Автор книги: Геннадий Горелик
Жанр: Физика, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 19 (всего у книги 23 страниц)
Подарок судьбы Андрея Сахарова
К Андрею Сахарову мировая слава пришла не за его научные достижения. Она на него обрушилась в 1968 году, сразу после того, как на Западе опубликовали его большую статью “Размышления о прогрессе, мирном сосуществовании и интеллектуальной свободе”. Семь лет спустя его наградили Нобелевской премией мира за
убедительность, с которой он провозгласил, что нерушимые права человека дают единственный надежный фундамент для подлинного и устойчивого международного сотрудничества” и за “бесстрашную личную приверженность к отстаиванию фундаментальных принципов мира между людьми.
Преображение секретного физика, “отца” советской водородной бомбы, в общественного деятеля и правозащитника озадачивало и западных наблюдателей, и тех, кто знал Сахарова со студенческих лет. Советским пропагандистам, однако, надлежало объяснить народу, что случилось с академиком, трижды Героем и лауреатом. Одно из объяснений звучало так: “Сахаров решил возместить прогрессировавшую научную импотентность лихим ударом в другой области”.
Академик и трижды Герой Андрей Сахаров за вечерней партией шахмат с женой Клавдией, вторая половина 1960-х годов, когда Сахаров выдвинул свои главные научные и общественно-политические идеи.
На самом же деле в 1967 году – накануне “лихого удара в другой области” – Сахаров опубликовал две свои самые яркие чисто научные идеи. И это, укрепив его веру в свои силы, сыграло роль в его поворотном жизненном решении.
Его изобретательский талант и чувство ответственности отделили его от чистой науки почти на двадцать лет, то есть почти навсегда, если говорить о способности выдвинуть принципиально новую идею. Для него это был больной вопрос. Оглядывая свою жизнь, шестидесятилетний Сахаров в “рукописной беседе” с женой – укрываясь от ушей КГБ – написал о своем возвращении в чистую науку в “преклонные” сорок с лишним лет:
На самом деле, подарок судьбы, что я смог что-то сделать после спецтематики. Никому, кроме Зельдовича и меня, это не удалось. И в США тоже ни Теллер, ни Оппенгеймер не смогли вернуться к большой науке. Там исключение – Ферми. Но он быстро умер и он – гений.
Вернуться в чистую науку Сахарову помог общительный Зельдович. Уйдя из ядерного проекта в 1963 году, он Сахарову заменял участие в научных семинарах и общение с мировой наукой. И первую задачу в космологии Сахаров, можно сказать, получил из рук Зельдовича. Но решил он ее сам и запомнил день, когда это случилось, – 22 апреля 1964 года: “…Я вновь уверовал в свои силы физика-теоретика. Это был некий психологический разбег, сделавший возможными мои последующие работы тех лет”.
Его новая уверенность видна в “программе на 16 лет”, которую он составил для себя в 1966 году. Почему 16? Возможно, потому, что предыдущие 16 лет провел на Объекте – в секретном ядерном центре, в отрыве от высокой науки. Видимо, по той же причине программа включила в себя 16 проблем, начиная с солидной “Фотон + Гравитация” и кончая загадочным “Мегабиттроном”.
Особого внимания заслуживает пункт 14 в этой программе. Правда, думая о сложных физико-математических материях, академик пропустил восьмой пункт. А значит, пункт 14 становится фактически 13-м, чем можно объяснить его особый характер. Похоже, поставив себе цель набрать 16 задач, Сахаров задумался в этом месте, поставил вопросительный знак и, вспомнив, что наука плохо поддается планированию, дописал: “Именно это я и буду, наверно, делать”. Он оказался прав: “именно этим”, незапланированным, он занялся в том же, 1966 году и даже уместил в этот пункт две самые яркие свои теоретические работы.
Во-первых, он объяснил, почему во Вселенной частиц гораздо больше, чем античастиц, и то была самая успешная из его чисто физических идей. А во-вторых, предложил новый подход к гравитации, в которой усмотрел проявление ультрамикроскопических свойств вакуума.
Симметрии асимметричной Вселенной
Научный синоним слову “красота” – понятие “симметрия”, математически точное, важное в физике и, сверх того, наглядное. Простой пример – зеркальная симметрия бабочки: если ее отразить в зеркале, правое крыло станет на место левого, но никакой разницы не заметить. Всякая симметрия – это закономерность формы, в силу которой форма эта не меняется при каких-то переменах.
Такое свойство, выраженное на языке математики, стало инструментом физики в изучении устройства природы. Физика прошла долгий путь, прежде чем в своих законах разглядела проявления глубинных симметрий мироздания. Все знают, что вертикально поставленный и закрученный волчок стоит на одной точке и не падает. Но почему? Потому что не знает, куда упасть: все направления, поперечные его оси, равноправны – все направления в пространстве симметричны относительно этой оси. Такая симметрия определяет главный закон волчка – закон сохранения момента импульса.
Понятие симметрии – одно из самых работоспособных в физике. Поведение не только волчка, но и атома и атомной бомбы определяются симметрией. Теоретик всегда ищет максимально симметричное упрощение своей задачи. А всякий фундаментальный физический закон раскрывает некую симметрию природы. Если же обнаруживается какая-то асимметрия, то это – проблема для теоретика.
“Электродинамика Максвелла в применении к движущимся телам приводит к асимметрии, несвойственной самим явлениям”, – так Эйнштейн начал статью о теории относительности. Созданием этой теории он преодолел асимметрию, которая оказалась лишь видом сбоку на глубинную симметрию природы.
Другой триумф симметрии в физике обязан Полю Дираку. В конце 1920-х годов, стараясь соединить теорию относительности и квантовую механику, он получил элегантное уравнение для электрона. Вскоре, однако, обнаружилось, что уравнение описывало еще и другую частицу – в чем-то очень похожую на электрон, а в чем-то противоположную. По массе эта частица совпадала с электроном, а по заряду была противоположной. Настолько противоположной, что встреча этой частицы с электроном привела бы к их аннигиляции, то есть взаимоуничтожению.
Никаких частиц, кроме электронов и протонов, физика тогда не знала, но Дирак поверил в симметрию своего уравнения и предсказал новую частицу, назвав ее антиэлектроном. Вскоре экспериментаторы обнаружили в космических лучах такую частицу, а назвали позитроном – из-за ее позитивного заряда. Для теоретиков же главное свойство новой частицы – быть антикопией электрона. Позже были открыты другие элементарные частицы с их антикопиями, которым уже давали правильные имена: антипротон, антинейтрон, антинейтрино… Когда частица и ее античастица при встрече аннигилируют, рождаются новые пары частица-античастица или частицы света – фотоны, наследующие суммарную энергию родительской пары.
Мощь симметрии в объяснении реального мира убедила Дирака в том, что “физические законы должны обладать математической красотой”. А история его успеха – одна из любимых у физиков-теоретиков, включая Сахарова. Когда он как-то показывал Лидии Чуковской свою способность писать зеркально, то первым делом написал “электрон + позитрон = 2 фотона”. Затем написал ее имя-отчество одновременно двумя руками в противоположных направлениях. Она попыталась повторить его фокус, но, оказалось, что писать симметрично дается не всем.
Из архива Е.Ц. Чуковской
А если бы и Лидия Корнеевна владела обеими руками одинаково и писала бы научной латиницей, получился бы у них автограф бабочкой:
Зеркальная симметрия, или симметрия бабочки, причастна к самой успешной идее Сахарова в космологии. В 1966 году, уже составив себе научный план на 16 лет вперед, он обратил внимание на странную асимметрию: античастиц в окружающей нас Вселенной очень мало, хотя для теоретиков вещество и антивещество имели равное право на существование. После того как экспериментаторы в 1932 году открыли антиэлектрон-позитрон, следующую античастицу – антипротон – удалось наблюдать лишь 33 года спустя. И лишь в конце века экспериментаторы сумели из антипротонов и антиэлектронов сделать атомы антиводорода. Сделали всего несколько штук, и прожили эти атомы лишь миллиардные доли секунды – до первой встречи с обычным веществом и аннигиляции.
Поясняя в популярной статье, что такое антивещество, Сахаров указал, что “аннигиляция 0,3 г антивещества с 0,3 г вещества даст эффект взрыва атомной бомбы”, – вторая профессия дала о себе знать. Итак, соприкосновение двух таблеток с ноготок привело бы к такому же взрыву, как 20 тысяч тонн – десять эшелонов – обычной взрывчатки.
После такого пояснения уже не сочувствуешь экспериментаторам, создающим антивещество. Но можно посочувствовать теоретикам. Ведь все эксперименты с античастицами ничего не изменили в том теоретическом равноправии вещества и антивещества, о котором узнали еще в 1932 году. Как же свести концы с концами – теоретические с эмпирическими? Как объяснить, что равноправные вещество и антивещество так неравно представлены во Вселенной? На этот вопрос и искал ответ Сахаров.
Наиболее весомую часть вещества составляют ядерные частицы – протоны, нейтроны и их близкие родственники. Это семейство физики назвали барионами. А видимое отсутствие антибарионов назвали барионной асимметрией Вселенной.
Пока физики смотрели на Вселенную просто как на собрание всевозможных астрономических объектов, можно было думать, что вещество преобладает лишь в космических окрестностях Земли, а где-то есть и звезды, и планеты из антивещества. Астрофизики искали признаки антивещества в космосе. Писатели-фантасты устраивали драматические встречи земного космического корабля с неземным и, возможно, состоящим из антивещества. А остряки предложили способ узнать, не из антимира ли прилетел корабль, – если среди теоретиков там преобладают антисемиты.
Ситуация изменилась после открытия в 1965 году реликтового космического излучения. Даже скептики поверили, что к Вселенной можно относиться как к единому физическому объекту с историей, определяемой законами физики. Стало ясно, что Вселенная когда-то была очень горячей. Оставшееся от того времени реликтовое излучение остыло до температуры лишь на три градуса выше абсолютного нуля, но зато это излучение заполняет все пространство Вселенной. А обычное вещество сосредоточено в звездах и планетах, разделенных огромными расстояниями.
Если излучение и вещество пересчитать на частицы – фотоны и барионы, то окажется, что сегодня на один барион приходится около миллиарда фотонов – сегодняшних “еле теплых” фотонов.
А что было вчера? Вчера, когда Вселенная была меньше в размерах, фотоны – по законам физики – были горячее. И если углубиться в прошлое достаточно далеко, то был момент, когда энергии среднего фотона хватало, чтобы родить пару барион-антибарион. До того момента фотоны легко превращались в такие пары, а всякая пара при встрече так же легко превращалась в фотоны – аннигилировала. Поэтому в то горячее время подобных пар было примерно столько же, сколько фотонов. А значит, пар барион-антибарион было в миллиард раз больше, чем дошедший до наших дней избыток барионов над антибарионами. Нынешние барионы остались с тех пор, как фотоны остыли настолько, что их энергии уже не хватало на рождение новой пары.
Значит, в юной Горячей Вселенной барионов было лишь на одну миллиардную часть больше, чем антибарионов. Так что барионная асимметрия, присущая природе, не просто мала, а вызывающе мала.
Сахарову, во всяком случае, было “трудно представить себе”, что изначально, по природе вещей, на 1 000 000 000 фотонов приходилось столько же антибарионов, а барионов всего на одну штуку больше – 1 000 000 001. Такие изначальные соотношения, пояснял Сахаров, “режут глаз”: “Именно это обстоятельство (как видит читатель, из области интуиции, а не дедукции) и было исходным стимулом для многих работ по барионной асимметрии, в том числе и моей”.
Было оно стимулом и для Стивена Вайнберга, нобелевского лауреата, написавшего в своей книге о ранней Вселенной “Первые три минуты”:
Число барионов, приходившееся на один фотон, могло вначале иметь какую-то разумную величину, возможно, близкую к единице, а затем могло упасть до нынешнего малого значения из-за образования многих фотонов. Загвоздка здесь в том, что никому не удалось предложить механизм образования таких лишних фотонов. Я сам пытался что-нибудь придумать в этом роде, но безуспешно.
Лишь помянув некие “нестандартные возможности”, Вайнберг принял барионную асимметрию как факт, не поддающийся объяснению.
К выходу книги Вайнберга на русском языке в 1981 году стало ясно, что зря он проигнорировал нестандартную возможность, открытую Сахаровым в 1967-м. Этой возможности посвятил специальное дополнение Зельдович, под редакцией которого выходил русский перевод книги. Но и сам Зельдович, первым узнавший о сахаровской идее, долго считал ее слишком нестандартной, чтобы быть правильной. Сахаров вспоминает их разговор 1967 года:
Яков Борисович спросил, какая из моих чисто теоретических работ больше всего мне нравится. Я сказал: “Барионная асимметрия Вселенной”. Он как-то весь сморщился, сжался: “Это та работа, где барионный заряд не сохраняется и время течет в обратную сторону?” – “Да, та самая”. Зельдович промолчал, но было ясно, что он сильно сомневается в ценности этих моих идей.
Эти идеи Сахаров изложил в надписи на экземпляре статьи, подаренной близкому коллеге:
Из эффекта С. Окубо
при большой температуре
для Вселенной сшита шуба
по ее кривой фигуре.
О чем говорит этот научно-популярный стишок?
Три условия для ранней Вселенной
Сусуму Окубо, американский теоретик японского происхождения, о космологии не думал. Он занимался физикой элементарных частиц, когда там в середине 1950-х всплыла загадочная асимметрия. До того времени молчаливо считалось, что в микромире все в высшей степени симметрично и, в частности, зеркально симметрично – полный паритет (Рarity) правого и левого, или P-симметрия, как у идеальной бабочки: если возможно некоторое явление в мире элементарных частиц, то столь же возможно и явление, зеркально симметричное. Однако в 1956 году экспериментаторы обнаружили, что в мире элементарных частиц это не так: существуют явления, зеркальные версии которых не столь же возможны.
Обнаруженная асимметрия упала как снег на головы теоретиков. Они стали вглядываться в две другие симметрии, которые до того времени молчаливо считались столь же несомненными в микромире: операция С заменяет всякую элементарную частицу на ее античастицу, то есть всякий заряд (Charge) на противоположный, а операция Т поворачивает время (Time) вспять, – заменяет всякое движение на противоположное.
Представим себе частицы белыми шариками, античастицы – черными, а каждую из операций Р, С, Т уподобим взмаху волшебной палочки. Взмах Р-палочки меняет картину на зеркально-отраженную, С-палочка меняет цвет шариков на противоположный, а Т-палочка меняет события так, как меняется видеокартинка, если пленку запускают в обратную сторону.
До 1956 года физики были уверены, что жизнь микромира симметрична для любой из С-, Р-, Т-волшебных палочек. Быть теоретиком в таком мире проще, но простота, говорят, бывает хуже воровства. Переупрощение мира крадет у него глубину. Если бы правая и левая руки были одинаковы, то делать перчатки было бы проще. Однако важные вещи в мире людей объясняют различием правого и левого полушарий мозга – образного и логического.
Физикам предстояло понять непростые асимметрии микромира. Из основ ch-теории следовало лишь то, что взмах сразу тремя палочками физику не меняет. Это назвали СРТ-симметрией.
Эйнштейн советовал все делать как можно проще, но не проще, чем надо. При этом не сказал, как же избежать переупрощения. Зеркальная кособокость микромира, подтвержденная в экспериментах, побуждала теоретиков строить воздушные замки, в которых наблюдаемый асимметричный флигель был бы лишь частью симметричного мироздания. И уже через год такой замок построил Ландау, обнаружив, что все известные тогда P-асимметричные явления подчиняются комбинированной CP-симметрии. Эту симметрию он провозгласил новым законом природы: одновременный взмах C– и P-палочками не меняет мира. Иначе говоря, Ландау предположил, что бабочка микромира имеет вид
который не меняется, если одновременно с перестановкой правого и левого поменять местами черный и белый цвета – частицы поменять местами с античастицами.
Важность научной работы можно измерять тем, насколько она помогает задавать новые вопросы Природе, и, значит, помогает опровергнуть себя – если Природа ответит отрицательно. Работа Ландау помогла Окубо задать вопрос: а что, если и CP‑симметрия не всемогуща в микромире? И он придумал, как этот вопрос можно задать Природе. В статье 1958 года он указал, что если CP-симметрия нарушается, то частица и античастица, имея одинаковые времена жизни, могут по-разному свои жизни кончать, по-разному распадаясь на другие частицы. Это оставалось чисто теоретической возможностью до 1964 года, когда экспериментаторы обнаружили, что CP-симметрия действительно нарушается, хоть и очень мало. Так гипотеза Ландау, опровергнутая экспериментом, продвинула поиск научной истины.
В 1966 году настала очередь Сахарова продвинуть этот поиск дальше. Эксперименты о нарушении CP-симметрии и эффект Окубо в микромире соединились в его размышлениях с фактом барионной асимметрии Вселенной. И родилась идея о микрофизическом происхождении этой асимметрии – “кривой фигуры” Вселенной.
Он исходил из того, что в микромире действует лишь самая общая CPT-симметрия, то есть бабочка микромира выглядит так:
Она не изменится, если переставить сразу все три: правое на левое, частицу на ее античастицу, прошлое и будущее (перевернуть букву T). Рядом с этой бабочкой микромира Сахаров увидел, можно сказать, бабочку Вселенной:
Точнее, в наблюдаемой расширяющейся Вселенной он разглядел одно крыло вселенской бабочки и применил CPT-симметрию микрофизики для объяснения барионной асимметрии Вселенной.
В эпоху Большого взрыва вещество было так сжато, что элементарные частицы “чувствовали локтем” друг друга, и Вселенная жила по законам микромира. По идее Сахарова, именно тогда асимметрия Вселенной складывалась в процессах, бурлящих в каждой микроточке космического пространства. T-асимметрия расширения Вселенной позволила породить наблюдаемую С-асимметрию вещества – разное содержание частиц и античастиц в P-асимметричных крыльях Вселенной по разные стороны от времени Большого взрыва. Помимо крыла вселенской бабочки, видного астрономам, физик-теоретик Сахаров видел мысленно и другое крыло, раскрывшееся до Большого взрыва. Космологическая бабочка CPT-симметрична, но увидеть ее целиком не дает краткость человеческой жизни по сравнению с возрастом Вселенной.
Физический механизм, порождающий избыток барионов из первоначально симметричного состояния, Сахаров собрал из трех компонент:
1) “Из эффекта С. Окубо…” – различие распадов частицы и античастицы;
2) “При большой температуре для Вселенной…” – это различие производит нужный космологический эффект за ультракороткое время, пока Вселенная достаточно горяча, а затем результат “замерзает”;
3) “Сшита шуба…” – иглой, которая была совершенно новым инструментом в физике. Сахаров предположил, что барионный заряд не сохраняется. В частности, это означало, что протон – “кирпич мироздания”, считавшийся совершенно стабильным, – должен самопроизвольно распадаться.
В конце статьи Сахаров благодарит за обсуждение шестерых физиков. Один из них, Лев Окунь, считает эту работу о барионной асимметрии Вселенной “одной из самых глубоких и смелых статей двадцатого века”. Смелость была ясна сразу: ведь Сахаров посягнул на казавшийся тогда незыблемым физический закон – закон сохранения барионного заряда.
В школе изучают лишь электрический заряд, сохранение которого заложено в самих законах электромагнетизма. А сохранность барионного заряда – числа всех барионов минус число антибарионов – не следовала из какой-то “теории барионного поля”, а опиралась лишь на то, что пока не наблюдался распад бариона на небарионы. Факт достоин уважения, и Сахаров свое уважение проявил, оценив темп распада протона в предложенной им теории. Распад оказался “астрономически” медленным, что объясняло, почему он не наблюдался – требовалась невиданная точность измерений.
Уважать факт или беспрекословно ему подчиняться, решает сам исследователь. В конце 1960-х годов почти все физики, включая Зельдовича, выбрали абсолютное подчинение барионной симметрии. История провела мини-опрос общественного мнения об этом и среди американских коллег Сахарова и Зельдовича. Как раз в 1966 году выдающиеся теоретики (и к тому же “отцы” американского ядерного оружия) Р. Оппенгеймер и Э. Теллер в своих статьях выразили безоговорочную веру в закон сохранения барионного заряда. Теллер на своей уверенности основал даже гипотезу, объясняющую только что открытые сверхяркие астрономические объекты – квазары – как столкновения галактик и антигалактик, которых во Вселенной должно было быть поровну. Как пел в те годы Окуджава: “…Все поровну, все справедливо, на каждого умного – по дураку, на каждый прилив – по отливу”. На каждый протон – по антипротону, а на каждую галактику – по антигалактике.
Почему в 1966 году Сахаров вышел из этого единогласия? Быть может, он глубже других понял только что преподанный урок CP-симметрии, согласно которому в физике, как в правовом государстве, разрешено все, что не запрещено законом. Или глубже осознал факт космологической асимметрии вещества – антивещества и не стал себя уговаривать, что наблюдаемую с Земли – “местную” – асимметрию как-нибудь удастся совместить с симметрией общевселенской. Фактически, конечно, речь идет о научной интуиции, которая знает о фактах и теориях, но к ним не сводится.
Когда в 1948 году Сахаров заподозрил, что полученный из рук Зельдовича проект термоядерной бомбы ведет в никуда, и придумал совершенно новый путь, это сработала его интуиция. Тогда Зельдович сразу же оценил его идею. В 1966 году предложенный Сахаровым путь слишком круто уходил от протоптанных дорог, и Зельдовичу, на глазах которого работала интуиция Сахарова, потребовались годы, чтобы оценить серьезность нового направления. Это произошло, когда физика элементарных частиц также усомнилась в стабильности протона. Тогда сахаровское объяснение барионной асимметрии Вселенной заняло наконец свое место в арсенале современной физики. По словам Окубо, “хоть эта идея и кажется сейчас простой, понадобился гений Сахарова, чтобы соединить много разных сторон теории в стройную картину”.
Картину эту рано еще вставлять в золоченую рамку. К чему приведет экспериментальная проверка и развитие теории, объясняющей космологическую асимметрию вещества и антивещества, наверняка выяснится в наступившем тысячелетии. А в обзоре перспектив более близкого будущего в журнале “Scientific American” читаем:
Можно себе представить, что Вселенная родилась кривобокой, то есть уже с самого начала имела неравные количества частиц и античастиц. Теоретики, однако, предпочитают другой сценарий, в котором численности частиц и античастиц в ранней Вселенной были одинаковы, но по мере ее расширения и охлаждения частицы стали преобладать. Советский физик (и диссидент) Андрей Сахаров указал три условия, необходимые для накопления этой асимметрии.
Указав одним из этих условий несохранение барионного заряда – или распад протона, – Сахаров стал диссидентом в физике. Действительно ли он разгадал новый закон природы, пока не ясно. Но история показывает, что тайны природы открывают себя лишь подобным диссидентам.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.