Электронная библиотека » Эндрю Штульман » » онлайн чтение - страница 3

Текст книги "Сбитые с толку"


  • Текст добавлен: 8 апреля 2020, 10:41


Автор книги: Эндрю Штульман


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

В дальнейших исследованиях Смит и коллеги применили другой подход[57]57
  Smith, 2007; Smith, Maclin, Grosslight and Davis, 1997.


[Закрыть]
. Вместо того чтобы пытаться сделать плотность воспринимаемым параметром, они показывали ученикам материальные явления, объяснимые только с точки зрения плотности и ее составных элементов – веса и объема. Несколько недель ученики взвешивали на очень чувствительных весах маленькие, не имеющие тяжести предметы (блестки, капли чернил). На рычажных весах они сравнивали пустые воздушные шары с шарами, наполненными воздухом. Они определяли объем предметов, которые не получается измерить линейкой (капли воды), исходя из измеримых объемов (миллилитр воды). Они погружали предметы разной плотности в жидкости разной плотности. Они измеряли вес и объем железного шарика до и после нагревания и вес таблеток шипучего аспирина до и после растворения в воде.

В отличие от задач с убийствами, этот подход оказался эффективным. До курса лишь немногие ученики могли упорядочить материалы по плотности. После курса с этим справлялось большинство. Кроме того, после курса большинство учеников начало считать материей неосязаемые вещества (воздух, пыль, дым) и приписывать вес микроскопическим объектам (крохотному кусочку пенопласта). Наверное, больше всего заслуживает внимания тот факт, что ученики, сначала провалившие задачи Пиаже на сохранение, после обучения справлялись с ними, хотя тема сохранения прямо не затрагивалась.

Дополнительные исследования группы Кэрол Смит показали, что освоение корпускулярной теории материи имеет на удивление обширные последствия за пределами области материи, в мире чисел. Целые числа, как и предметы, можно делить на меньшие составляющие (дроби), однако дети изначально воспринимают числа по-другому, считая их просто конечными точками отсчета. Малыши понимают, что числа можно увеличивать и уменьшать, прибавляя и убирая предметы, но не имеют представления о делении. Числа рассматриваются как целостные и однородные, аналогичные физическим объектам.

Заинтригованные этим сходством, Смит и коллеги задались вопросом, развивается ли понимание делимости чисел в тандеме с пониманием делимости материи. Для этого они совместили описанную выше задачу на деление пенопласта с задачей на деление чисел. Вот простой пример беседы с третьеклассником:

Ученый: Между нулем и единицей есть еще какие-нибудь числа?

Ребенок: Нет.

Ученый: А половина?

Ребенок: Да. Получается, что есть.

Ученый: А сколько примерно чисел между нулем и единицей?

Ребенок: Ну, не очень много. Только ноль и половина, потому что это на полпути к единице.

Ученый: Давай представим, что ты разделил два пополам и получил один, а затем снова разделил результат пополам. Можно так делить до бесконечности?

Ребенок: Нет, потому что если взять эту половину числа, получится ноль, а ноль разделить нельзя.

Ученый: То есть когда-нибудь получится ноль?

Ребенок: Да.

Некоторые дети знали, что существуют и другие дроби, не только одна вторая. Один третьеклассник, например, заметил: «Есть половина, треть, четверть, одна какая-то и так далее вплоть до десяти». Но даже такие дети отрицали, что сами эти дроби можно делить. В более старшем возрасте дети уже не просто утверждали, что дроби, например одну четверть, можно разделить пополам, но и что делить пополам можно бесконечно. Это иллюстрирует следующий диалог с пятиклассником:

Ученый: Между нулем и единицей есть еще какие-то числа?

Ребенок: Да, есть.

Ученый: Можешь привести пример?

Ребенок: Одна вторая или ноль целых пять десятых.

Ученый: А сколько примерно чисел между нулем и единицей?

Ребенок: Много.

Ученый: Представь, что ты разделил два пополам, получил единицу и опять разделил ее пополам. Можно так делить до бесконечности?

Ребенок: Да. Когда что-то делишь, всегда что-то остается.

Ученый: Ты когда-нибудь получишь ноль?

Ребенок: Нет, потому что есть бесконечно много чисел меньше единицы, но больше ноля.

Крайне важно то, что осознание детьми делимости чисел сопровождает осознание делимости материи. Дети, утверждающие, что числа на каком-то шаге деления перестают существовать, согласны и с тем, что материальные вещества в какой-то момент деления теряют вес, в то время как дети, несогласные с первым утверждением, не согласны и со вторым. И тем не менее, если понимание приходит не одновременно, отстает именно представление о бесконечной делимости чисел, то есть бесконечную делимость материальных сущностей (предметов) дети усваивают раньше бесконечной делимости нематериальных (чисел).

Понимание строения материи, таким образом, может стать трамплином к более сложному пониманию чисел. Бесконечная делимость, как и бесконечная плотность, – очень важная идея, которую можно перенести из одной области в другую. Подчеркивание параллелей между этими явлениями – очень продуктивная стратегия преподавания натуральных дробей и других видов рациональных чисел, например десятичных дробей и процентов[58]58
  Moss and Case, 1999.


[Закрыть]
. Ученики, которых учили ассоциировать дроби с долей емкости, заполненной водой (веществом), успевают намного лучше, чем те, которым дроби показывали в виде кусков пирога (предмета). Предметы бывают полезны при освоении целых чисел, так как и то и другое дискретно, связано и едино, но дроби лучше объяснять на примере веществ, так как и то и другое непрерывно, делимо и обладает плотностью. Параллели между числами и материей проходят глубже, чем в самих этих областях.

* * *

Что тяжелее: килограмм пуха или килограмм золота? Конечно, ни то ни другое: килограмм и есть килограмм. Но вполне вероятно, что перед тем, как ответить на этот вопрос, вы на секунду задумались. Золото «весомее» пуха, и концепция тяжести вступает в противоречие с концепцией веса. Тяжесть и величина – это воспринимаемые качества материи. Они сохраняются при изменениях ее концептуального понимания и мешают рассуждать о материальных явлениях на протяжении всей нашей жизни[59]59
  Shtulman and Valcarcel, 2012; Shtulman and Harrington, 2015.


[Закрыть]
.

Возьмем задачу о том, какой предмет утонет, а какой – нет. Взрослые быстро оценивают, что большие плотные предметы, например сковородка, идут ко дну, а легкие и воздушные, например упаковочный пенопласт, остаются на поверхности. Однако сравнить легкий, но при этом плотный предмет, например железную стружку, с тяжелым, но воздушным, например пенопластовой коробкой, уже сложнее. Даже если человек признает, что плотность – единственный параметр, имеющий отношение к задаче, тяжесть и величина все равно вмешиваются в рассуждения[60]60
  Potvin, Masson, Lafortune and Cyr, 2015.


[Закрыть]
.

Тяжесть и величина нарушают и способность отделять материальные сущности от нематериальных. Если попросить человека быстро классифицировать «материальное» и «нематериальное», неощутимые вещества (чернильные пятна, духи, воздух) потребуют больше времени, чем ощутимые (камни, кирпичи, ботинки). Ошибки будут совпадать с детскими ошибками в аналогичных заданиях без ограничения времени. В одном из исследований скоростной классификации взрослые относили чернильные пятна к материи лишь в 85 % случаев, духи – в 83 %, а воздух – в 75 %. И наоборот, в 35 % случаев к материи причисляли гром, в 37 % – свет звезд, а в 57 % – молнию[61]61
  Shtulman (дата публикации неизвестна).


[Закрыть]
. Даже Антуан Лавуазье, основоположник современной химии, был сбит с толку физической сущностью тепла и света. И то и другое он отнес к элементам материи[62]62
  Bynum, 2012.


[Закрыть]
.

Чтобы сбиться в рассуждениях о материи, не обязательно нужна нехватка времени. Люди ошибаются и в обычных ситуациях. Например, мы ставим заполненную до краев бутылку воды в холодильник, забывая, что она лопнет, когда вода внутри расширится. Мы переплачиваем за большие упаковки продуктов, не задумываясь об эквивалентности количества на единицу упаковки в товарах разных размеров. Мы перенапрягаемся, расчищая снег с дорожки, не осознавая, что скопление не имеющих тяжести снежинок – это десятки килограммов замерзшей воды. А еще мы не можем разобраться, наполовину пуст стакан или наполовину полон, хотя в действительности он заполнен целиком – отчасти жидкостью и отчасти газом.

Мой любимый бытовой пример ошибок, связанных с материей, – это разливное пиво в пабе. Стандартный стакан на пинту – 0,47 литра – размером 14,9 сантиметра в высоту, 8,2 сантиметра в диаметре сверху и 6 сантиметров в диаметре у донышка. Сколько пива, по-вашему, будет не хватать, если на глазок налить стакан не до краев, а до высоты 12,7 сантиметра?

Почти четверти объема! Ведь стакан сужается книзу и в его верхней части умещается больше пива, чем в нижней. Большинство забывают, сколько пива упускают из-за недолива, но теперь решение проблемы найдено. Предприимчивые любители пива изобрели карманный прибор для измерения уменьшения объема пива в зависимости от высоты. Его название хорошо отражает происхождение идеи: пивоизмеритель Пиаже.


Рис. 2.5. Бытовых ошибок на сохранение очень много даже у взрослых. Хороший пример – хроническое неумение оценить, сколько пива не хватает в неполном стакане


Глава 3. Энергия
Почему предметы горячие? Откуда берется громкость?

В середине XVII столетия во Флоренции была основана Академия дель Чименто – Академия эксперимента. Целью этого общества было изучение тайн природы путем наблюдений и опытов. Его члены создали одни из первых градуированных лабораторных инструментов, размеченных стандартными единицами, например спиртовые термометры[63]63
  Middleton, 1971.


[Закрыть]
. Они пользовались такими термометрами, чтобы разобраться в тепловых явлениях, например в том, как происходит расширение жидкостей при замерзании, расширение твердых тел при нагревании, и во влиянии тепла и холода на атмосферное давление.

В одной серии экспериментов флорентийские ученые помещали сосуды с разными жидкостями – розовой водой, фиговой водой, вином, уксусом и растопленным снегом – в ледяную ванну, чтобы вызвать замерзание. Когда жидкости замерзли, расширение отмечалось по отношению к температуре. Странно то, что экспериментаторы ставили термометры не в сам сосуд, а в лед рядом с ним. Прошло 250 лет, и измерение точки замерзания стало обычным экспериментом на детских научных ярмарках. Все инструкции по их проведению рекомендуют помещать термометры в замораживаемую жидкость. Почему же флорентийцы поступали иначе?

Из записок экспериментаторов следует, что они пытались измерить изменения именно в жидкости, а не в ледяной ванне. Однако сам процесс замерзания они понимали совсем не так, как сегодняшние ученые. Термометр, с их точки зрения, был нужен, чтобы измерить силу холода, перетекающего из ледяной ванны в жидкость[64]64
  Wiser and Carey, 1983.


[Закрыть]
. Сосуд и его содержимое воспринимались как пассивные получатели холода, а не как равные партнеры в двустороннем взаимодействии. Современный взгляд на процессы, происходящие во время таких экспериментов, заключается в том, что тепло передается от сосуда ледяной ванне. Но тогдашние экспериментаторы об этом даже не подозревали. Холод для них был не отсутствием тепла, а чем-то фундаментально отличным. Разве тепло может охладить?


Рис. 3.1. Эти термометры были созданы в Академии дель Чименто – флорентийском научном обществе XVII века. С их помощью провели одни из первых лабораторных опытов по нагреванию, охлаждению, сжиганию и заморозке


Флорентийские ученые не только рассматривали тепло и холод как противоположные процессы, но и представляли их как вещества, аналогичные воде, спирту и маслу. Считалось, что тепло состоит из частиц огня и в процессе нагревания другие вещества наполняются этими частицами, которые расталкивают их изнутри (отсюда явление теплового расширения). Кроме того, полагали, что тепло могут излучать только источники тепла: свечи, уголь, костры, солнце. Жидкость комнатной температуры не рассматривалась как носитель теплоты, не говоря уже о передаче тепла более холодной системе (ледяной ванне).

Взгляд флорентийских экспериментаторов на тепловые явления назвали теорией источника и получателя[65]65
  Wiser and Carey, 1983.


[Закрыть]
, поскольку она четко различает источники и получателей тепла, а также источники холода и получателей холода. Эта теория объясняет подход флорентийцев ко всем тепловым явлениям, не только к искусственной заморозке. В другой серии опытов они наблюдали, как латунь, бронза и медь расширяются при нагревании и сокращаются при охлаждении. Степень расширения они сравнивали с расширением древесины, впитывающей воду. Для современных взглядов на тепловое расширение это странное сравнение, но для теории источника и получателя оно вполне разумно, поскольку частицы впитывающейся воды в ней физически аналогичны впитывающимся частицам огня – предполагаемым составным частям тепла.

Еще ученые из Академии дель Чименто сравнили замерзание воды в ледяной ванне («искусственное замораживание») с тем, как вода замерзает на улице в холодный день («естественное замораживание»). Они искали разницу в скорости, полноте замерзания и прозрачности получившегося льда. Их эксперименты были основаны на представлении, что разные виды холода оказывают разное действие. Результаты, однако, не позволили экспериментаторам сделать окончательных выводов. Они не позаботились проверить, совпадает ли температура воздуха на улице с температурой ледяной ванны, и были больше сосредоточены на том, чтобы охарактеризовать природу другого «источника холода» и его воздействие.

В 1761 году, спустя более чем столетие после основания Академии дель Чименто, шотландский химик Джозеф Блэк открыл, что воздействие тепла на вещество не всегда меняет температуру. В частности, нагревание смеси льда и воды не поднимает температуру, а только повышает соотношение воды ко льду. Температура воды начнет расти лишь после того, как весь лед растает. Блэк пришел к выводу, что то же верно для смеси холодной воды и пара: нагревание не будет повышать температуру, пока вся вода не испарится.

Отличие тепла от температуры не вписывалось в господствовавшую в то время теорию источника и получателя. До Блэка все исходили из того, что термометр измеряет тепло, а не температуру, поэтому разделение тепла и температуры при фазовом переходе было необъяснимым.

Это открытие заставило Блэка разработать новую теорию тепловых явлений, но это была не кинетическая теория, принятая в современной термодинамике. Теория Блэка различала тепло и температуру, но все еще продолжала считать тепло веществом – теплородом[66]66
  Fox, 1971.


[Закрыть]
. В точках таяния и кипения теплород накапливается внутри веществ, меняя их химический состав, но не температуру. Потребовалось еще целое столетие, чтобы ученые отказались от этой теории в пользу кинетического (основанного на энергии) взгляда на тепло. Но не-ученые держатся за нее. Подобные представления лежат в основе большинства рассуждений о теплоте, хотя старое название давно забыто и теплород называют просто теплом.

* * *

Тепло – это форма энергии, совокупная энергия молекул физической системы, но мы интуитивно рассматриваем ее как разновидность вещества согласно с описанными выше устаревшими теориями. Интуитивные теории тепла совпадают с историческими воззрениями во многих аспектах, начиная с формулировок. Тепло описывают как нечто движущееся само по себе («тепло из ванны уходит, рассеивается, улетучивается). Его можно поймать и сдержать («теплица удерживает солнечное тепло», «закройте дверь, чтобы не напустить жары»). Для некоторых это просто метафора. Проще сказать «все тепло ушло из ванны», чем «вода в ванне достигла теплового равновесия с окружающей средой». Большинство же людей понимают это не менее буквально, чем фразу «из ванны вытекла вся вода» или «закрой дверь, чтобы не проникал запах».

Откуда известно о том, что эти формулировки буквальны? Например, использующие их люди делают совершенно иные прогнозы о тепловых феноменах, чем не использующие. Мы еще обсудим это. Другая причина заключается в том, что если нужно объяснить «вещественные» формулировки, то многие излагают теорию, полностью основанную на веществе, как в представленной ниже беседе между ученым, исследующим преподавание физики, и студентом колледжа, изучающим физику:

Ученый: Вы только что использовали глагол «перетекать» для описания процесса передачи тепла[67]67
  Chiou and Anderson, 2010.


[Закрыть]
. Как представляете себе передачу тепла в этом вопросе?

Студент: Как движение воды. Вода течет из более высокого места в более низкое, а тепло – из более теплой области в более холодную. По-моему, принцип схожий.

Другое сходство между интуитивными и историческими теориями тепла заключается в том, что в обоих случаях проводится различие между теплом и холодом и, следовательно, между источниками холода и источниками тепла. Холод – это не более чем восприятие определенного состояния. Вещества, отводящие тепло от тела, ощущаются холодными, а передающие телу тепло – горячими. И тем не менее по-разному воспринимаемые состояния кажутся материальными, как разные вещества. Подумайте об объяснениях, которые приводили студенты на вводном курсе физики, когда их спрашивали, почему стакан чуть теплой воды теряет температуру при контакте с кубиком льда или металлическим столом:

– Часть холода из кубика переходит в воду[68]68
  Chang and Linn, 2013; Erickson, 1979.


[Закрыть]
.

– Когда стакан касается металлического стола, молекулы стола добавляют чашке холода.

– Стакан становится холоднее, потому что стол передает чашке холодные молекулы, а чашка передает горячие молекулы столу. Когда это происходит, стол становится горячее, а чашка – холоднее.

В последнем объяснении высказано не только предположение, что холод отличается от тепла, но и что он состоит из другого вещества: «молекул холода». Может появиться искушение интерпретировать это объяснение с точки зрения энергетических состояний: «горячие молекулы» высокоэнергетические, а «холодные» – низкоэнергетические. Однако студент явно полагал, что от вещества к веществу передаются именно сами молекулы, а не их энергия. Взгляд на жар и холод как на дуэль двух веществ хорошо выразил другой участник того же исследования, определивший температуру как «меру смеси тепла и холода внутри предмета»[69]69
  Erickson, 1979.


[Закрыть]
.

Третье сходство между интуитивными и историческими теориями, в частности теорией источника и получателя, заключается в том, что они не разделяют тепло и температуру. В результате тщательных наблюдений за фазовыми переходами Блэк открыл, что тепло отличается от температуры. В быту то же отличие можно наблюдать, когда предметы, обладающие одинаковой температурой, передают разное количество тепла. В ванной, например, хлопчатобумажные полотенца на полу кажутся теплее, чем керамическая плитка под ними, металлические пряжки ремней безопасности в горячей машине – теплее, чем виниловая обивка сиденья, а алюминиевые сковородки в духовке – теплее, чем окружающий их воздух. Причина разных ощущений в том, что одни материалы передают тепло лучше, чем другие, и более эффективно передающие вещества (проводники тепла) кажутся горячее или холоднее, чем те, которые проводят тепло хуже (теплоизоляторы).

Таким образом, чтобы понять, почему два материала с одинаковой температурой при прикосновении ощущаются по-разному, нужно отличать тепло и передачу тепла от температуры. Большинство людей этого не делают и исходят из того, что предмет чувствуется горячим, потому что он и есть горячий, потому что одни предметы теплее от природы (например, полотенцу присуща большая теплота, чем плитке) или потому что некоторые вещества лучше улавливают тепло (например, хлопок от природы лучше улавливает тепло, чем керамика)[70]70
  Clough and Driver, 1985; Clark, 2006.


[Закрыть]
. Мы склонны считать пальцы тепловыми сенсорами, но пальцы не измеряют ни тепло, ни температуру. Они измеряют гораздо более субъективный параметр: получает или теряет кожа тепло, и насколько быстро. С эволюционной точки зрения это самое главное, потому что от этого зависит, есть ли опасность умереть от ожогов или обморожения. Важнейший фактор тепловых травм – не тепло, а его передача. Если бы тепло само по себе имело столь же серьезное значение, невозможно было бы вынуть сковородку из духовки, потому что воздух обжигал бы кожу еще до того, как рука коснется сковородки. Наша кожа в безопасности потому, что воздух передает тепло гораздо медленнее металла. Мы можем переносить контакт с воздухом, нагретым до 200°C, хотя не можем вынести контакта со сковородой той же температуры.

Возможно, восприятие тепла (теплоты) более оторвано от самого тепла, чем восприятие веса (тяжесть) от собственно веса. В обоих случаях важную роль играет материал, но на восприятие тепла он влияет значительно сильнее, чем на восприятие веса. Подумайте, например, о разнице между алюминием и пробкой. Килограмм алюминия будет казаться тяжелее, потому что пробка занимает больше места, что повлияет на восприятие ее веса[71]71
  Cross and Rotkin, 1975.


[Закрыть]
. Однако отклонение от реальности не доходит до такой степени, что алюминий начинает казаться неподъемным. В то же время воспринимаемая и реальная теплота предметов отличаются гораздо сильнее. При 100°C пробку все еще можно потрогать, а алюминий сразу же обожжет кожу[72]72
  Corlett, Wilson and Corlett, 1995.


[Закрыть]
.

* * *

Представьте, что у вас два шарика, наполненных гелием, – бумажный и резиновый. Оба шара плотно закрыты. Если оставить их на несколько часов в кладовке, какой шар сохранит большую подъемную силу? Теперь представьте, что у вас два стакана кофе: один из пенопласта, другой керамический. Оба стакана герметично закрыты крышкой. Если оставить их на столе на двадцать минут, в каком напиток будет горячее?

С научной точки зрения эти мысленные эксперименты относятся к совершенно разным явлениям: диффузии газов и передаче тепла. В первом случае происходит рассеивание вещества, а во втором – обмен энергией. Следовательно, физики будут исходить из разных соображений: пористости бумаги по сравнению с резиной в первом случае и теплопроводности пенопласта по сравнению с керамикой во втором.

Однако не слишком знакомые с физикой люди основывают свои ответы на пористости материала. Иными словами, и физики, и новички сходятся во мнении, что резиновый шарик будет более летучим, чем бумажный, но по-разному предсказывают, в каком из стаканов кофе окажется горячее. Физики считают, что в пенопластовом, так как он лучше изолирует, а новички – что в керамическом, поскольку керамика не такая пористая[73]73
  Slotta, Chi and Joram, 1995.


[Закрыть]
.

Это одна из нескольких парных задач, разработанных исследовательской группой психолога Мишлен Чи[74]74
  Chi, Slotta and De Leeuw, 1994.


[Закрыть]
. Ученые стремились сопоставить преобразования материи со структурно схожими случаями передачи энергии. Некоторые задачи относились к теплоте, некоторые – к свету, некоторые – к электричеству. Независимо от вида рассматриваемой энергии, мало знакомые с физикой люди (в данном случае девятиклассники) считали, что результат передачи энергии будет таким же, как и при тесно совпадающем материальном преобразовании. Для обоснования своих суждений в отношении материи и энергии они использовали те же формулировки: глаголы, подразумевающие содержание (удерживает, улавливает, блокирует), абсорбцию (впитывается, вбирает, поглощает) и движение (покидает, протекает, улетучивается).

Специалисты-физики, решая те же задачи, использовали совершенно другую терминологию. Обсуждая материю, они говорили о содержании, абсорбции и (макроскопическом) движении, а в случае энергии упоминали молекулярные взаимодействия (сталкиваются, контактируют, возбуждаются), системные процессы (вместе, параллельно, одновременно), поиск равновесия (распространяется, передается, выравнивается). Почему новички относятся к теплу, свету и электричеству так, как будто это вещества? Авторы исследования полагают, что все дело в том, что концептуализировать «вещи» легче, чем процессы. Вещи конкретны, а процессы абстрактны. Вещи статичны, а процессы динамичны. Вещи устойчивы, а процессы эфемерны.

Конечно, не все процессы плохо поддаются концептуализации. Несложно представить себе очень многие целенаправленные процессы, например приготовление пищи, рисование и шитье. Чи и коллеги называют их прямыми и противопоставляют эмерджентным. Эмерджентные процессы отличаются от прямых четырьмя главными особенностями. Они системны – не имеют четкого причинно-следственного объяснения. Они стремятся к равновесию, к сбалансированной конфигурации компонентов. Они одновременны, то есть их компоненты действуют в тандеме. И они текущие, то есть не имеют ни начала, ни конца, даже если достигают равновесия[75]75
  Chi, Roscoe, Slotta, Roy and Chase, 2012; Slotta and Chi, 2006.


[Закрыть]
.

Тепло – яркий пример эмерджентного процесса, так как оно является результатом коллективного движения независимых молекул. Еще к таким процессам относятся давление, которое рождается из совокупной силы независимых частиц газа, погода – коллективное движение независимых масс воздуха, а также эволюция, приводимая в движение размножением независимых организмов. Эмерджентные процессы можно найти и в обществе. Дорожное движение – это совокупность решений независимых водителей, цена акций определяется решениями независимых инвесторов, а городская архитектура – решениями независимых застройщиков. Часто проще думать, что явления в этих сферах вызваны каким-то одним фактором – одним медлительным водителем, одним неразумным генеральным директором и одним градостроителем, нарисовавшим в воображении план, однако они возникают без помощи (и без помех) со стороны лидера. Несомненно, тепло не вызвано одной молекулой, ведущей за собой другие. Сложные и вроде бы направленные изменения складываются из простых и ненаправленных взаимодействий на нижележащем уровне системы.


Рис. 3.2. Диффузия – это эмерджентный процесс. Случайные взаимодействия на одном уровне физической системы (микроскопическом) ведут к систематическим изменениям на более высоком уровне (макроскопическом). Например, чернила диффундируют в воде


Для научного понимания тепла его нужно рассматривать как эмерджентный процесс. Но как это сделать, если такие процессы трудноуловимы? Мишлен Чи и ее сотрудники взялись и за эту проблему курицы и яйца[76]76
  Slotta and Chi, 2006.


[Закрыть]
. Они начали знакомить далеких от физики людей с понятием эмерджентных процессов и лишь потом объясняли им, почему примером такого процесса является, в частности, тепло. Они разработали обучающую компьютерную программу, которая раскрывала четыре главные черты эмерджентных процессов: системность, стремление к равновесию, одновременность и постоянное течение. Эффективность обучения психологи измеряли с помощью описанных выше задач, в которых несколько связанных с энергией проблем сравнивали со схожими проблемами, основанными на материи.

Инструктаж оказался очень действенным. До него лишь немногие видели разницу между проблемами, основанными на энергии и на материи. Это проявлялось и в прогнозах, и в даваемых объяснениях. После курса большинство уже видело отличия. Другими словами, информация об эмерджентных процессах помогала начать воспринимать их с совершенно новой точки зрения – как что-то возникающее из материи, но не являющееся ею, затрагивающее окружающие предметы, но не являющееся ими. Такова природа энергии.

* * *

Звук, как и тепло, – одна из форм энергии. Он проходит через материю или, точнее, посредством материи, но сам материей не является. Это волна давления, порожденная вибрацией: пики сжатых молекул чередуются с впадинами разреженных молекул. Однако большинство людей не считают звук энергией, а воспринимают его как вещество.

Звуки явно проходят через среду: их можно услышать сквозь твердые вещества, жидкости и газы. Многие люди считают, что звуки просачиваются через пустое пространство внутри, а среда – это только помеха, и без нее звук распространялся бы быстрее[77]77
  Hrepic, Zollman and Rebello, 2010.


[Закрыть]
. Тем не менее звук не может распространяться в пустоте. Именно это подразумевает слоган фильма «Чужой»: «В космосе никто не услышит твой крик».

Основанное на веществе понимание природы звука популярно и легко проявляется. Посмотрите на следующие объяснения, которые приводили в беседе о природе звука студенты, посещающие вводный курс физики.

– Когда звук движется, он проходит сквозь воздух[78]78
  Hrepic, Zollman and Rebello, 2010.


[Закрыть]
… Может быть, он находит место между частицами воздуха, но, наверное, в итоге он с какой-нибудь столкнется. То есть он, по-моему, точно не знает, куда идет.

– Звук проходит как какой-то маленький предмет. Он как будто пробивает себе дорогу… находит маленькие свободные пространства, пока не дойдет до слушателя.

– Ну, я бы сказал, что звук идет как по лабиринту. Он как бы прокладывает себе путь, пока не выйдет до другой стороны. По-моему, звук не может двигать частицы стены. Мне кажется, он их просто обходит.

Я заметил, что мои знакомые тоже делают похожие заявления. Смотря по телевизору передачу, снятую в открытом космосе, подруга как-то заметила: «Они что, не знают, что в космосе нет звуков? Там нет частиц воздуха, поэтому звуку не от чего отталкиваться». Она была права, что в космосе нет звуков, но причина в другом. Звук не отталкивается от частиц воздуха, а переносится ими.

У детей представления о звуке еще более овеществленные. В одном из исследований участников в возрасте от шести до десяти лет спрашивали, имеет ли звук массу, постоянство и вес[79]79
  Mazens and Lautrey, 2003.


[Закрыть]
. Вопросы формулировали, например, так: «Почему звуки слышно сквозь стену?» (Если у звука есть масса, это настоящая тайна.) «Как далеко звуки уходят от своего источника?» (Если звук обладает постоянством – наверное, довольно далеко.) «Становятся ли часы чуть легче с каждым ударом?» (Если у звука есть вес – так и должно быть.) Почти все дети приписывали звуку массу и утверждали, что звуки обходят стены или проникают через трещины, а не проходят через саму стену. Некоторые наделяли звуки весом и постоянством, утверждая, что они будут путешествовать бесконечно, а бьющие часы становятся все легче.

Эти ответы не случайные. Они развиваются по определенной схеме. Изначально дети приписывают звуку все три свойства – массу, вес и постоянство. Затем они начинают пересматривать эти характеристики одну за другой. Сначала они перестают приписывать звукам постоянство, потом вес и, наконец, массу (это происходит не всегда). Очевидно, что непостоянное вещество представить себе легче, чем невесомое, а невесомое – проще, чем не имеющее массы. Чем, в конце концов, было бы вещество без массы? Та же схема проявляется и в детских представлениях о тепле[80]80
  Mazens and Lautrey, 2004.


[Закрыть]
. Изначально дети приписывают теплу массу, вес и постоянство, потом только массу и вес, потом только массу. Такие параллели четко показывают, что дети представляют звуки и тепло как вещества, а не как энергию. Изначально для них это полное подобие материальных веществ, а позже – нечто более абстрактное, но по-прежнему похожее на вещество.

Детские представления о том, как человек воспринимает звуки, тоже выдают «вещественные» взгляды. В науке процесс восприятия звука описывается довольно прямолинейно. Звуковые волны попадают в ухо и заставляют вибрировать барабанные перепонки. Оттуда вибрации передаются по ряду косточек в улитку – орган, преобразующий их в нервные импульсы. Как работало бы восприятие, если бы звук был веществом? Возможно, ухо действовало бы как воронка для «частиц звука», собирало их и направляло в мозг. Эту версию, однако, высказывают не так часто. Обычно делают предположение, что уши выявляют звук активно, а не пассивно его принимают. Они как бы достают наполняющие среду образцы звуков с помощью некоего невидимого излучения. Этот взгляд – «экстрамиссия» – хорошо демонстрирует следующий разговор между исследователем естественно-научного образования и десятилетним ребенком:


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации