Электронная библиотека » Джозеф Леду » » онлайн чтение - страница 7


  • Текст добавлен: 16 ноября 2022, 08:20


Автор книги: Джозеф Леду


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 26 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Глава 21
Двухэтапный отбор

До того как я начал писать эту книгу, я никогда не задумывался о том, почему существует всего три формы сложной жизни (у одной из которых – грибов – нет отдельной полки в продуктовых магазинах). Что позволило растениям, грибам и животным совершить этот прыжок?[25]25
  Благодарю Карла Никласа за разъяснения о сути эволюции многоклеточности, а также передачи и выравнивания способностей к выживанию и размножению.


[Закрыть]

Два главных условия существования многоклеточной формы жизни – это наличие между клетками сцепления и коммуникации. Учитывая, что этими способностями обладают и одноклеточные организмы (благодаря которым колонии формируются и функционируют как единое целое), возникает вопрос: почему не все колонии становятся многоклеточными организмами? Карл Никлас считает, что причина кроется в неспособности большинства колоний достичь необходимого уровня сотрудничества между отдельными клетками, чтобы они не покидали или не могли покинуть колонию.

Ряд авторов, включая Никласа, высказывают мнение, что для перехода от одноклеточной формы к истинной многоклеточности необходимы были два эволюционных этапа. На первом этапе должно произойти выравнивание способности клеток к выживанию и размножению, в ходе которого их генетическое сходство сводит на нет конфликт и расширяет сотрудничество. Выравнивание способности клеток к выживанию и размножению достигается за счет так называемого бутылочного горлышка одноклеточных. Этот термин означает, что многоклеточный организм зарождается как одна клетка и все другие его клетки порождаются этой первой клеткой. У животных такой клеткой является зигота. Поскольку клональные колонии состоят из потомков одной материнской клетки и таким образом проходят через бутылочное горлышко одноклеточных, они оказываются на полпути к истинной многоклеточности, но только те, которые добираются до этапа передачи способности к выживанию и размножению, становятся многоклеточными организмами.

Этап передачи способности клеток к выживанию и размножению – самая высокая планка всей этой гонки, но клетке необходимо пройти его, чтобы стать независимой, прожить свою жизнь с высокой степенью взаимодействия и минимальным физиологическим конфликтом. Чтобы это произошло, данные способности нужно передать от отдельных клеток всему организму в целом. Говоря словами Ричарда Мичода, «единицы, способные к независимому воспроизведению до перехода, после перехода воспроизводятся только как часть большего целого», то есть передача способности к выживанию и размножению происходит тогда, когда сам организм, а не составляющие его клетки становится единицей воспроизведения. Когда это происходит, между клетками, выполняющими различные задачи, устанавливается постоянная взаимозависимость, и выживание клетки, осуществляющей одну функцию, зависит от функций, осуществляемых другими клетками. В отличие от колоний, все клетки которых теоретически способны осуществлять все функции, у настоящего многоклеточного организма функции запрограммированы в геноме, и, следовательно, клетки не могут его покинуть, потому что клетки одного типа зависят от клеток других типов и в одиночку выжить не могут. Все это держится на половом размножении эукариотов, а оплодотворенная сперматозоидом яйцеклетка становится новым организмом с чертами, унаследованными от обоих родителей.

Иначе говоря, бо́льшая (в сравнении с многоклеточной колонией) степень специфичности многоклеточных организмов является следствием полового размножения. Выше мы уже обсудили разницу между зародышевыми клетками, которыми являются сперматозоиды или яйцеклетки отдельной особи, и соматическими, которыми являются все остальные клетки организма. Идея об отличии зародышевых клеток от соматических и их разделении внутри организма возникла как противоречие одной из основных дарвиновских теорий. Чарльз Дарвин предположил, что наследование потомками от родителей происходит при участии крошечных частиц, называемых «геммулы», или «зародыши», получаемых из клеток каждой части тела. Такие частицы соединяются в репродуктивных органах и смешиваются в ходе полового размножения. Отчасти это предположение возникло вследствие принятия Дарвином теории Жана Батиста Ламарка, согласно которой черты, приобретенные человеком в процессе жизни, могут быть переданы потомкам. Август Вейсман поставил эту идею под сомнение; согласно его собственной концепции, клетки, из которых строится тело на первом этапе жизни, отличаются от тех, что используются позднее для передачи определенных черт потомству в ходе полового размножения. По теории Вейсмана, черты, приобретенные соматическими клетками (такие, как выработанные навыки или мутации), не наследуются, потому что передавать информацию из поколения в поколение способны только зародышевые клетки.

Ни Дарвин, ни Вейсман о существовании ДНК не знали, хотя идея Вейсмана все же оказалась ближе к истине. На самом деле его теории очень популярны и по сей день, хоть и с некоторыми оговорками. Так, например, в ходе одного из недавних исследований было доказано, что употребление наркотиков отцом или длительное воздействие на него стресса может сформировать у отпрысков предрасположенность к зависимостям или тревожным расстройствам. Вероятно, происходит это вследствие изменения генов в клетках сперматозоидов отца. Влияние факторов окружающей среды подобного рода на гены часто называют эпигенетическим влиянием; оно в определенной степени согласуется с теорией Ламарка.

Однако Эрик Нестлер, ведущий специалист в области эпигенетических исследований, считает, что, в отличие от влияния генов, в случае с эпигенетическим наследованием мы не знаем, в какой степени наследуется поведение. Непонятно, сохранится ли оно при смешении генов двух родителей в оплодотворенной яйцеклетке, что с ним будет во время эмболической фазы и, наконец, сможет ли после рождения сформироваться отдельный фактор уязвимости в сети, состоящей из миллиардов нейронов мозга. Нестлер предложил один из возможных сценариев, при котором такой эффект возможен, и назвал его «генетический импринтинг». В рамках этой модели одна копия гена одного из родителей постоянно подавляется, запуская процесс развития специфических факторов уязвимости. Так, например, по мнению Нестлера, «хронический стресс может повысить уровень определенных микроРНК, связанных со сперматозоидами, которые затем влияют на экспрессию генов в оплодотворенной зиготе. Правда, пока неизвестно, как эта измененная экспрессия в одноклеточной зиготе приводит к изменению экспрессии генов в отдельно взятом нейронном контуре мозга»[26]26
  Благодарю Эрика Нестлера за разъяснения по вопросу эпигенетики. Цитата взята из нашей с ним сентябрьской электронной переписки.


[Закрыть]
.

От обсуждения зародышевых и соматических клеток мы отклонились намеренно. По мнению Мичода, многоклеточные организмы передают способность к выживанию и размножению за счет постоянного разделения труда между продуктивными (зародышевыми) и непродуктивными (соматическими) клетками. Поскольку зародышевые клетки физически отличаются и анатомически отделяются от соматических, репродуктивная функция окончательно и бесповоротно отделяется от других функций организма. При таком разделении труда потребности отдельной особи приносятся в жертву, если польза для всего организма будет существенной. Например, прежде чем возникло половое размножение, каждая клетка обладала способностью к самовоспроизведению, однако передача способности к выживанию и размножению от клетки к организму требовала, чтобы соматические клетки раз и навсегда отказались от своих репродуктивных прав в обмен на взаимозависимость по типу сотрудничества.

Но как именно половое размножение повлияло на отказ клетки от своих потребностей в пользу потребностей всего организма? Николас Баттерфилд подчеркивает, что в результате полового размножения исчезли «паразиты соматических клеток» (ренегаты); при бесполом размножении такое происходит достаточно редко. Более того, при половом размножении вредные соматические гены также исключаются еще до того, как у них появится возможность закрепиться. Отчасти такой результат достигается за счет гибели особей с вредными генетическими мутациями до того, как они сумеют размножиться. Также, поскольку при половом размножении в каждом потомке уникальным образом перетасованы гены двух отдельных организмов и в каждом новом поколении гены снова и снова смешиваются и перетасовываются, влияние вредных генов снижается. Наконец, не будем забывать о том, что до достижения организмом половой зрелости активность у яйцеклетки низкая, поэтому возможность внедрения мутаций свободными радикалами в митохондрию ниже, чем у клеток с высокими энергозатратами (то есть сперматозоидов). В совокупности все эти факторы приводят к тому, что в результате естественного отбора весь организм получает преимущество над отдельными клетками; половое размножение дает возможность появляться на свет новым многоклеточным организмам.

Мичод объясняет, что собой представляет этот процесс. Деление соматических клеток является залогом жизнеспособности (выживания) организма (клетки его тканей в течение нашей жизни обновляются много раз), но не участвует в передаче генов организмом его потомкам. Зародышевые клетки, напротив, вырабатывают гаметы, необходимые для плодовитости (воспроизводства и передачи генов отпрыскам), но на жизнеспособность организма никак не влияют.

Подводя итог, можно сказать, что проблема поддержания клеточного сотрудничества на протяжении всей жизни многоклеточного организма решается посредством двухэтапного отбора. Сначала бутылочное горлышко одноклеточных обеспечивает генетическую однородность организма и сводит к минимуму физиологический конфликт, что, в свою очередь, уменьшает отступничество посредством бездействия и перемещения. Это этап выравнивания способности к выживанию и размножению. Но, кроме того, клетки многоклеточного организма относятся к отдельным тканям с различными функциями, и выживание всего организма, равно как и выживание отдельных клеток, зависит от распределения труда между всеми его тканями. Например, кардиомиоциты сердечной мышцы позволяют сердцу качать кровь. Кровь состоит из специальных клеток; она прокачивается через артерии, которые состоят из другого типа клеток. Кровь переносит кислород к различным тканям, а митохондрии в каждой клетке этих тканей производят из кислорода энергию. Кислород поступает в организм из воздуха; он фильтруется клетками, выстилающими легочную ткань, и используется вместе с глюкозой, которая вырабатывается пищеварительными клетками при расщеплении пищи. Если любую из этих клеток отделить от организма, без поддержки клеток других тканей она погибнет. Если выходит из строя одна система органов, страдают все остальные.

Глава 22
Со жгутиком через бутылочное горлышко

Одной из трех групп организмов, достигших истинной многоклеточности, то есть тех групп, которые в контексте этого исследования интересуют нас больше всего, являются животные. Судя по всему, их первая рудиментарная форма возникла примерно 800 миллионов лет назад. Наиболее популярная теория возникновения животных была предложена в XIX веке Эрнстом Геккелем и стала известна как гипотеза колониальных жгутиковых клеток. И хотя позже ее подвергли жесткой критике в связи с отсутствием доказательств, современные исследования обеспечили основным утверждениям теории Геккеля уверенную поддержку.

У растений, грибов и животных были свои простейшие предки (рисунок 22.1). Так, простейшим предком животных является древнее вымершее простейшее; считается, что от него произошла и группа современных простейших, которые называются хоанофлагеллятами, или воротничковыми жгутиконосцами. Поскольку у животных и хоанофлагеллятов общий предок, они считаются родственными группами; изучая общие для представителей обеих групп черты, можно получить ответы на первостепенные вопросы об их общем предке и глубоко погрузиться в историю животного мира.


Рисунок 22.1. Простейшие родственники растений, грибов и животных


Свое название воротничковые жгутиконосцы получили в честь жгутика – хвоста, которым они пользуются, чтобы выполнять необходимые для плавания движения (рисунок 22.2). Движения жгутиков, или биения, носят волнообразный характер. У некоторых других эукариотов нет жгутиков, но есть реснички; они короче, но многочисленнее и совершают скорее вращательные, а не волнообразные движения. Как станет ясно позднее, наличие жгутика играет важную роль при переходе к животным, а реснички выполняют ключевую функцию в эволюции нервной системы у первых животных.


Рисунок 22.2. Хоанофлагеллят – ближайший одноклеточный родственник животных


Хоанофлагелляты – хищники: они питаются бактериями. Жгутики бактерий позволяют им перемещаться в пространстве, но у хоанофлагеллятов получается намного лучше управлять своими движениями. Жгутики бактерий вращаются всегда одинаково, приближение и удаление осуществляются посредством изменения случайной деятельности. Хоанофлагелляты могут контролировать направление своего движения, приближаясь к питательным веществам или отдаляясь от угроз; они вырабатывают электрические сигналы, вызывающие биение жгутиков.

С телом клетки жгутик соединен воротником, состоящим из мембран. С помощью жгутика хоанофлагелляты создают потоки воды, притягивающие к ним бактерии, а потом ловят их воротником и всасывают в клетку – так хоанофлагелляты питаются. Воротник – важная часть клетки, и, как мы увидим позже, он является связующим звеном между хоанофлагеллятами и первыми животными – губками.

Николь Кинг с коллегами изучила биологические и поведенческие аспекты размножения у хоанофлагеллятов и выяснила, что они способны воспроизводиться как половым способом, так и бесполым. Естественным у них является бесполое размножение, но при определенных условиях запускается половой способ. Например, когда пищевые ресурсы ограничены и выживание клеток под вопросом, одни клетки, появившиеся на свет в результате бесполого деления, становятся крупнее обычного, а другие – мельче. Они становятся гаметами – половыми клетками: мелкие – сперматозоидами, а крупные – яйцеклетками. Когда сперматозоид встречается с яйцеклеткой, они сливаются – происходит оплодотворение, и потомство получает гены двух родителей. Сигналом к началу полового размножения может быть и заражение бактериальными паразитами.

Фактором первостепенного значения в жизни хоанофлагеллятов является их склонность к образованию колоний. Например, материнская клетка хоанофлагеллятов вида Salipingoeca rosetta делится бесполым способом, а ее потомство образует колонии генетически однородных клеток. Как уже отмечалось, клональные колонии способствовали развитию многоклеточной жизни, потому что в генетически однородных группах конфликт (а следовательно, и выход клеток) сведен к минимуму. В любых колониях соседние клетки прикрепляются друг к другу посредством клейких химических веществ; эти же вещества формируют молекулярные мостики между клетками и обеспечивают клеточную коммуникацию, которая осуществляется посредством сигнальных молекул. Раньше считалось, что такие скрепляющие и сигнальные молекулы есть только у животных. У хоанофлагеллятов были обнаружены гены, отвечающие за присутствие в организме этих и ряда других молекул, и этот факт – часть обширной доказательной базы, подтверждающей наличие связи между хоанофлагеллятами и животными.

Простейшая колония хоанофлагеллятов имеет сферическую форму и состоит из отдельных клеток, связанных между собой. Архитектура посложнее предполагает, что одни клетки образуют кольцо вокруг полой сферы, причем их жгутики направлены наружу. Когда тела выделяют в сферу определенные химические вещества, жгутики начинают одновременно биться, направляя массу клеток к встреченной на пути полезной субстанции (или прочь от вредной). Питательные вещества, извлеченные клетками в одной части колонии, посредством химического обмена передаются их соседям и распределяются между всеми через склеивающие мостики.

Проблема у этого простого механизма одна: клетка не может одновременно питаться и делиться, а поскольку эти организмы – хищники, им приходится все время есть, чтобы жить. Для преодоления этого противоречия появилась клеточная специализация: посредством регулируемой экспрессии генов некоторые клетки посвятили себя исключительно размножению, оставив занятия вроде питания и движения для других. Как уже говорилось выше, при определенных условиях на первый план выходит половое размножение, и в результате деления образуются особи либо мужского, либо женского пола. Самки перемещаются во внутреннюю сферу; самцы заплывают в сферу и, встречаясь с самками, оплодотворяют их. Потомство выводится наружу, где выполняет стандартные функции колонии.

Многоклеточные колонии обладают основными характеристиками многоклеточного организма, а именно сцеплением клеток между собой, их способностью общаться друг с другом и разделением задач между клетками, которое осуществляется под контролем экспрессии генов. Для клональных колоний (таких, как хоанофлагелляты) характерны генетическое сходство, низкий физиологический конфликт и минимальный уровень выхода клеток из колонии. Несмотря на то что эти характеристики позволяют им преодолеть первое сито многоклеточного отбора (выравнивание необходимых для выживания и размножения качеств), через второе (передача своих способностей потомкам) они пройти не могут. Они не достигают той точки, в которой происходит передача способностей к выживанию и размножению на уровень многоклеточного организма, и постоянной взаимозависимости клеток, выполняющих разные задачи, у них не возникает. Часть пути они прошли за счет того, что, использовав половое размножение, научились создавать самцов и самок, но в результате спаривания разнополых особей появляется просто много отдельных клеток хоанофлагеллятов, которые в лучшем случае становятся частью колонии. Хотя в результате размножения сложного многоклеточного организма первоначально тоже появляется всего лишь клетка, она, в отличие от клетки клональной колонии, является уникальной и обладает генетическим потенциалом, необходимым для формирования целого многоклеточного организма со всеми его взаимосвязанными частями.

Карл Никлас отмечает, что эволюция истинных многоклеточных организмов шла медленно: процесс превращения простейших в полноценных животных не предполагал одного-единственного огромного скачка. В связи с этим отметим одну черту хоанофлагеллятов, предвосхитившую их последующее превращение в животных, а именно наличие у них многих физиологических, генетических и молекулярных оснований нейронов и нервной системы – главной ценности животных. Предковые хоанофлагелляты управляли биением своих жгутиков с помощью электрических сигналов, что схоже с механизмом сокращения мышц у животных. Кроме того, с помощью электрических сигналов осуществлялся обмен информацией внутри клетки – именно так устроены нейроны животных. Вдобавок у хоанофлагеллятов имелись гены и белки, которыми эти гены управляли; этот механизм животные используют для формирования синапса – основной связи между нейронами. Первые животные унаследовали эти черты от общего с хоанофлагеллятами предка. Хотя губки, которые считаются первыми животными, не могли самостоятельно построить нервную систему, они сохранили соответствующие черты, которые использовали появившиеся позднее животные для создания первых нервных систем.

Часть V
…А потом животные изобрели нейроны

Глава 23
Что такое животное?

Официальное название царства животных – многоклеточные, или настоящие животные. С биологической точки зрения животных определяют исходя из их отличий от организмов двух других многоклеточных царств. Другими словами, животное – это многоклеточный организм, который не является ни растением, ни грибом. Как отмечалось ранее, каждая из этих групп эволюционировала из своего собственного одноклеточного простейшего предка, выживала по-своему и передала своим потомкам несколько разные гены, которые, в свою очередь, породили уникальные тела, абсолютно по-разному решающие проблему выживания и воспроизводства. Многие различия между представителями этих царств появились в результате того, что эволюция каждого из них шла по своему уникальному пути, и эти пути разделили типы многоклеточных организмов, однако все три имеют исключительную важность.

Во-первых, каждая из этих групп отличается от двух других способом управления энергией. Как уже отмечалось, животные получают энергию, потребляя и переваривая другие организмы, включая грибы, растения или даже других животных, тогда как у грибов переваривание других организмов вынесено за пределы их собственного тела. Грибы потребляют переваренный продукт; растения по большей части никого не едят и не потребляют в переваренном виде, справляясь с этой задачей самостоятельно: посредством фотосинтеза они вырабатывают собственную энергию. Второе яркое отличие представителей царства животных от представителей других царств – это их подвижность: в своем мире они постоянно перемещаются с одного места на другое. Многие животные с высокой степенью точности отвечают на внезапные изменения условий окружающей среды, и эта способность очень пригодилась им для добывания пищи; подвижные животные могут ловить подвижных жертв, а также спасаться от охотящихся на них хищников – теперь понятно, как отношения «хищник – жертва» способствовали многим аспектам эволюции животных. Способность совершать быстрые и точные движения породило третье отличие: только у животных в ходе эволюции появилась нервная система, и это значительно расширило их поведенческий диапазон.

Эволюционный путь от простейших к многоклеточным животным изображен на рисунке 23.1. Чем больше у организма клеток, тем больше энергии ему требуется, а для выработки энергии нужен кислород. В связи с этим интересно отметить, что возраст самых древних ископаемых животных совпадает с произошедшим примерно 800 миллионов лет назад существенным повышением концентрации кислорода в атмосфере.


Рисунок 23.1. Переход от одноклеточных к животным (многоклеточным)


Но какое же существо было первым животным? Латинское название простейших – protozoa – в буквальном переводе означает «первые животные», но этот термин сохранился с тех пор, когда животных еще не описывали с позиции их многоклеточности. Я разделяю общепринятое сегодня представление, согласно которому первыми животными были губки (лат. Porifera). Хотя самым старым ископаемым представителям этого типа животных примерно 650 миллионов лет, согласно данным молекулярного анализа, на Земле они появились, вероятно, около 800 миллионов лет назад. Отсутствие ископаемых, подтверждающих первые 150 миллионов лет их существования, объясняется двумя факторами. Один из них заключается в том, что геологические и атмосферные условия того времени в целом не способствовали фоссилизации[27]27
  Преобразование погибших организмов в ископаемые. – Прим. изд.


[Закрыть]
, но даже если бы они были более благоприятными, не все губки смогли бы фоссилизоваться, потому что у них были мягкие тела, которые плохо сохранились бы в виде ископаемых.

Хотя губки состоят из множества клеток, у них нет тканей, поэтому изначально частью царства животных их не считали. Они обладали, скажем так, промежуточным статусом: находились выше простейших, но ниже настоящих животных. Место в царстве многоклеточных животных за ними закрепилось, когда было доказано, что у губок есть гены, которые до этого находили только у зверей, но из-за отсутствия тканей их по-прежнему считают чем-то средним между простейшими и настоящими животными. Именно поэтому, как станет ясно из следующей главы, губки являются важным связующим звеном между одноклеточными простейшими и всеми остальными представителями царства животных.

Губки входят в подцарство многоклеточной формы жизни под названием «паразои» (лат. Parazoa), что в буквальном переводе означает «рядом с животными». Это подцарство включает всего две группы; вторая его группа – пластинчатые (лат. Placazoa), такие же многоклеточные, не имеющие тканей животные, как и губки. Разновидностей губок на сегодняшний день существует много, а вот пластинчатые представлены одним-единственным видом, и называется он «трихоплакс» (лат. Trichoplax adhaerens).

Все животные, у которых есть ткани, образующие органы и системы, относятся к подцарству эуметазоев (лат. Eumetazoa), то есть «настоящих животных» (таблица 23.1). Первыми типами эуметазоев были гребневики (лат. Ctenophora) и стрекающие (лат. Cnidaria) – гидры, медузы, морские анемоны и кораллы. Вместе с гребневиками и стрекающими паразои считаются низшими многоклеточными – животными, находящимися у основания древа жизни животных (рисунок 23.2).


Таблица 23.1. Подцарства животных


Рисунок 23.2. Низшие многоклеточные


Выше уже упоминалось о том, что согласно общепринятой точке зрения первыми животными были губки. Несмотря на долгие дебаты о том, какой тип появился раньше – гребневики или губки (рисунок 23.3), – бо́льшая часть ученых придерживаются теории о первичности губок; мы продолжим наше исследование, предполагая, что все было именно так[28]28
  * Согласно теории, признающей первичность губок, эти существа появились от простейшего предка, а гребневики и стрекающие – это две родственные группы, которые независимо друг от друга эволюционировали от губок. Те ученые, которые придерживаются мнения о первичности гребневиков, считают, что и гребневики, и губки независимо друг от друга произошли от разных простейших предков, а стрекающие – это родственная всем другим животным группа. Поскольку у гребневиков есть нервная система, получается, что губки свою нервную систему утратили, а якобы произошедшие от губок стрекающие опять ею обзавелись. На протяжении всей эволюционной истории наблюдались случаи утраты и восстановления тех или иных черт, так что на правдоподобность теории о первичности гребневиков это никак не влияет.


[Закрыть]
.

Часто говорят о том, что эти низшие многоклеточные за последние полмиллиона лет или около того почти не изменились. Однако строение тех относительно стабильных организмов, которыми этот тип представлен сегодня, скорее всего, претерпело довольно много изменений в период, который начался, когда эти группы изначально разошлись в своем развитии, и закончился, когда каждая из них стабилизировалась. Именно поэтому Аллен Коллинз, возглавляющий исследовательскую группу, которая изучает историю эволюции древних многоклеточных, предостерегает от использования современных примеров, когда речь идет о низших многоклеточных, потому что губки и медузы наших дней хоть и тесно связаны с их вымершими предками, но не идентичны. Незменным осталось лишь относительно простое базовое строение тел[29]29
  Это предостережение применимо к отношениям между всеми существующими сегодня организмами и их вымершими древними предками.


[Закрыть]
.

Животных группируют по принадлежности к виду, а виды объединяют в тип исходя из того, что строение тел у членов одного типа имеет между собой больше сходств по сравнению с животными из других групп. Для описания строения тел животных часто используют немецкое слово Bauplan[30]30
  Нем. Bauplan – «план тела». – Прим. пер.


[Закрыть]
. Существуют миллионы видов животных, у каждого из которых свой уникальный Bauplan, но все эти разнообразные строения тел распадаются на основные категории: асимметричные, радиально-симметричные и двусторонне-симметричные (таблица 23.2).


Рисунок 23.3. Два сценария происхождения низших многоклеточных и их нервных систем


Таблица 23.2. Строение тел представителей царства животных


Тела губок обладают неправильной формой, поэтому обычно их называют асимметричными. Тела стрекающих и гребневиков имеют четко определенную форму, их можно разделить на две равные части. Если тело медузы разрезать пополам по направлению сверху вниз, в отличие от губки, получится две симметричные половины, независимо от того, в каком месте ее круглой, похожей на зонтик шляпки вы сделаете разрез. Такие формы называются радиально-симметричными (то есть симметричными по радиусу круга; рисунок 23.4).


Рисунок 23.4. Асимметричное, радиально-симметричное и двусторонне-симметричное строение тела


Примерно 630 миллионов лет назад природа освоила третий способ построения тел: появился червь абсолютно новой «конструкции». Подобно медузе, у него были верхняя и нижняя части, но, помимо этого, у него были четко определены передняя и задняя части. Разрезать такой организм на симметричные половины можно было только по длинной оси по направлению спереди назад, в результате чего получались взаимодополняющие левая и правая стороны. Такие организмы называются двусторонне-симметричными; на сегодняшний день к ним относятся 99 % всех обитающих на Земле живых существ. Большинство из них (если не все) – это потомки червя, который получил название последнего общего двусторонне-симметричного (билатерального) предка LCBA (сокр. от англ. last common bilateral ancestor). Считается, что этим червем была турбеллярия – крошечное морское существо, похожее на плоского червя[31]31
  Вообще собрать убедительные доказательства о природе древних животных сложно. Возможно, изначально губки представляли собой билатеральные организмы, но со временем утратили эту черту. Может быть, у них даже были, но потом пропали ткани и нейроны – на все эти вопросы однозначных ответов нет. Исходя из этого в дальнейшем мы будем придерживаться общепринятых представлений.


[Закрыть]
.

Вскоре после того, как появилась двусторонне-симметричная по строению турбеллярия, разнообразные билатеральные организмы превратились в основную группу живущих на Земле существ. Их бо́льшая часть зародилась 540 миллионов лет назад, а 480 миллионов лет назад процесс возникновения новых видов завершился. Этот период массового возникновения двусторонне-симметричных животных называется Кембрийским взрывом (см. рисунок 23.1), и к его окончанию на Земле присутствовало большинство современных видов (рисунок 23.5). Это не значит, что то разнообразие видов, которое мы наблюдаем сегодня, возникло в период Кембрийского взрыва (были определены типы, но многие современные виды животных появились позже). Все животные кембрийского периода были морскими обитателями, поскольку суши тогда просто не существовало; наземная суматоха начнется чуть позже.


1. Пикайя (лат. Pikaia, головохордовое). 2. Медуза (лат. Cnidaria, стрекающее). 3. Гидра (стрекающее). 4. Морские лилии, или криноидеи (лат. Crinoidea, иглокожее). 5. Гребневики (лат. Ctenophora). 6. Хайкоуэлла (лат. Haikouella, позвоночное). 7. Трилобиты (лат. Trilobita, членистоногое). 8. Губки (лат. Porifera). 9. Приапулиды (лат. Priapulida). 10. Конодонты (лат. Conodonta, позвоночные). 11. Аномалокарис (лат. Anomalocaris, членистоногое). 12. Наутилус (моллюск). 13. Анемон (членистоногое)[32]32
  Автор допускает неточность: на самом деле морские анемоны относятся к отряду стрекающих. – Прим. пер.


[Закрыть]

Рисунок 23.5. Кембрийский взрыв


Мы еще поговорим о двусторонне-симметричных животных и об их многочисленных разновидностях, однако пока наша цель – рассмотреть низших многоклеточных и, в частности, выяснить, как от одноклеточных простейших предков произошли асимметричные, не имеющие тканей губки, как они положили начало радиально-симметричным, имеющим ткани стрекающим и как те, в свою очередь, стали предшественниками двусторонне-симметричных животных.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации