Электронная библиотека » Джозеф Леду » » онлайн чтение - страница 6


  • Текст добавлен: 16 ноября 2022, 08:20


Автор книги: Джозеф Леду


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 26 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

Часть IV
Переход к сложному строению

Глава 17
О важности размера

Несмотря на то что прокариоты обитают на Земле 3,5 миллиарда лет, они так и не пошли по тому пути эволюции, который привел бы их к появлению сложных многоклеточных макроскопических форм. Такое случилось только с эукариотами, и если бы этого не произошло, жизнь на Земле так и осталась бы микроскопической, не различимой невооруженным глазом. Судьбоносным шагом на пути развития макроскопических существ стала способность эукариотов увеличиваться в размерах.

С появлением эукариотов примерно два миллиарда лет назад мирной жизни на Земле пришел конец. Они были довольно крупными и стали первыми хищниками, а прокариоты пали их жертвами. Но эукариоты питались и другими эукариотами, что привело к появлению между ними так называемой эволюционной гонки вооружений (если использовать термин, который продвигал Ричард Докинз). Когда ты большой, тебе проще не только ловить добычу, но и не становиться добычей для других. Таким образом, в результате естественного отбора эукариоты становились все крупнее и крупнее.

Но почему же прокариоты не росли? Ник Лейн рассчитал, что генетического строительного материала для роста у них было достаточно; так почему же они не смогли превратить этот биологический капитал в более крупную и сложную форму существования?

Биологи предложили целый ряд возможных ответов на этот вопрос, но, очевидно, с самым убедительным выступил Лейн: его версия сводится к объему энергии, который организм способен выработать в расчете на один ген. Крупным организмам нужно больше энергии, и Лейн подсчитал, что эукариоты могут вырабатывать в 2000 раз больше энергии на ген, чем прокариоты, и это еще не предел. Этот объем энергии, считает Лейн, позволил эукариотам обеспечить себя крупными телами; неспособность накапливать энергию обрекла прокариотов на микробное существование. Наверняка вы и сами догадаетесь, почему эукариоты производили больше энергии и вырастали большими: у них были митохондрии, которые вырабатывали энергию из кислорода, и этот способ оказался намного эффективнее других.

Первый значительный рост содержания кислорода в атмосфере Земли произошел чуть больше двух миллиардов лет назад, незадолго до появления эукариотов. Ранее я уже приводил точку зрения, согласно которой это (по крайней мере, отчасти) было обусловлено увеличением числа фотосинтезирующих прокариотов, выделявших кислород. Второй скачок уровня кислорода был значительно больше первого и начался примерно 800 миллионов лет назад. Этот дополнительный рост способствовал появлению многоклеточных организмов, которые были намного крупнее и требовали больше энергии (животные, растения и грибы); кроме того, они становились все более и более разнообразными.

Эффективность митохондрии в качестве энергетической машины объясняет, как эукариоты смогли вырабатывать больше энергии в расчете на один ген, чем прокариоты. Хотя некоторым прокариотам нужен был кислород, чтобы вырабатывать энергию, у них не было специальной митохондрии, способной производить столько энергии, чтобы те смогли расти. Способность прокариотов вырабатывать немного энергии не являлась препятствием до тех пор, пока у них были небольшие тела. Так они и жили, а те, кто пытался экспериментировать с телами побольше, плохо кончили. Последствия увеличения объема клетки без способности вырабатывать количество энергии, достаточное для поддержания такой клетки, были катастрофическими.

Хотя увеличение размера положительно сказалось на физиологической жизнеспособности и плодовитости эукариотов, им пришлось дорого заплатить за это. В большой клетке сложнее поддерживать жизнь и благополучие, поскольку ей нужно больше энергии, структурная поддержка и больше способов всасывать полезное и выводить вредное. Митохондрия решила проблему энергии, цитоскелет – проблему структурной поддержки, а транспортные белки – проблему переноса.

Чтобы крошечные бактерии и археи не вызывали в нас жалости, следует помнить о том, что они могут похвастаться завидной продолжительностью жизни: ни один другой организм не продержался на планете 3,5 миллиарда лет, несмотря на климатические изменения и другие катаклизмы, стершие с лица Земли бо́льшую часть эукариотов, в том числе множество видов животных. В отличие от прокариотов, живших на протяжении миллиардов лет, животные в среднем живут примерно 400 миллионов лет, а потом начинают вымирать.

Джон Герхарт и Марк Киршнер считают, что столь успешное выживание крошечных прокариотов объясняется их биохимическим разнообразием, которое позволило им приспособиться к изменениям окружающей среды, не изменяя при этом своей структуры. Эукариоты, с другой стороны, способны быстро и существенно менять свою собственную структуру, создавая известное нам разнообразие жизни.

Глава 18
Сексуальная революция

Одно дело – предложить объяснение тому, почему одноклеточные эукариоты смогли достичь увеличения массы, а одноклеточные прокариоты – нет, и совсем другое – объяснить, как эти клетки, хоть и бо́льшие по размеру, но все же микроскопические, подготовили почву для появления специализированных макроскопических организмов, множество клеток которых еще до рождения объединены в единое целое, взаимодействуют друг с другом, дифференцируются по типам и образуют различные ткани и органы, зависящие друг от друга и преследующие одну цель – выживание. Ключевым фактором стало то, что у эукариотов появился абсолютно новый способ передачи генов своим отпрыскам: они изобрели сексуальную революцию.

Давайте вспомним, что прокариоты размножаются бесполым способом – простым клеточным делением. Поскольку каждая дочерняя клетка получает полный набор генов своего родителя, генетического разнообразия бесполый способ не обеспечивает. А вот с появлением полового размножения возникло и разнообразие генов (рисунок 18.1).


Рисунок 18.1. Бесполый способ размножения у прокариотических клеток и половой – у эукариотических клеток


Половое размножение предполагает взаимодействие двух разных типов спаривания. То, что мы обычно называем «самец» и «самка», – это сложные организмы, представленные двумя формами тела, благодаря чему возможен поведенческий акт спаривания, в ходе которого сперматозоид самца оплодотворяет яйцеклетку самки. Но на самом деле половое размножение у эукариотов началось задолго до того, как возникли такие сложные организмы. Другими словами, секс появился еще у одноклеточных простейших, когда весь организм целиком был свободно передвигающимся сперматозоидом или яйцеклеткой. Возникновение яйцеклеток и сперматозоидов мы обсудим в этой главе ниже, когда поймем, что такое половое размножение.

Традиционный сценарий, объясняющий, как возник секс, предполагает, что сначала эукариоты, как и их прокариотические предки, размножались бесполым путем, а потом открыли новый способ размножения. Такая точка зрения совпадает с найденными доказательствами того, что некоторые простейшие не размножаются половым путем, и даже те, которые так размножаются, изначально размножались бесполым путем. Новые генетические маркеры полового размножения указывают на то, что генетические возможности для секса у эукариотов универсальны и имелись со времен LECA. Отсутствие доказательств того, что у отдельных простейших секс был, может просто объясняться тем, что у таких маленьких существ его сложно обнаружить. Правда, также возможно, что, хоть некоторые простейшие сексом не занимались, их предки занимались им хотя бы раз, но со временем утратили эту способность (у полового размножения есть как свои преимущества, так и недостатки; возможно, что некоторым существам в окружающих их условиях секс просто невыгоден).

Когда сперматозоид и яйцеклетка встречаются, они физически сливаются, так чтобы сперматозоид оплодотворил яйцеклетку; этот механизм работает как у одноклеточных, так и у многоклеточных эукариотов. Поскольку и сперматозоид, и яйцеклетка наследуют гены от обоих своих родителей, в результате оплодотворения яйцеклетка получает смесь генов самца, которую она добавляет к своей собственной смеси. Гены смешиваются в результате процесса, который называется рекомбинацией; он приводит к тому, что каждый потомок получает уникальную комбинацию генов, отличную от комбинации обоих его родителей. В зависимости от смеси генов и того, как их экспрессия регулируется на раннем этапе жизни, потомок становится самцом или самкой. В каждом поколении гены снова перемешиваются, в результате чего не существует организмов с абсолютно одинаковым набором генов.

Давайте копнем поглубже и разберемся с природой наследования в результате полового размножения, взяв для примера людей. Сперматозоид и яйцеклетка называются гаметами (половыми клетками). У каждой человеческой гаметы имеется по 23 хромосомы, которые объединяются в оплодотворенной яйцеклетке (зиготе), и в результате у нового организма будет 46 хромосом, или по 23 от каждого родителя (именно этот факт дал название популярному сервису генетического скрининга 23andMe).

Зигота – это отправная точка, с которой начинается строительство многоклеточного организма. Она делится пополам и самовоспроизводится, для того чтобы каждая новая клетка получила полный наследственный пакет из 46 хромосом. Деление клетки такого типа называется «митоз»; процесс схож с клеточным делением прокариотов. Каждая из этих новых клеток в дальнейшем снова и снова воспроизводится и делится. В определенный момент возникают химические сигналы, которые задают различия в клетках разного типа; впоследствии из этих клеток формируются различные ткани и органы (кожа, сердце, легкие, почки, мышцы, мозг и т. д.). В процессе строительства тела так называемые соматические клетки развивающегося организма перемещаются в определенное для них место (рисунок 18.2).


Рисунок 18.2. Соматические клетки и гаметы


Другая фундаментальная категория клеток – это зародышевые клетки, единственная задача которых – вырабатывать гаметы. Они избирательно двигаются внутри тела к репродуктивным органам, или гонадам, где хранятся до наступления половой зрелости, когда в результате взаимодействия женской особи с мужской становится возможным оплодотворение яйцеклетки.

Хотя основным источником разнообразия у эукариотов является половое размножение, свой вклад в него вносят и мутации; полезные повышают выживаемость и способность организмов к размножению, а вредные их понижают. Мутации в соматических клетках влияют на самого их носителя, но не на потомство; герминативные мутации, с другой стороны, передаются от родителей отпрыскам (рисунок 18.3).


Рисунок 18.3. Сравнение соматических мутаций с мутациями гамет


Как и у прокариотов, у эукариотов имеет место горизонтальный перенос генов, хотя и в меньшей степени. Одна из проблем с генно-модифицированными организмами связана с опасением, что гены, измененные в продуктах, могут передаться людям и изменить характеристики человеческого генома.

Так как же появился секс, ведь бесполые прокариоты прекрасно размножались на протяжении миллиардов лет? На самом деле в появлении секса нет ничего удивительного, потому что в ходе естественного отбора произошло множество экспериментов, однако лишь те, что повышали выживаемость и способность организмов к размножению, надолго закреплялись в популяции. В случае с сексом организмам пришлось дорого заплатить за то, чтобы его положительное действие привело к отбору.

Например, бесполое размножение – способ непрерывный и быстрый (как отмечалось выше, бактерия делится несколько раз за час). Половое размножение, напротив, происходит реже, и потомков появляется намного меньше. Отчасти это объясняется тем, что сперматозоиду и яйцеклетке сначала надо найти друг друга, и такая встреча необходима для каждого отдельного случая размножения. Еще половое размножение неэффективно (самцы сложных организмов ежедневно производят миллионы сперматозоидов, которые не используются). Кроме того, половое размножение энергозатратно (необходимо участие сложных биологических процессов, чтобы смешать гены двух родителей и произвести на свет их отпрыска).

А какие же у полового размножения есть преимущества? Выживание целого вида или даже небольшой группы скрещивания зависит не только от того, как отдельные особи адаптируются к условиям окружающей среды, но и как быстро такие особи смогут реагировать на изменения этих условий. Секс ведет к генетическому разнообразию, потому что смешивает гены двух организмов. Чем больше генетическая изменчивость группы, тем выше вероятность того, что у ее представителей будут гены, полезные в новых условиях. У организмов, которые размножаются бесполым путем, гены (и хорошие, и плохие) точно передаются потомкам, а изменчивость происходит позже в форме мутаций и горизонтального переноса генов. Генетическая изменчивость, зашифрованная в зародышевых клетках и введенная в зиготу в процессе полового размножения в результате взаимодействия сперматозоида с яйцеклеткой, ведет к расширению изменчивости внутри популяции воспроизводящихся организмов и позволяет всей популяции лучше адаптироваться к изменениям условий окружающей среды, повышая возможность приобрести полезные черты. Так, например, в эпоху глобального потепления те белые медведи, у которых есть черты, помогающие им адаптироваться к жизни за пределами полярных льдов, будут чувствовать себя лучше тех, у которых таких черт нет; у выжившей популяции эти черты будут встречаться чаще. Кроме того, поскольку появившиеся в результате полового размножения новые организмы несут в себе уникальную комбинацию генов, колода генов постоянно перетасовывается. Это значит, что вредные мутации, мешающие выживанию отдельных особей, вычищаются до того, как смогут закрепиться в популяции (если организм погибает до того, как сумеет дать потомство, его гены в генофонд популяции не попадают). И наоборот: особи с полезными мутациями, повлиявшими на их зародышевые клетки и позволившими им прожить достаточно долго, чтобы спариться, передают эти мутации своим отпрыскам; если в популяции таких наберется достаточное количество, мутация распространится и закрепится.

Поскольку для нас секс связан с сильными психологическими переживаниями, мы склонны приписывать его психологическую важность другим организмам, как и в случае с другими типами поведения. Однако не стоит считать само собой разумеющимся, что у животных бывают те же психологические состояния, что и у нас, или что они испытывают эмоции в той же степени. Безусловно, секс у простейших изначально не был психологически мотивированным поведением. Для того чтобы провести черту между организмами, способными на такие переживания, и теми, что не способны на них, требуется понимание того, что лежит в основе наших эмоциональных переживаний. К этой теме мы вернемся позже.

Глава 19
Митохондриальная Ева, Джесси Джеймс и происхождение секса

Секс имеет фундаментальное значение для эукариотности. Судя по всему, он присутствовал и в жизни первых одноклеточных простейших – по крайней мере, он точно появился у них очень давно. Мы разобрались с тем, какие он давал преимущества и почему продолжил свое существование, но как секс вообще появился? Митохондрии – вот ответ на вопрос не только о том, почему эукариоты превосходят прокариотов в размере, но и о репродуктивных привычках первых.

Хотя бо́льшая часть ДНК эукариотического организма заключена в ядре, отдельные ее элементы есть и в митохондрии. При половом размножении смешиваются гены ядер двух спаривающихся партнеров, а митохондриальная ДНК передается потомку преимущественно от одного родителя (обычно самки). Отпрыски обоих полов получают митохондриальную ДНК яйцеклетки, но только потомки женского пола передают эти гены следующим поколениям. Вот почему говорят, что все когда-либо жившие на Земле самки нашего вида посредством митохондриальной ДНК связаны с первой женщиной – так называемой митохондриальной Евой.

С помощью партеногенетического наследования митохондриальной ДНК удалось доказать, что печально известный грабитель банков XIX века Джесси Джеймс действительно был похоронен в той могиле, на которой стоит камень с его именем. Долгое время существовало мнение, что он инсценировал свою смерть, чтобы начать новую жизнь под другим именем и избежать законного наказания. Однако эту теорию удалось опровергнуть при помощи доказательств, полученных в результате сравнения ДНК из волос и зубов тела, обнаруженного в могиле, с митохондриальной ДНК двух живущих сейчас мужчин – потомков сестры Джеймса, Сьюзан, и ее потомков женского пола (на рисунке 19.1 обозначены черными квадратиками и белыми кружочками соответственно). Та же методика изучения останков используется для установления личности солдат, погибших во время войны.


Рисунок 19.1. Останки Джесси Джеймса идентифицировали по митохондриальной ДНК потомков его сестры


Для того чтобы понять, почему партеногенетическое наследование митохондриальной ДНК имеет значение с точки зрения возникновения секса, давайте вернемся назад, к тому важному моменту, когда между архейной и бактериальной клетками возникли символические отношения, в результате которых бактериальная клетка превратилась в митохондрию эукариотов. Поскольку гены контролируют все аспекты клеточной функции, внедрение абсолютно нового организма со своим собственным геномом (чем, по сути, и был процесс горизонтального переноса генов) могло привести к физиологическому конфликту археи-хозяина и бактериального вторженца. Такой внутриклеточный конфликт повышает число свободных радикалов (химических веществ, вызывающих «клеточный стресс») и может привести к повреждению ДНК и мутациям (считается, что антиоксидантные диеты так полезны именно потому, что они якобы нейтрализуют пагубное воздействие свободных радикалов). Когда происходит такой конфликт, новому организму, состоящему из двух клеток в одной оболочке, становится сложно выживать и размножаться. Исчезают преимущества бактериальной клетки как изолированной энергетической установки, и совместному проживанию в условиях симбиотической гармонии приходит конец. Тот факт, что на передачу митохондриальной ДНК способен только партнер женского пола (то есть отпрыскам всегда передается только половина митохондриальных генов), снижает риск физиологического конфликта. Таким образом двум геномам проще сосуществовать.

Другим фактором, важным для определения роли митохондриальной ДНК в половом размножении, является повышенная поведенческая активность сперматозоидов в сравнении с яйцеклетками. Для того чтобы двигаться, нужна энергия, производство которой ведет к образованию побочного продукта – свободных радикалов, а они, в свою очередь, со временем способны оказывать губительное воздействие на митохондриальную ДНК. Поскольку яйцеклетки не так активны, в них образуется меньше свободных радикалов. Таким образом, партеногенетическое наследование допускает передачу потенциально неповрежденной митохондриальной ДНК, что еще сильнее снижает возможность физиологического конфликта и клеточного стресса.

Секс – основа огромной сложной мультиклеточной жизни, но не все сексуально активные эукариоты превратились в многоклеточные макроскопические организмы. Как же так получилось?

Глава 20
Колониальные времена

Живые организмы можно разделить на две категории: большие и маленькие. Чисто технически маленькие – это одноклеточные организмы, а большие – многоклеточные[23]23
  * Благодарю Карла Никласа за консультацию по многоклеточности.


[Закрыть]
.

По некоторым подсчетам, многоклеточные организмы возникали в эволюционной истории целых 46 раз; правда, это число включает в себя и те случаи, когда одноклеточные организмы сцеплялись вместе и образовывали так называемые колонии. Колонии не являются многоклеточными организмами в полном смысле этого термина, потому что составляющие их клетки не представляют собой компоненты единого тела, но один вид колоний стал стартовой площадкой многоклеточности.

Колония – это группа сцепленных между собой одноклеточных организмов (рисунок 20.1). Для того чтобы прикрепиться друг к другу, они используют химические выделения (адгезивные молекулы), а еще они общаются между собой с помощью сигнальных молекул. Бактериальные биопленки, о которых шла речь в части 2, являются примером прокариотических колоний, но для понимания происхождения многоклеточной формы жизни важно выяснить, что собой представляют эукариотические колонии.


Рисунок 20.1. Одноклеточные организмы скапливаются и образуют многоклеточные колонии


Хорошо знакомыми примерами эукариотических колоний могут быть морские водоросли, которые мы видим на пляжах, или прудовые зеленые водоросли. Другие колонии – слизевики[24]24
  Исторически слизевиков относили к царству грибов, но еще в XIX веке было доказано, что они родственны одноклеточным простейшим, однако до сих пор можно встретить описание слизевиков в учебниках по микологии. – Прим. изд.


[Закрыть]
, – представляющие собой скопления множества (в отдельных случаях – миллиардов) амеб, привлекли внимание ученых своим огромным размером: обнаруженный в Техасе экземпляр имел диаметр 12 м. Слизевики обладают удивительной способностью передвигаться по поверхности, используя наиболее удобные маршруты. Инженеры воспользовались этой способностью слизевиков и поместили их в специально построенные лабиринты; полученные результаты исследования помогли в проектировании системы автодорог.

Формирование колоний объясняется тем, что совместное существование дает ряд преимуществ в сравнении с одноклеточной жизнью. Во-первых, так безопаснее: колонию отличают большая масса и высокая плотность, она двигается как единое целое, и все это помогает защищаться от хищников. Учитывая тот факт, что первые настоящие хищники были эукариотами, объединяться в колонии было исключительно выгодно; колониальная форма жизни помогала жертвам защищаться от агрессоров.

Другим преимуществом колониального существования была возможность разделить обязанности по выживанию между разными клетками. Когда живешь один, твоей единственной клетке приходится выполнять весь набор движений (в том числе «бег» и «кувыркание»), перерабатывать питательные вещества и воспроизводиться (см. рисунок 20.1), но в колониях эти задачи можно делегировать разным клеткам. Поскольку потенциально выполнять все эти функции может каждая клетка, в результате подавления отдельных функций в разных клетках может возникнуть специализация. Эта задача реализуется посредством выделения химических веществ, которые регулируют гены, отвечающие за разные способности. В результате та функция, которая остается после подавления всех остальных, становится той единственной, которую клетка и выполняет в колонии.

Преимущества колониальной жизни наблюдаются только при условии, если все колонисты работают совместно и каждый получает выгоду. Всего одна помеха на пути этого сотрудничества может привести к физиологическому конфликту, возникающему вследствие генетического разнообразия членов колонии. Отказ от сотрудничества представляет проблему, потому что ведет к уменьшению размера колонии, и защита от хищников слабеет. Один из вариантов отказа – безделье: лодыри не работают (не тратят энергию) для того, чтобы получить ресурсы, удовлетворяющие их потребности. Отказываться от сотрудничества можно и посредством перемещения: если условия изменились и быть членом колонии больше не выгодно, клетки могут покинуть ее и начать самостоятельную жизнь, даже если в колонии они выполняли специализированную функцию. Изначально у всех клеток есть полный набор необходимых для выживания способностей, и когда подавляющее экспрессию генов действие, вызванное тесным соседством с другими клетками, исчезает, утерянные способности восстанавливаются. Когда условия меняются, отказ от сотрудничества посредством перемещения дает определенные преимущества, однако такие клетки становятся уязвимыми для хищников.

В чем же состоит разница между колониями и настоящими многоклеточными организмами? У последних физиологический конфликт и отказ от сотрудничества сведены к минимуму, поскольку все клетки такого организма практически однородны по своему генетическому составу. Разделение труда реализуется посредством генетической программы, которая вызывает дифференциацию клеток по особым типам, формирующим ткани и органы со своими особыми функциями. Клетки различных тканей находятся в тесной зависимости друг от друга, они не могут существовать отдельно от всего организма. Таким образом, вопрос выживания отдельных клеток становится вторичным по отношению к выживанию всего организма и обязательным результатам сотрудничества.

Колонии – это переходный этап от одноклеточных организмов к многоклеточным в том смысле, что клетки склеивались и общались для достижения общей цели – выживания. Однако существует два типа колоний, и только один из них смог осуществить переход к многоклеточной форме жизни (рисунок 20.2). Колонии первого типа состояли из генетически неоднородных скоплений отдельных клеток, появившихся в результате клеточного деления различных клеток и объединившихся в определенный момент своей жизни. Клональные колонии, напротив, состояли из генетически идентичных клеток (клонов), у которых можно было отследить общую мать и которые, разделившись, остались слившимися (они не жили отдельной жизнью). В связи с их генетическим сходством физиологический конфликт и отказ от сотрудничества были сведены к минимуму.


Рисунок 20.2. Составные колонии против клональных


Согласно Карлу Никласу, каждая из групп, ставших истинными многоклеточными организмами – растениями, грибами и животными, – с помощью фазы клональной колонии соответствующих одноклеточных простейших предков совершила скачок, и каждый из этих скачков от колониальной жизни к истинной многоклеточности произошел посредством двухфазной последовательности естественного отбора. Об этом – в следующей главе.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации