Электронная библиотека » Дмитрий Никогосов » » онлайн чтение - страница 4


  • Текст добавлен: 1 марта 2024, 03:25


Автор книги: Дмитрий Никогосов


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 13 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +
Можно ли повлиять на наследственность?

Наследственность определяет некоторые аспекты нашей жизни, и зачастую это не самые приятные вещи – заболевания, предрасположенности и т. д. Желание человека улучшить качество жизни для себя и своей семьи при наличии каких-либо наследственных изменений неизбежно сталкивается с невозможностью это сделать на текущем уровне развития науки. В этой главе мы поговорим о том, как можно сосуществовать и что можно сделать с тем, что заложено в нас природой.

Начнем с того, что человечество до конца не знает все аспекты существования индивидуума, которые подвержены влиянию генетики. Ранее были найдены связи между генетикой и предпочтениями в еде и напитках, уровнях гормонов и некоторых биологически значимых физиологических показателях организма, морфофизиологических параметрах (рост, цвет волос, запах тела и т. д.) и множеством других параметров, которые сложно представить связанными с определенными генетическими вариациями в ДНК, унаследованными от родителей. Иногда такие связи являются статистически более значимыми, иногда менее. От степени значимости зависит то, насколько высокой является вероятность проявления того или иного признака у разных людей с одинаковым набором генетических вариаций в определенном месте генома. Предрасположенность к успеху в занятиях определенным видом спорта, например, является с этой точки зрения чрезвычайно слабо зависящим от генетики признаком. Подобные признаки зачастую не определяют качество жизни человека, однако могут являться значимыми в медицине и делать врачебные решения более точными и персонализированными.

Важным примером медицинского применения генетических исследований является фармакогенетика. Для множества опасных лекарственных веществ (антидепрессанты, антикоагулянты, иммунодепрессанты, анестетики) описана и доказана связь генетики и метаболизма этих веществ, то есть того, насколько быстро лекарство усваивается, насколько эффективно работает, насколько высоким может быть риск развития тяжелых побочных реакций. Использование фармакогенетических знаний необходимо для улучшения качества жизни пациента и экономии времени при лечении.

Существует категория некоторых фенотипических (внешних) и психологических проявлений, которые неоднозначно зависят от генетических особенностей организма. Для таких признаков используют понятие предрасположенности, то есть высокой или низкой вероятности проявления того или иного признака у человека с определенными генетическими вариациями по сравнению с человеком без этих генетических вариаций при прочих равных условиях.

Предрасположенность (к развитию заболевания) не является «приговором», так как это исключительно статистическая характеристика, существенное влияние на которую также оказывают факторы внешней среды: питание, физическая активность, образ жизни, лекарственные препараты, вредные привычки.

Для многих подобных заболеваний существуют превентивные меры, направленные как раз на изменение факторов внешней среды. Во многих случаях образ жизни может предотвратить развитие предрасположенности в настоящее заболевание, перевешивая влияние генетики. Такой же подход в общем случае может быть применен и к когнитивным признакам человека, таким как интеллект.

Некоторые генетические особенности существенно влияют на качество жизни еще на ранних ее этапах. Обычно это генетические мутации, вызывающие тяжелые заболевания и приводящие к неспособности организма поддерживать свои функции. Последние научные исследования и разработки активно используются именно в таких ситуациях, где без преувеличений стоит вопрос жизни и смерти. К сожалению, человечество по-прежнему не может изменять ДНК в людях. Мы успешно можем это делать в других организмах, однако этические соображения и недостаточная уверенность в безопасности не позволяют производить, например, редактирование генома у людей. Все, что мы можем успешно делать, – это использовать наши знания о функционировании биологических систем для того, чтобы «обмануть» генетику, то есть изменить отлаженный эволюцией процесс работы того или иного белка так, чтобы уменьшить негативный эффект от генетической поломки.

В целом, повлиять на наследственность в организме можно, и человечество обладает необходимым инструментарием для этого, однако применение подобного инструментария для организма человека запрещено и даже наказывается не только научным сообществом, но и государственными надзорными органами. Нужно отметить, что причина этого не только в не до конца изученной безопасности (или опасности) методов редактирования генома людей, но и в том, что применение этих методов открывает двери для евгеники, которая в настоящий момент подвергнута остракизму после расовых экспериментов и появления националистических настроений в обществе.

Наркоз: как узнать есть ли у меня риск не проснуться?

Наркоз – безусловно, одно из величайших изобретений в медицине, которое дало возможность спокойно и безболезненно осуществлять самые сложные хирургические операции. Однако многих людей наркоз пугает чуть ли не больше самой операции. Давайте выясним, есть ли у этого страха научные основания.

Злокачественная гипертермия

Действительно, такие опасения могут быть не лишены оснований, потому что существует реакция злокачественной гипертермии. Эта реакция может возникать при применении летучих анестезирующих газов (десфлюран, энфлуран, галотан, севофлуран) или миорелаксанта сукцинилхолина. В редких случаях у людей, подверженных риску злокачественной гипертермии, проявляются признаки реакции не только во время наркоза или после него, но и после интенсивной физической нагрузки, во время чрезмерной жары или при приеме статинов, используемых для снижения уровня холестерина.

При злокачественной гипертермии температура тела значительно повышается, мышцы твердеют и спазмируются, может происходить рабдомиолиз – разрушение мышечной ткани, сердцебиение и дыхание учащаются. Без своевременного лечения подобное состояние может привести к летальному исходу.

Если реакция не возникла во время первого воздействия анестезирующих газов, она все еще может развиться в будущем.

Причины

У человека синдром наследуется по аутосомно-доминантному типу. Это значит, что если он есть у одного из родителей, то шанс передать патологию детям составляет не менее 50 %. Признаки и симптомы злокачественной гипертермии непосредственно связаны с неконтролируемым высвобождением внутриклеточного кальция в скелетных мышцах. Высокий уровень внутриклеточного кальция приводит к активации мышечных сокращений, повышенному потреблению кислорода, производству углекислого газа, расходу АТФ и теплообразованию. В большинстве случаев (но не всегда) у таких людей имеется мутация в гене RYR1, отвечающего за образование кальциевого канала, который называется рианодиновым рецептором (RYR). Канал тесно связан с другими белками и структурами. Иногда могут быть поражены и другие гены.

Как узнать, находитесь ли вы в группе риска?

Золотым стандартом диагностирования склонности к злокачественной гипертермии является галотан-кофеиновый контрактурный тест. Для этого теста необходимо взять биопсию мышц и подвергнуть образец мышцы воздействию галотана и кофеина, чтобы проанализировать его реакцию на анестезирующий газ. Согласно одному из существующих протоколов, человек считается восприимчивым к злокачественной гипертермии, когда результаты теста и на кофеин, и на галотан положительные. Если только один тест положителен, диагноз считается сомнительным. Галотан-кофеиновый контрактурный тест является дорогостоящим, проводится только в специализированных центрах тестирования (в России сейчас не применяется), требует хирургического вмешательства для изъятия образца и может давать сомнительные, а также ложноположительные и ложноотрицательные результаты.

Можно также сделать генетическое тестирование, однако необходимо помнить, что реакцию злокачественной гипертермии могут провоцировать множество мутаций в разных локусах, часть из которых, возможно, еще не выявлена учеными.

Лечение

Основным препаратом для лечения злокачественной гипертермии является препарат дантролен. Он блокирует рианодиновые рецепторы и уменьшает внутриклеточную

концентрацию кальция. Препарат вводится немедленно при подозрении на злокачественную гипертермию.

Также применяются симптоматические средства – пакеты со льдом, подача кислорода через маску, антиаритмические лекарственные средства.

Правда, что лекарства могут быть неэффективны из-за генов?

Влияние наследственности на вариабельность эффектов лекарственных препаратов изучает фармакогенетика. Это направление в медицине не такое новое – первые упоминания относят к 1957 году, когда генетик Арно Мотулски из Сиэтла опубликовал статью, в которой обсуждались доказательства того, что побочные реакции на противомалярийный препарат примахин и мышечный релаксант хлорид суксаметония являются наследственными и связаны с дефицитом активности специфических ферментов. Сам термин «фармакогенетика» появился в 1959 году.

С годами количество открытых вариантов генов, которые могут оказывать влияние на метаболизм препаратов, увеличивалось. Большинство таких генов кодируют ферменты, которые метаболизируют одно или несколько лекарств. Обнаружилось, что некоторые варианты делают лекарства токсичными, другие – неэффективными и т. д. Однако скрининг на такие варианты до сих пор мало применяется в клинической медицине.

Дело в том, что некоторые исследования не показывают большой потенциальной выгоды от повсеместного внедрения фармакогенетического вмешательства. Кроме того, замедлилась скорость обнаружения генов, лежащих в основе побочных реакций. В настоящее время варианты примерно в 20 генах позволяют прогнозировать реакции на 80–100 лекарств.

Итак, на что же способна фармакогенетика? Фармакогенетическое тестирование может помочь врачам решить, какие лекарства применить, а также как скорректировать дозу для конкретного пациента. Разумеется, речь идет не о всех препаратах. Фармакогенетический тест может предоставить информацию о конкретных генах, которые кодируют некоторые ферменты, помогающие организму метаболизировать лекарства. Генные варианты – аллели – обозначаются «звездочкой», за которой следует номер (например, * 1, * 5, * 13). Аллели имеют различные уровни активности. У каждого человека две копии гена, соответственно, аллеля у каждого два. Пары аллелей можно разделить на условные группы в зависимости от ферментативной активности продукта, который они кодируют:

• медленный метаболизатор: аллели несут такие мутации, которые вызывают либо синтез недостаточного количества фермента, либо образование дефектного неактивного фермента, что влечет за собой снижение ферментативной активности и даже полную потерю активности. В таком случае медленно выводятся препараты, метаболизируемые этим ферментом. Поэтому у пациента существует риск достижения высокой концентрации препарата в плазме крови, что вызовет побочные эффекты. В связи с этим медленным метаболизаторам требуется тщательный подбор дозы препарата;

• нормальный метаболизатор: обычно они имеют два активных аллеля или один функциональный и один частично активный аллель;

• промежуточный метаболизатор: обычно имеют один активный аллель, что означает, что им могут потребоваться более низкие дозы препарата;

• сверхбыстрый метаболизатор: для них характерно наличие трех или более функциональных аллелей (такое бывает при дупликации гена). Людям со сверхбыстрым метаболизмом может потребоваться более высокая доза препарата или замена на препарат, в метаболизме которого не участвует данный фермент.


Рассмотрим, как это работает на примере антидепрессанта эсциталопрама. Препарат помогает метаболизировать фермент-цитохром P450 2C19, кодируемый геном CYP2C19. При низкой активности фермента эсциталопрам действует дольше, что приводит к повышению риска побочных эффектов. Если активность фермента высокая, то препарат может быть неэффективен. В зависимости от вариантов гена CYP2C19 можно либо скорректировать дозу эсциталопрама, либо выбрать альтернативный антидепрессант.

Также известен пример препарата абакавир, который назначают людям, инфицированным ВИЧ. Абакавир замедляет распространение вирусов ВИЧ в организме человека. Риск побочных эффектов зависит от вариантов гена HLA-B. Ген HLA-B кодирует белок, участвующий в иммунном ответе. При определенном варианте этого гена абакавир может вызывать аутоиммунные реакции.

На метаболизм некоторых препаратов может влиять сразу несколько ферментов. Тогда задача усложняется, так как для точного прогноза эффективности препарата требуется оценить функциональность всех ферментов.

Сейчас доступны фармакогенетические панели, включающие следующие препараты:

• Ингибиторы протонного насоса (например, омепразол). Эта группа препаратов снижает выделение соляной кислоты в желудке и часто используется при лечении язвенной и рефлюксной болезней.

• Противоэпилептические вещества (например, карбамазепин). Эта группа активно применяется при лечении эпилепсии и некоторых других патологий.

• Антидепрессанты (например, флуоксетин, эсциталопрам). Эта группа представлена в фармакогенетических тестах очень широко.

• Антипсихотические вещества (например, клозапин). Препараты применяются для лечения шизофрении, биполярного расстройства и острых психозов.

• Антитромботические вещества (например, прасугрел). Препараты снижают свертываемость крови и используются для лечения и профилактики тромбозов.

• Противовирусные вещества (например, абакавир, рибавирин). Эти средства применяются в терапии вирусных заболеваний: СПИД, гепатит B и С.

• Сердечно-сосудистые препараты (например, бисопролол). Эти препараты помогают при нарушениях сердечного ритма, гипертензии, стенокардии, сердечной недостаточности.

• Иммуносупрессоры и противоопухолевые вещества (например, азатиоприн, даунорубицин). Иммуносупрессоры применяются после трансплантации органов, а также для лечения ревматоидного артрита и системной красной волчанки. Противоопухолевые препараты используют для терапии онкологических заболеваний.

• Опиоидные анальгетики (например, кодеин). Применяются для купирования боли.

• Анестетики и миорелаксанты (например, севофлуран, сукцинилхолин). Применяются во время наркоза.

С помощью генетического исследования можно определить, какие из этих групп препаратов могут быть неэффективными, токсичными или даже смертельно опасными.

Как связаны запах тела и генетика?

Запахи для живых организмов имеют огромное значение, как правило, влияя на привлечение потенциальных партнеров или опылителей (в случае растений). Люди также имеют собственные запахи, которые стараются активно устранять. Образованию запахов способствуют потовые железы, в первую очередь апокринные – эти железы располагаются в волосистых областях, таких как подмышки, зона половых органов и кожа головы, где они выделяют вязкую жидкость – пот. Сам по себе этот пот практически не имеет запаха, однако под воздействием микробиоты, населяющей нашу кожу, образуются неприятно пахнущие вещества. При этом есть некая палитра запахов, хотя и неприятных, но при этом никого не удивляющих (в отличие от рыбного запаха). Давайте разберемся, какие факторы могут повлиять на запах и можно ли особенно неприятный запах объяснить генетикой.

Факторы, влияющие на запах тела

Ученые считают, что на уникальный запах тела человека могут влиять такие факторы, как:

• Пол. Мужчины имеют более крупные потовые железы и часто вырабатывают больше пота, чем женщины, что может привести к увеличению популяций запахообразующих бактерий и к более интенсивному запаху.

• Возраст. Считается, что запах может изменяться с возрастом, следствием чего является специфический запах, исходящий от некоторых пожилых людей.

• Диета.

• Состав микробиоты.

• Генетика.


Поговорим о последнем пункте подробнее.

Генетика может повлиять на запах тела как в положительную, так и в отрицательную сторону. К примеру, известен вариант гена ABCC11, при котором запах тела практически отсутствует. Этот вариант очень распространен в Восточной Азии.

А вот людям, страдающим наследственным заболеванием триметиламинурией, повезло намного меньше.

Триметиламинурия

Причины

Наследственную триметиламинурию, или синдром рыбного запаха, вызывают изменения в гене FMO3. Продукт этого гена – флавинсодержащая монооксигеназа 3 – фермент, который участвует в расщеплении триметиламина. Триметиламин вырабатывается кишечной микробиотой при употреблении в пищу многих продуктов, особенно богатых холином (мясо, рыба, орехи, бобовые, овощи, яйца). Высокий уровень триметиламина приводит к тому, что от человека исходит сильный запах, похожий на запах гниющей рыбы. Симптомы триметиламинурии могут присутствовать с рождения, а могут и проявиться в период полового созревания. При этом считается, что различные генетические мутации в FMO3 могут влиять на время появления и интенсивность запаха.

Лечение

В настоящее время нет препаратов от триметиламинурии, но интенсивность запаха можно снизить. Для этого врачи советуют избегать таких продуктов, как коровье молоко, морепродукты, яйца, бобовые, арахис, печень и некоторые другие. Рацион назначается после консультации с диетологом. Также могут быть рекомендованы краткие курсы антибиотиков, уменьшение физической активности, более частые гигиенические мероприятия.

Унаследуют ли дети это заболевание?

Заболевание наследуется по аутосомно-рецессивному типу. Это означает, что человеку необходимо иметь две дефектные копии FMO3, чтобы возникли симптомы. Так как от одного родителя ребенок получает одну копию гена, то, как правило, дети больного человека являются здоровыми носителями, если его партнер не имеет дефектного гена. Однако иногда носители одной копии мутации FMO3 могут иметь легкие симптомы триметиламинурии, или временные эпизоды рыбного запаха.

Есть ли генетическая предрасположенность к раннему старению?

По мере того как мы становимся старше, внутренние процессы в организме замедляются.

Пока, если это происходит в определенное время жизни, это считается нормой, хотя периодически ученые спорят о том, можно ли назвать старение болезнью. Однако старение, наступившее слишком рано, нормой однозначно не является. Такое старение называют

«преждевременным». Это значит, что в не характерном для этого возрасте могут возникать такие признаки, как:

• изменения кожи – солнечные пятна, гиперпигментация груди, морщины, провисание, сухость;

• замедление походки и снижение силы рук;

• поражения суставов;

• проблемы с памятью;

• проблемы со зрением.


Необходимо отметить, что эти признаки могут говорить не о преждевременном старении, а о некоторых заболеваниях.

По сути, то, что мы иногда называем биологическим возрастом, отражает изношенность нашего организма. А если биологический возраст больше того, что у вас в паспорте, можно говорить о преждевременном старении.

В таком случае возникают вопросы: «А как измерить биологический возраст? А как быть, если у меня ухудшилась память, но бегаю я просто прекрасно? Это тоже преждевременное старение?»

К сожалению, общепринятого метода расчета биологического возраста пока нет. Ученые пытаются создавать специальные калькуляторы, учитывающие множество признаков старения, однако пока они далеки от совершенства.

Преждевременное старение на молекулярном уровне

С молекулярной точки зрения процесс старения еще более сложен. Ученые выделяют достаточно большое количество так называемых биомаркеров старения. Вот некоторые из них:

• Укорочение теломер. Теломеры – это конструкции на концах хромосом, имеющие предохранительную функцию. Иногда их для простоты понимания называют «защитными колпачками» на концах хромосом. При каждом новом делении клетки теломеры укорачиваются, пока не износятся до конца, в конечном итоге клетка отмирает. Однако длина теломер и скорость их укорочения у разных людей может отличаться.

• Нарушение внутриклеточного гомеостаза белков. Клетки используют множество механизмов контроля качества для сохранения стабильности и функциональности своих белков. С возрастом эти механизмы могут нарушаться.

• Эпигенетические изменения. Это изменения, которые происходят под влиянием внешних факторов и могут влиять на активность некоторых генов. Накопление таких изменений может сокращать жизнь клеток.

• Митохондриальная дисфункция. При старении активность митохондрий – «энергетических станций» клетки – снижается, а продукты их деятельности – свободные радикалы – накапливаются. Свободные радикалы повреждают клетки и ускоряют их гибель.

• Снижение запаса стволовых клеток. Стволовые клетки – это «универсальные» клетки, которые могут превратиться в необходимые по профилю клетки организма. Когда запас стволовых клеток заканчиваются, отмирающие клетки теряют преемников.

• Нарушение передачи межклеточных сигналов. Для клеток характерно взаимодействие между собой. Если этот механизм нарушается, то нарушается регуляция некоторых процессов в организме.

• Накопление генетических ошибок. В ДНК периодически случаются «поломки», которые организм

успешно чинит. Однако с возрастом такие поломки все же могут накапливаться, что может приводить, к примеру, к онкологическим заболеваниям.

Преждевременное старение и генетика

Если говорить о преждевременном старении, не связанном с наследственными заболеваниями, то ученые не могут выделить один или два конкретных гена. Дело в том, что в старении задействовано множество клеточных процессов, на каждый из которых влияют гены. Так, предполагается влияние генов, участвующих в жировом обмене и генов, контролирующих жизнь и смерть клеток. Необходимо помнить, что помимо генетики влияние на старение оказывают и факторы внешней среды, такие как воздействие солнца, курение, питание и т. д.

Прогерия

Существуют и редкие генетические синдромы, вызывающие преждевременное старение, которое в данном случае обычно называют прогерией.

Наиболее известные – синдром Хатчинсона-Гилфорда, вызывающий детскую прогерию, и синдром Вернера, связанный с прогерией у взрослых.

Синдром Хатчинсона-Гилфорда

Дети с синдромом обычно выглядят нормально при рождении и в раннем младенчестве, но затем растут медленнее, чем другие дети, не прибавляют в весе с нужной скоростью. У них выпадают волосы, стареет кожа, начинаются проблемы с суставами и артериями. В результате они становятся похожи на маленьких старичков и рано умирают.

Синдром Хатчинсона-Гилфорда вызывают мутации в гене LMNA. Этот ген кодирует белок ламин А, который является важным компонентом оболочки ядра клетки. Измененный в результате мутации в гене белок делает ядерную оболочку нестабильной и постепенно ядро повреждается, повышая вероятность преждевременной гибели клетки.

Синдром Вернера

Синдром характеризуется быстрым появлением признаков, связанных с нормальным старением. Люди с этим расстройством обычно нормально растут и развиваются, а характерный вид обычно начинает развиваться после 20 лет. У больных седеют и выпадают волосы, голос становится хриплым, кожа истончается, могут развиться катаракта, сахарный диабет 2 типа, остеопороз, онкологические заболевания.

Синдром Вернера вызывают мутации в гене WRN. Продукт гена, как считается, выполняет несколько задач, связанных с поддержанием и восстановлением нормальной структуры ДНК и подготовкой к делению клетки. Мутации в гене часто приводят к появлению аномально короткого нефункционального белка-продукта.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации