасно знаете, что учить наизусть, применять готовые методики или следовать рассуждениям строчка за строчкой не значит действительно понимать. Вы никогда полностью не доверяете логическим аргументам, вам гораздо проще с тем, что вы понимаете интуитивно.

Дар воображения

Ваша интуиция могущественна – вы это знаете уже давно. Несомненно, вы не осмеливаетесь заявить об этом громко и уверенно, но втайне вы доверяете именно интуиции.

А вот чего вы, возможно, не знали: за величайшими научными революциями и целыми областями математики, которые считаются самыми сложными, всегда стоят проблески интуиции, и они так же просты, как и у вас.

Придумать теорию относительности Эйнштейну позволил мысленный мультфильм, ненамного сложнее того, который позволяет вам увидеть, что прямая линия не может пересекать окружность в трех точках.

Когда Эйнштейн говорил, что верит в интуицию, он имел в виду не какую-то особую интуицию, полученную в дар от небес, которая радикально отличалась бы от вашей. Если бы он так думал, то не говорил бы, что у него «нет какого-то особого таланта».

Это сбивает с толку, но нужно принять эту правду. Эйнштейн говорит о наивной интуиции, о той, которая есть у всех нас, которую так часто считают глуповатой, а в школе учат ее презирать.

Эйнштейн говорил всего лишь о нашей способности воображать разные предметы. Это дар, который мы все получили в равной степени. Может, это и немного, но это само по себе удивительно, ведь ни у кого нет исключительного таланта в этой сфере.

Если бы вы, как и Эйнштейн, научились использовать собственное глупое детское воображение, чтобы стать величайшим физиком своего времени, вы бы сказали, как и он, что великие научные открытия – это всего лишь вопрос любопытства (и вас бы тоже не приняли всерьез).

Даже если вы не изобрели теорию относительности, вам уже есть чем восхититься.

Вы можете увидеть круг у себя в голове.

Вы можете мысленно им манипулировать.

Вы можете зрительно убедиться, что прямая не может пересекать окружность в трех точках.

И все это вы можете проделать, закрыв глаза и не двигаясь с места.

Вы можете проделать это буквально силой мысли.

Насколько нам сейчас известно, это биологическое достижение свойственно исключительно людям. Если гиппопотамы тоже так умеют, они хорошо шифруются.

Если вам это удается, не сомневайтесь – у вас подходящий генетический потенциал и умственные способности, чтобы достичь больших успехов в математике. С биологической точки зрения это все, что вам надо. Остальные ингредиенты не генетические, и они также вам доступны. Речь об искренности, терпении, смелости и желании.

Как создавать мощные и ясные образы

Великие идеи всегда интуитивны и всегда просты. Более того, они до смешного просты. На самом деле мы умеем понимать только очевидные вещи. Если что-то неочевидно, значит, мы не до конца это поняли.

Этот вселенский закон – человеческий закон. Он гласит, что наша наука придумана людьми, а люди, на самом глубинном уровне, все сделаны по одному образцу.

Великие открытия совершены людьми, которые просто пытаются что-то понять. Они просто хотят, чтобы это было очевидно. Если они не понимают, то они не притворяются, что понимают. Они продолжают искать подходящий путь, подходящие мысленные образы, подходящий взгляд на вещи – пока все не станет для них очевидным.

Хорошая новость: с помощью этого метода они могут открыть только очевидные вещи. И то, что стало очевидным для них, может стать очевидным и для вас.

А значит, у вас нет никаких оснований бояться.

Это касается всех областей интеллектуального творчества и тем более – математики. Математическое знание не опирается на экспериментальные данные. Для него не нужно накапливать энциклопедические познания. В частности, учебники математики не содержат вообще ничего, кроме очевидных фактов.

Парадокс в том, что, чтобы понять очевидность очевидного, нужно предварительно выстроить мысленные представления, позволяющие это сделать. Стоит один раз создать эти образы – и они позволят видеть суть мгновенно и без усилий. Но для их построения нужно много времени и труда.

Сами того не осознавая, вы уже построили вполне неплохой мысленный образ круга. То, что удалось вам с кругом, нужно будет воспроизвести с другими объектами, строить другие мысленные образы и комбинировать их, чтобы создать еще много других.

Никто не рождается с готовыми образами. Никто не умеет создавать их мгновенно. Процесс их построения занимает гораздо больше времени, чем можно представить. И у всех он состоит из сомнений, продвижения наощупь, тупиков и возвращения к началу. На самом деле он длится всю жизнь.

Занимаетесь вы математикой или нет, ваше видение мира и мысленные образы постоянно эволюционируют.

Вот здесь и начинается устная традиция математиков. Речь идет не о чудотворных рецептах, как стать сверхчеловеком, а о вполне простых принципах, помогающих лучше строить мысленные образы.

На кону – ни много ни мало власть над тем, как вы строите собственный взгляд на мир.

Вы знаете, что для хорошего здоровья надо заниматься спортом, есть фрукты и овощи, избегать наркотиков и высыпаться. Но сможете ли вы назвать несколько базовых принципов, позволяющих создавать мощные и ясные мысленные образы?

Все то время, пока вас пытались убедить, что надо мыслить логически, а вы втайне решали по-настоящему доверять лишь интуиции, никто не рассматривал эту тему всерьез.

Вы как-то справлялись без методики и с ложным убеждением, что ваша интуиция в чем-то хороша, а в чем-то плоха, но, по сути, у вас нет никакой возможности ее развить.

В таких условиях просто чудо, что вы вообще чему-то научились.

И все же, как мы увидим в следующей главе, вам уже удалось развить надежную математическую интуицию. Возможно, вы считаете себя неспособными к математике, но вы прекрасно усвоили математические понятия, которые на протяжении 99 % истории человечества считались уделом исключительно гениев.

Вы уже построили отличные мысленные образы и пользуетесь ими изо дня в день.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации