Электронная библиотека » Эндрю Штульман » » онлайн чтение - страница 6

Текст книги "Сбитые с толку"


  • Текст добавлен: 8 апреля 2020, 10:41


Автор книги: Эндрю Штульман


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 20 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Если задачники не помогают улучшить понимание движения, то что же помогает? Многие исследователи, изучавшие преподавание физики, предлагали обучение в микромире – виртуальной среде, где физические законы усваиваются благодаря симуляции взаимодействий и экспериментов[142]142
  Masson and Vazquez-Abad, 2006; White, 1984.


[Закрыть]
. Такой подход имеет сразу несколько привлекательных черт. С его помощью можно проиллюстрировать любые законы физики, не только ньютоновские. Можно имитировать физические взаимодействия, которые не получится показать в классной комнате. Можно измерить любые физические параметры, не ограничиваясь секундомером и линейкой. По своему образовательному потенциалу микромиры далеко превосходят старую скучную реальность.

Возможно, виртуальные миры привлекательны. Но эффективны ли они? В одной работе этот вопрос был рассмотрен на примере популярной компьютерной игры Enigmo, в которой игроку нужно направлять падающие капли из одной части микромира в другую, манипулируя местом, куда они падают[143]143
  Masson, Bub and Lalonde, 2011.


[Закрыть]
. Капли подчиняются ньютоновским принципам, в том числе, вопреки стойкому неверному представлению, следуют по параболической траектории. В исследовании участвовали ученики средней школы. Одна половина шесть часов на протяжении месяца играла в Enigmo, а другая – в стратегию Railroad Tycoon, где никаких физических принципов нет. В конце обе группы прошли получасовое занятие, посвященное законам Ньютона. Концептуальное понимание движения измеряли трижды: до и после компьютерных игр и после занятия.


Рис. 5.4. Компьютерные игры, построенные на законах Ньютона, – например, эта, где надо направлять капельки воды по параболическим траекториям, – мало помогают ученикам узнавать и применять эти принципы за пределами игровой среды


Как и предполагалось, у детей, игравших в Enigmo, результаты ко второму тесту улучшились, но всего на 5 %. В то же время занятия физикой повысили результаты на целых 20 % и принесли такую же пользу ученикам, игравшим в Railroad Tycoon. Другими словами, тридцать минут занятий оказались в несколько раз эффективнее, чем шестичасовое погружение в микромир, действующий согласно изучаемым принципам. Аналогичные результаты наблюдались и при использовании других микромиров[144]144
  Miller, Lehman and Koedinger, 1999; Renken and Nunez, 2013; Zacharia and Olympiou, 2011.


[Закрыть]
. В лучшем случае они обеспечивали те же результаты, что и стандартное обучение, а в худшем – оказывались пустой тратой времени, давая знания, которые не применялись за пределами игры.

То, что знания, приобретенные в микромирах, не применяются в реальном мире, имеет много плюсов. Дело в том, что популярные компьютерные игры направлены прежде всего на развлечение и редко иллюстрируют законы Ньютона. Возьмите Super Mario Brothers для Nintendo. Марио и его братец Луиджи не сохраняют горизонтальной скорости. Когда они подпрыгивают вертикально вверх, платформа выезжает у них из-под ног, а предметы с движущихся платформ падают прямо вниз. Какие-то объекты подвержены действию гравитации, какие-то – нет. Гравитация вообще работает в игре непоследовательно, позволяя Марио прыгать в два раза выше своего роста, а затем падать в восемь раз быстрее, чем надо, учитывая скорость подъема[145]145
  Orwig, 2015.


[Закрыть]
. Конечно, игроку вряд ли придет в голову, что можно прыгнуть выше собственного роста только потому, что у Марио это получается: это знание отправляется в карантин и используется только в данной игровой вселенной. Ученики, играющие в Enigmo, точно так же отправляют в карантин знания законов Ньютона, которые приобрели в ходе игры.

Возможно, микромиры – неэффективный инструмент обучения, потому что виртуальный опыт слишком оторван от реальности. Многие педагоги уверены, что косвенный опыт – компьютерные игры, документальные фильмы, лекции, учебники – бледнеет по сравнению со знаниями, полученными прямо из жизни. Они считают, что осязаемый, подлинный опыт критически важен для осмысления и долгосрочного удержания знаний. Это мнение, однако, не подтверждается исследованиями. Несколько работ показало, что прямой опыт не лучше косвенного (например, инструктажа) в обучении абстрактным идеям, в частности законам Ньютона. Проблема именно в том, что для усвоения этот опыт нужно вывести на абстрактный уровень[146]146
  Kirschner, Sweller and Clark, 2006.


[Закрыть]
.

Мэгги Ренкен, занимавшаяся вопросами обучения, провела исследование, которое прекрасно демонстрирует неэффективность живого опыта[147]147
  Renken and Nunez, 2010; Klahr and Nigam, 2004.


[Закрыть]
. Ее группа сравнивала прямой и косвенный подходы к преподаванию принципа, что предметы падают с одинаковой скоростью независимо от массы. Участников – учеников средних классов – разделили на две группы. Одна группа провела серию экспериментов с шарами и уклонами: ученики меняли массу катящегося вниз шара и наклон, чтобы определить, какие переменные влияют на скорость. Другая группа читала об этих экспериментах – методах, результатах и следствиях, – но сама их не ставила. В результате лишь у второй группы обнаружилось понимание, что предметы падают с той же скоростью независимо от массы. В отличие от объяснений, живое наблюдение за шарами различной массы, движущимися по уклону с той же скоростью, не повлияло на уже имеющееся убеждение, что большие предметы должны падать быстрее, чем маленькие. Прошедшие же обучение ученики помнили и могли применить усвоенный принцип не только в день обучения, но и спустя три месяца.

На первый взгляд эти результаты удивляют. Почему ученики оказались восприимчивее к информации, полученной из вторых рук, а не к собственным наблюдениям? Однако если подумать, так и должно быть. Если бы живой контакт был достаточен для формулировки физических принципов, все осваивали бы их самостоятельно еще до школы, но когнитивные искажения – например, представление, что движение отличается от состояния покоя или что движение подразумевает силу, – заставляют нас не обращать внимания на эти принципы в повседневной жизни, даже если эксперимент поставлен руками. Если вспомнить об истории науки, нелепо думать, что ученики после получасового эксперимента сформулируют законы движения, для открытия которых физикам потребовались сотни лет наблюдений и опытов.

Тем не менее живое взаимодействие с физическими объектами небесполезно и очень способствует усвоению материала при условии правильного обучения. Один из таких методов был разработан ученым Джоном Клементом[148]148
  Clement, 1993.


[Закрыть]
. Он предлагает не рассчитывать, что контакт с физическими системами подтолкнет учеников к открытию основополагающих принципов, а направить их внимание на эти принципы путем упорядоченных сравнений и аналогий.

Возьмем неочевидную идею, что поверхности – например, стол или прилавок – прилагают направленную вверх силу нормальной реакции на лежащие на них предметы. Большинство из нас не считают, что стол толкает книгу вверх, однако согласятся, что фонтанчик воды толкает вверх руку. Клемент называет последний случай якорем интуиции, то есть правильной интуитивной догадкой, с которой можно сравнить неправильную, которую нужно пересмотреть. Из того, что вода толкает вверх руку, еще не следует, что стол толкает вверх книгу. Концептуальный промежуток слишком велик. Его можно преодолеть благодаря тому, что Клемент называет примерами-мостами: от книги на фонтанчике к книге на толстом куске пенистого материала, затем к книге на гибком куске фанеры и, наконец, к книге на столе. С каждым шагом хочется увидеть направленную вверх силу там, где раньше она не пришла бы в голову. Мосты достигают цели, когда человек понимает, что даже стол прилагает действующую вверх силу к предметам, которые поддерживает.


Рис. 5.5. Чтобы объяснить, что поверхности прилагают направленную вверх силу нормальной реакции к предметам, которые поддерживают, полезно построить мост от этой мысли к интуитивно понятной идее, что струя воды прилагает направленную вверх силу к руке


Мосты можно использовать и в других противоречащих интуиции случаях. Чтобы объяснить, что все поверхности – даже такие гладкие, как керамика и сталь, – создают трение, можно начать с действия-якоря: потереть одним куском строительной шкурки о другой. Затем нужно перейти к случаям-мостам: кускам вельвета и кускам фетра. Чтобы объяснить, что спутники вращаются вокруг планеты, потому что их траектория постоянно изгибается ее гравитацией, можно начать с якоря – ядра, которое вылетело горизонтально земле из пушки на башне и падает по дуге. После этого нужно построить мосты – всё более высокие башни. Ядро будет описывать все более и более длинную дугу и при достаточной высоте и скорости начнет вращаться вокруг Земли, так как дуга станет бесконечной.

Аналогии-мосты были впервые описаны еще Ньютоном в разделе «Математических начал натуральной философии», посвященном мироустройству. Они бывают очень поэтичны и делают противоречащее интуиции интуитивным, а непостижимое – постижимым. Неудивительно, что подход оказался очень эффективен. Клемент сравнил уроки с применением и без применения «мостов» и обнаружил, что аналогии улучшают усвоение противоречащих интуиции физических принципов в два раза[149]149
  Clement, 1993.


[Закрыть]
. Связывая туманные проявления физических принципов с более прозрачными, мосты позволяют уловить принципы, которые в противном случае остались бы незамеченными.

* * *

Успех аналогий Клемента заставляет задуматься о природе наших исходных убеждений: рассматривать ли их как помеху или как ресурс для освоения научного знания? Клемент придерживается второй точки зрения. В статье, озаглавленной «Не все предубеждения ошибочны»[150]150
  Clement, Brown and Zietsman, 1989.


[Закрыть]
, он утверждает, что последствия таких взглядов для преподавания научных дисциплин неоднозначны. Если это ресурс, то исходные убеждения нужно подчеркивать и использовать в качестве мостов к сложным идеям. Если это препятствие, то их надо опровергать и обходить.

В предыдущих главах мы столкнулись с примерами обеих стратегий. В третьей главе «вещественные» представления о тепле обходили, вводя альтернативные рамки осмысления этой темы – эмерджентные процессы. Во второй главе было описано обучение, раскрывающее природу материи путем построения моста от целостного восприятия веса и плотности к научному представлению о них как об удельных величинах.

Можно ли утверждать, что какой-то из этих подходов всегда лучше? Мнения исследователей образования по этому вопросу разделились. Некоторых заботит прежде всего эффективность преподавания в классной комнате, в то время как другие интересуются и более широкими, эпистемологическими проблемами. Например, Андреа ДиСесса[151]151
  Андреа ДиСесса – профессор педагогики и автор книги Turtle Geometry («Геометрия черепахи»). Прим. ред.


[Закрыть]
уверен, что называть исходные убеждения учеников «ложными» нежелательно. В одной из статей он пишет, что исследователи слишком часто иронизируют над учениками и даже высмеивают и осуждают их представления выражениями вроде «псевдоконцепция», приравнивая их к невежеству и отсталости[152]152
  DiSessa, 2008.


[Закрыть]
. Такая практика, по мнению ДиСессы, ошибочна, поскольку многие наивные представления «становятся элементом очень качественных технических навыков. Богатый набор наивных восприятий – это плодотворный бассейн ресурсов. Из этих кирпичиков может сложиться не только теория импульса, но и лучшие сочетания».

Возможно, такой подход мягче по отношению к новичкам, однако он приукрашивает их воззрения. Некоторые предубеждения и вправду ложны. Тяжелые предметы не падают быстрее легких, на летящее тело не действует больше сил, чем на лежащее, предметы не падают с движущегося носителя прямо вниз, а вылетев из изогнутой трубы, не описывают изогнутых траекторий. Эти ложные представления проявляются в разных контекстах, у разных людей, на разных стадиях развития и в разные исторические периоды. Объединяет их «импульс» – мнимая сила, которую якобы может приобрести предмет.

Импульс – это не продукт плохого сочетания в целом правильных представлений, а корень неточных воззрений. Отрицать, что основанные на импульсе убеждения ложны – это значит игнорировать эмпирические исследования этих убеждений. Однако то, что теория импульса ошибочна, еще не значит, что ошибочны все исходные представления. Аналогии-мосты Клемента эффективны потому, что очевидно не являются ложными. Примеры не содержат в себе примеси импульса и, может быть, именно поэтому не поддаются такой интерпретации.

Учитывая разнообразие предубеждений, не стоит дебатировать о том, полезны они или вредны. Некоторые из них точны, другие нет, и отличить одни от других можно только эмпирически, оценивая их влияние на наши рассуждения. Аналогично эффективность конкретных стратегий обучения можно проверить только на практике. Иногда полезнее обойти исходные представления, а иногда – использовать их как мост. Все зависит от того, о каком воззрении идет речь.

Обход исходных представлений и построение мостов не исключают друг друга. У этих стратегий разная цель, но они комплементарны. Мосты помогают интуитивно понять неочевидные научные идеи (например, силу нормальной реакции), но не объясняют их с точки зрения глубоких механизмов (молекулярных связей) и широких рамок (третьего закона Ньютона). В то же время стратегия обхода создает предпосылки для объяснения научных идей, но не делает их интуитивно понятными. Педагоги, таким образом, могут последовать рекомендациям Клемента и использовать обе стратегии на одном уроке. Мир сложен, и чтобы точно его понять, простых подходов мало.

Глава 6. Космос
Какую форму имеет мир вокруг нас? Каково его место в космосе?

Если, как многие люди в прошлом, вы всю жизнь провели в радиусе одного дня пути от дома, то вам наверняка будет интересно, что еще есть вокруг. Что лежит за границами нашей цивилизации? Какое место в мире она занимает? Какова форма и размеры мира? Откуда этот мир взялся?

Такие вопросы породили много моделей Вселенной, каждая из которых по-своему завершала контуры неизведанного мира[153]153
  Harrison, 1981.


[Закрыть]
. Древние египтяне верили, что люди населяют пространство между богом земли и богом неба, которые слились в вечных объятиях. Древние ирокезы рассказывали, что люди живут на спине огромной черепахи, плывущей в первобытном море. Викинги полагали, что находятся в одном из многих царств, расположенных в исполинском дереве, которое обвивает гигантский змей. Древние евреи представляли мир в виде округлого острова с куполообразным небом, окруженным со всех сторон водой.

Примечательно, что во всех этих картинах мира отсутствует мысль, что Земля имеет форму шара. Древним это не приходило в голову, да и вряд ли могло прийти. Кривизна Земли почти незаметна невооруженному глазу и противоречит опыту передвижения по ней. Идея, что плоская поверхность находится на шаре и что наше евклидово существование лишь иллюзия, кажется почти безумной. Кроме того, есть проблема гравитации. С младенчества люди знают, что без опоры предметы падают. Из этого логически следует вывод, что если бы Земля была круглой, то на «нижней» ее стороне ничего не могло бы удержаться (мы обсуждали это в четвертой главе).


Рис. 6.1. Древние евреи верили в плоскую Землю, плавающую в большом океане под небесным куполом


Человечеству в целом истинная форма Земли была известна со II века до н. э. благодаря наблюдениям Аристотеля, заметившего, что созвездия на экваторе отличаются от созвездий в более северных широтах, а также наблюдениям Эратосфена, что палки равной высоты, расположенные далеко друг от друга, в одинаковое время дня дают тени разной длины[154]154
  Couprie, 2011.


[Закрыть]
. Однако не все люди усвоили эту истину. Даже сегодня миллионы людей забывают, что находятся на поверхности шара. Большинство из них – дети.

Как и взрослые представители древних культур, дети не замечают кривизны земной поверхности и видят, что без опоры предметы падают без очевидной причины. Сегодня они окружены вещами, недоступными взрослым прошлого: картами, глобусами, моделями Солнечной системы, кинофильмами о космических путешествиях, фотографиями Земли из космоса. Но правильно ли они всё это интерпретируют? Как сочетается знание о картах и глобусах с повседневным опытом передвижения по плоской Земле и ощущением тянущей вниз гравитации?

Понимание приходит далеко не сразу. Дети охотно запоминают факт, что Земля круглая, однако интерпретируют его по-разному. В конце концов, у слова «круглый» много значений. Круглыми бывают и пицца, и пончик, и беговая дорожка, и пенек. Все это круглое, но не в таком смысле, как Земля. «Круглый как мяч»[155]155
  Nussbaum and Novak, 1976; Vosniadou and Brewer, 1992.


[Закрыть]
 – далеко не первая мысль о форме Земли, которая приходит в голову ребенку. Это видно по их рисункам. Если попросить дошкольника нарисовать Землю, он почти наверняка изобразит круг, но потом начнет добавлять на нее различные объекты – людей, дома, Солнце, Луну – и сделает забавные ошибки.

Некоторые дети помещают все земные и небесные объекты сверху: люди на этих рисунках находятся на самом внешнем краю земли, а Солнце и Луна светят на них сверху вниз. Кроме того, верхняя часть круга получается более плоской, чем все остальное. На других рисунках Солнце и Луна размещены не просто сверху, а вокруг Земли, зато люди находятся в странном месте: на плоской линии под круглой Землей. Когда детей просят объяснить рисунок, они говорят, что Земля круглая, как Солнце и Луна, но люди живут не на Земле как планете, а на земле в смысле поверхности. Иногда дети рисуют плоскую линию внутри круга и помещают всех людей на нее. Солнце и Луна при этом находятся над линией, но внутри круга. Такие дети, видимо, представляют себе верхнюю часть круга как границу небосвода, а людей поселяют на некой плоскости внутри полой Земли, а не на ее искривленной поверхности.

Задачу с рисунками психолог Стелла Восниаду и ее коллеги использовали в исследованиях психических моделей Земли. Они десятилетиями фиксировали виды и последовательность появления детских представлений[156]156
  Vosniadou and Brewer, 1992, 1994; Vosniadou, Skopeliti and Ikospentaki, 2004, 2005; Diakidoy, Vosniadou and Hawks, 1997; Samarapungavan, Vosniadou and Brewer, 1996.


[Закрыть]
. Интересно то, что дети, не уловившие, что Земля – шар, строят альтернативные теории. Эти теории ошибочные и ограниченные, но тем не менее непротиворечивые и продуктивные.

В этой главе я буду называть детские представления о Земле словом модель, а не теория, чтобы подчеркнуть их пространственный характер. Модели служат тем же самым целям, что и теории: объяснять повседневные наблюдения и делать предсказания. Они имеют и другие черты интуитивных теорий, например встречаются у разных людей, в разных культурах, а также плохо вытесняются научным знанием.

Оставим вопросы терминологии. Почему ученые пришли к выводу, что дети строят альтернативные модели Земли? Рисунки не лучшее доказательство. Многие дети просто не умеют рисовать, не говоря уже о том, чтобы изображать на бумаге объемные объекты. Кроме того, по отдельным рисункам сложно судить о связности, внутренней непротиворечивости детских представлений. Для этого нужно оценить их под разным углом, многомерно, с помощью разных видов реакций. Восниаду и ее коллеги так и поступили. Они предлагали шестилетним детям много разнообразных заданий: рисунки, мысленные эксперименты, оценки истинности, просьбы объяснить. Например, ребенку нужно было провести такой мысленный эксперимент: подумать, где он окажется, если будет очень долго идти, никуда не сворачивая. Получались такие беседы:

Ученый: Если ты будешь много дней идти вперед, где ты окажешься?

Ребенок: В другом городе.

Ученый: Хорошо. А что будет, если идти все дальше и дальше?

Ребенок: Будут другие города, страны, а потом когда-нибудь дойду до края земли.

Ученый: То есть земля закончится?

Ребенок: Да. И когда туда дойдешь, надо быть поосторожнее.

Ученый: Потому что можно упасть с края?

Ребенок: Да. Если будешь там играть.

Ученый: А куда ты упадешь?

Ребенок: Вниз, на другие планеты.

В другом задании детям показывали фотографию пейзажа и просили объяснить, почему Земля на ней выглядит плоской, хотя на самом деле она круглая. В круглую Землю верили почти все дети, хотя неясно, правильно ли они понимали смысл этого слова. Вот образец беседы, к которой подтолкнула фотография ландшафта:

Ученый: Какой формы Земля?

Ребенок: Круглая.

Ученый: А почему тогда она кажется плоской?

Ребенок: Потому что мы находимся внутри Земли.

Ученый: Что ты имеешь в виду?

Ребенок: Внизу, как на дне.

Ученый: А Земля круглая как мячик или круглая как толстая оладья?

Ребенок: Как мячик.

Ученый: То есть если люди живут внутри нее, они как будто живут внутри мячика?

Ребенок: Да. Как в мячике. В середине.

Ответы этого ребенка могут показаться бессмыслицей, но только если сравнивать их со сферической моделью Земли. Есть ли какая-то модель, в которой разумно помещать людей «внутрь», «в середину»?

По мнению Восниаду, такая модель есть: «полая сфера», в которой Земля похожа на «снежный шар» или круглый аквариум. Согласно этому представлению, Земля в целом имеет сферическую форму, однако ее верхняя половина полая, а нижняя – образует внутри плоскость, на ней и живут люди. Круглые бока сферы образуют небосвод. Очень важно, что дети, утверждающие, что люди живут внутри Земли, делают рисунки третьего типа из описанных выше, помещая Солнце и Луну внутри самой Земли, и отрицают, что можно упасть с ее края, потому что, по словам одного ребенка, «скорее всего, на что-нибудь наткнешься… на конец неба».

Кроме полой сферы, Восниаду выделила у маленьких детей еще две популярные несферические модели: «уплощенной сферы» и «двух шаров». Эти модели изображены на первом и втором типах рисунков. Дети, которые видят Землю как уплощенный шар, обычно рисуют ее не как идеальный круг, а как овал. Обитаемыми они считают только плоские части Земли и отрицают, что могут упасть с ее края, потому что поверхность представляется им непрерывной.


Рис. 6.2. Дети, которые еще не узнали, что Земля имеет форму шара, часто придумывают собственные модели, пытаясь примирить восприятие земли как плоской поверхности и согласие с господствующим представлением, что Земля круглая


Дети, верящие в двойную модель, проводят четкое различие между Землей как планетой и землей как поверхностью. Первую они рассматривают как отдельное небесное тело, аналогичное Солнцу или Луне, а вторую – как место, где живут люди. Если спросить такого ребенка, можно ли упасть с Земли, он может согласиться, но добавит, что ничего страшного не произойдет, потому что человек просто «окажется на земле». Очень красноречивую историю об этой модели рассказала мне мама одного дошкольника. Она не подозревала, что сын путается в вопросах космологии, пока однажды звездным вечером он не показал ей на небо и не заявил: «Мам, по-моему, я вижу Землю!»

* * *

Детские несферические модели примечательны своей последовательностью. Дети разрабатывают их самостоятельно: никто не учит дошкольника представлять Землю в виде космического аквариума или отдельного небесного тела над головой. Никто не просит представить, где он окажется, если будет постоянно идти по прямой, или почему Земля из космоса выглядит круглой, а с поверхности – плоской. И тем не менее дети способны непротиворечиво рассуждать на основе своих моделей. Не удивительно, что если спросить ребенка, какой Земля формы, то он автоматически повторит то, что ему много раз твердили: «круглая». Но примечательно, что если задать вопрос, над которым он никогда раньше не задумывался, то ответ будет стабильно указывать на основополагающую психическую модель.

Другая примечательная черта детских представлений – их связность. В рамках одной модели получается разрешить противоречия между информацией, полученной посредством культуры, и информацией, приобретенной из опыта – например, примирить вторичное знание, что Земля круглая, с первичным знанием о плоской земле и тянущей вниз гравитации. Восниаду называет детские модели полой, уплощенной и двойной Земли синтетическими, чтобы подчеркнуть, что они совмещают несовместимые на вид элементы знания. Синтетические модели складываются в ходе развития и чаще встречаются у детей постарше (от семи до девяти лет), чем у маленьких (от четырех до шести лет). В младшем возрасте дети обычно представляют себе Землю просто как большой, плоский, ограниченный диск, похожий на пиццу[157]157
  Vosniadou, 1994a.


[Закрыть]
.

Некоторые психологи подвергают выводы Восниаду сомнению и считают идею, что в начальной школе дети строят внутренне непротиворечивые и логически связные модели Земли, слишком далеко идущей[158]158
  Hannust and Kikas, 2010; Nobes, Martin and Panagiotaki, 2005.


[Закрыть]
. В конце концов, в этом возрасте они едва умеют узнавать время по часам и считать деньги. Критики утверждают, что последовательность проявляется не в самих детских реакциях, а в их интерпретации экспериментатором.

Вспомните, что детям задавали вопросы на несколько тем, чтобы выявить глубинные убеждения – определить, входит ли набор реакций в единую психическую модель. Критики указывают на то, что объединение таких реакций может проистекать из самой беседы. В частности, ученый, полагая, что ребенок исповедует модель полой Земли, может непреднамеренно изменить вопросы в ходе интервью и просить дать объяснения только в тех случаях, когда ответы не согласуются с моделью полого шара.

Чтобы устранить этот недостаток открытых вопросов, можно проводить исследование в виде закрытых тестов многократного выбора. Как и отмечали критики, дети действительно проявляют в этом случае меньшую последовательность и не всегда выбирают ответы, согласующиеся с несферической моделью[159]159
  Panagiotaki, Nobes and Banerjee, 2006; Straatemeier, van der Maas and Jansen, 2008; Vosniadou, Skopeliti and Ikospentaki, 2004.


[Закрыть]
. Это открытие, однако, не должно удивлять. В тестах многократного выбора легко дать правильный ответ, даже не понимая, почему он верен. Давно известно, что вопросы с набором ответов проще, чем открытые, потому что правильный ответ достаточно узнать. А дети окружены правильными ответами каждый день. В школе стоят глобусы, а не модели полых сфер, а в учебниках полно фотографий круглой, а не овальной Земли. Тесты многократного выбора проверяют не понимание информации о Земле, а то, помнит ли ребенок эту информацию[160]160
  Vosniadou, Skopeliti and Ikospentaki, 2005.


[Закрыть]
.

Чтобы не просто знать, но и осознавать, что Земля – шар, нужно понять, почему люди не падают с другой стороны Земли и почему поверхность сферической Земли выглядит плоской. Восниаду однажды привела мне прекрасный пример разницы между знанием и пониманием. Проводя исследования, она решила побеседовать с собственной пятилетней дочерью и обнаружила у нее модель уплощенного шара. После собеседования дочь осталась в комнате, а Восниаду начала проводить такую же беседу с девочкой постарше. У нее обнаружилась сферическая модель Земли.

После того как девочка вышла, дочь Восниаду попросила пройти исследование еще раз. Теперь она заявила, что Земля круглая как шар, а когда мама попросила слепить ее, она скатала идеальный шарик. Дочь гордо демонстрировала новообретенные знания, пока не наткнулась на вопрос, на который у нее не нашлось ответа: раз Земля круглая, почему ее поверхность на фотографии выглядит плоской? Не в состоянии разрешить противоречия между новой информацией (что Земля – это шар) и тем, что казалось ей правдой (что поверхность Земли плоская), дочка нажала ладошкой на слепленный шарик и превратила его в уплощенную сферу – модель, которая проявлялась у нее всего несколько минут назад.

Всё более и более формальные исследования созвучны этой истории и подтверждают, что для обучения детей сферическим моделям Земли нужно разобраться с допущениями, которые подталкивают их придумывать несферические. В одном из них ученые составляли специальные пособия, в которых были разобраны две проблемные темы: предположение, что Земля плоская, и то, что гравитация тянет предметы вниз[161]161
  Hayes, Goodhew, Heit and Gillan, 2003.


[Закрыть]
. В первом пособии объяснялся принцип перспективы (в частности, что вид больших предметов меняется по мере приближения к ним), а во втором – что гравитация работает как магнит и тянет предметы на поверхности земли не вниз, а внутрь. Исследователи использовали эти пособия в работе с шестилетними детьми, которые еще не были твердо уверены, что Земля – это шар. Часть детей получали оба руководства, а другие только одно из них.

Перед обучением участники придерживались тех же несферических моделей Земли, которые выявила Восниаду: полых, уплощенных и двойных. После обучения у многих детей сложилась сферическая модель, но только в том случае, если они получали оба пособия. Дети, получавшие одно пособие, сохраняли исходные представления. Объяснение принципов перспективы могло поколебать веру детей, что поверхность земли плоская, но не давало им ответа, как можно жить на нижней поверхности шарообразной Земли, не падая с нее. Второе руководство, в свою очередь, могло объяснить, что гравитация тянет не вниз, но само по себе не давало ответа, почему круглая Земля воспринимается как плоская. Чтобы ребенок отбросил свои несферические модели, нужно решить обе проблемы, которые по отдельности ни одного из этих вопросов не вызывают.

* * *

Представьте, что вы смотрите на Землю из космоса, за пределами ее атмосферы. Лишь немногим посчастливилось увидеть нашу планету с такой выигрышной позиции, и тем не менее несложно представить себе, как она оттуда выглядит. Нашему воображению помогают культурные артефакты: глобусы, фотографии, рисунки, модели. Благодаря им мы представляем то, чего не видели и не могли видеть воочию. Однако они не так уж объективны. Подлинная модель Солнечной системы, например, должна иметь полтора с лишним километра в длину, если Землю представить размером с теннисный мячик, как это часто делают. На глобусах и картах принято изображать Северное полушарие выше Южного, то есть север находится «сверху», а юг – «снизу». Подумайте, соответствует ли ваш мысленный образ этой конвенции?

Положение полушарий можно считать произвольным не только потому, что Земля круглая, но и потому, что она подвешена в космосе и не имеет ни внутренне (как у стула), ни внешне заданной оси ориентации (как у кирпича в кирпичной стене). И тем не менее люди по всему миру соглашаются с принятыми стандартами, когда изображают или рисуют нашу планету. Земля действительно вращается вокруг своей оси, но эту ось не обязательно считать расположенной вертикально, так, как почти на всех картах и глобусах. В этом мощь культуры. Она незаметно, но существенно формирует наши психические представления, начиная с самого детства. Дети во всем мире видят плоскую Землю и чувствуют тянущую вниз гравитацию, и это ограничивает спектр их моделей независимо от их культурной принадлежности. Но при этом дети погружены в окружающую их культуру, которая вносит в эти модели вариации, хотя и на общую тему.

Рассмотрим представления индийских детей. Большинство взрослых в Индии знают, что Земля – шар, однако индийское общество все еще пронизывают элементы древних воззрений, согласно которым Земля находится в мистическом океане, разделенном на слои воды, молока и нектара[162]162
  Samarapungavan, Vosniadou and Brewer, 1996.


[Закрыть]
. Когда исследователи беседовали о форме Земли с учениками начальной школы в Хайдарабаде, они обнаружили, что индийские дети, как и американские, строили модели полой сферы и уплощенной сферы. Однако были некоторые отличия. В Америке дети воображали, что сферы плавают в космосе, а в Индии часто представляли те же сферы плавающими в воде и поддерживаемыми снизу своего рода океаном.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации