Автор книги: Геннадий Горелик
Жанр: Физика, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 10 (всего у книги 23 страниц)
Фотоэффектная роль h
В 1905 году Эйнштейн опубликовал три теории подряд – теорию фотоэффекта, теорию броуновского движения и теорию относительности.
Разговор о третьей, и самой знаменитой, отложим до следующей главы, сказав лишь, что теорию относительности уже знаменитый Планк принял сразу и включился в ее развитие, чем ускорил ее признание.
Вторая теория физически объяснила загадочное явление, открытое ботаником Броуном еще в 1827 году: он увидел через микроскоп хаотическое движение частиц цветочной пыльцы в жидкости. Эйнштейн объяснил это движение микроскопических частиц случайными толчками наноскопических молекул. Исходя из статистического понимания теплоты, он показал, как из наблюдений за малым, но видимым объектом оценить размер и массу невидимых молекул. Эти величины совпали с полученными еще во времена Максвелла (гораздо более косвенными методами), что подтвердило и реальность молекул (в чем еще сомневались некоторые видные физики), и силу статистической физики. Планк, также опиравшийся на статистическую физику, не мог не порадоваться этому.
Однако самую первую теорию Эйнштейна – теорию фотоэффекта – Планк не принял, хотя в ней замечательно сработала его же идея порционности энергии излучения.
Явление фотоэффекта открыл Герц, обнаружив, что отрицательно заряженная пластина при ее освещении разряжается – в зависимости от частоты, то есть цвета, излучения и его интенсивности, то есть яркости. Зависимость оказалась хитрой: во-первых, разной для пластин из разных материалов, а во-вторых, эффект возникал лишь при частоте, большей некоторой определенной величины.
К 1905 году уже было известно, что в состав вещества входят электроны и что при фотоэффекте именно электроны покидают пластину. По теории Эйнштейна, чтобы вырвать из данного вещества один электрон, нужна вполне определенная энергия A, а свет данной частоты поглощается веществом именно планковскими порциями E = h. Тогда если частота света так мала, что эта порция меньше A, вырвать электрон невозможно. Яркость падающего света – это просто количество порций излучения в единицу времени. Такие порции, или кванты, света позже назвали фотонами. Из этой теории следовала вполне определенная связь между частотой падающего света, энергией вырванных фотоэлектронов и их числом. И связь эту опыты подтвердили.
Что же не нравилось Планку? Ему не нравилось, что гипотеза о порционном – квантовом – строении света не укладывалась в великолепную теорию электромагнитного поля Максвелла. Ему не нравилась и собственная гипотеза о том, что осциллятор излучает свет порциями, но там можно было думать, что речь идет о каких-то свойствах вещества, а гипотеза Эйнштейна означала, что само излучение – после свободного перелета в пространстве – сохраняет порционное строение и, вероятно, даже путешествует в виде порций. Ничего такого не было в теории Максвелла.
Прекрасно все это понимая, Эйнштейн назвал свою статью “Об одной эвристической точке зрения, касающейся возникновения и превращения света”. К электродинамике Максвелла он относился с не меньшим уважением, чем Планк. Но считал, что планковское объяснение теплового излучения говорит о плодотворности квантовой гипотезы. А лучший способ проверить новую гипотезу – применить ее для понимания других физических явлений, не дожидаясь, пока гипотеза превратится в стройную теорию.
Планк надеялся, что подлинная теория должна обойтись без участия грубо-противоречивой порционности света. А Эйнштейн полагал, что будущая теория осмыслит и обоснует саму эту порционность, или, по-научному, дискретность. Оба не ожидали, что до построения общей теории появится еще одно мощное подкрепление квантовой дискретности и одновременно решение загадки спектров, о которой говорил еще Максвелл:
Атом – не жесткий объект. Он способен к внутренним движениям, и, когда эти движения возбуждены, испускает излучение с длинами волн, соответствующими периодам его колебаний.
Какие движения? Как возбуждены? И чем определяются длины волн?
На эти вопросы ответил Нильс Бор в 1913 году, на 13-м году квантовой эпохи и на втором году ядерной истории.
Атом, который понял Бор
Впрочем, ядерную историю можно начинать и с 1896 года, когда счастливый случай помог открыть радиоактивность урана. А чтобы понять, как интересно было тогда физикам, напомню, что само слово “радиоактивность” появилось лишь два года спустя, после открытия нового элемента – радия, который подобно урану испускал невидимое, но проницающее излучение, притом гораздо более сильное. В 1911 году, однако, появилось выражение “ядро атома”.
В своем главном открытии Бор опирался на результат головокружительной серии экспериментов, проникших в устройство атома. Эти эксперименты заняли 15 лет. Чтобы уложить их в 15 минут, начать надо с того, что невидимое проникающее излучение урана в 1896 году не было такой уж сенсацией, поскольку за год до того Рентген уже открыл свои лучи – тоже невидимые для глаз, но проникающие через картон, дерево и некоторые другие непрозрачные вещества. Сенсацией для физиков было то, что эти два типа излучения явно различались между собой и были не похожи на два других невидимых излучения, известных уже целый век, – инфракрасное и ультрафиолетовое. Те были открыты при внимательном изучении полоски спектра перед ее красным краем и за фиолетовым. Глаза там ничего не видели, но действие невидимых лучей удалось зафиксировать. Излучение урана, как и рентгеновские лучи, обнаружили случайно. Первооткрыватели, однако, вполне заслужили свои удачи, обратив серьезное внимание на странные явления в своих лабораториях.
В радиоактивном излучении экспериментаторы выявили три типа лучей, назвали их первыми буквами греческого алфавита и выяснили, что альфа-лучи – это поток положительно заряженных тяжелых частиц, бета-лучи – электроны, а гамма-лучи, как и рентгеновские, оказались электромагнитными волнами очень малой длины волны.
Эти лучи-частицы, несмотря на непонятность их происхождения, стали инструментами исследования в физике микромира. Главной фигурой в этих исследованиях стал Эрнест Резерфорд, который с помощью альфа-частиц узнал, как устроен атом, – устроен в основном… из пустоты. Пропуская альфа-частицы через тонкую металлическую пленку, он обнаружил, что почти все они проходили через пленку как будто через пустоту, мало меняя направление движения, но немногие – одна из десяти тысяч – отскакивали назад, как мячики от твердой стенки. Отсюда Резерфорд сделал прямолинейно-невероятный вывод: почти вся масса атома и положительный заряд сосредоточены в очень малом объекте, который Резерфорд назвал ядром.
Исходя из этих опытов и предполагая, что альфа-частица взаимодействует с ядром, подчиняясь законам Ньютона и Кулона, Резерфорд вычислил, что ядро меньше атома в сотню тысяч раз. Тогда уже было известно, что в состав атома входят электроны, но электрон примерно в восемь тысяч раз легче альфа-частицы, и, сталкиваясь с ним, альфа-частица меняет свое движение очень мало.
Суммируя все это, Резерфорд в 1911 году предложил так называемую планетарную модель атома, согласно которой электроны вращаются вокруг ядра под действием электрической силы, подобно планетам вокруг Солнца под действием гравитации.
Модель была заведомо неправильной. Согласно электродинамике Максвелла, электрический заряд, вращаясь, непременно излучает электромагнитные волны, и если применить формулы, проверенные Герцем и подтвержденные всей радиотехникой, то окажется, что электрон излучит всю свою энергию и упадет на ядро за малую долю секунды. Не доверять “старым” законам в атомных масштабах? Но ведь размер ядра Резерфорд определил, полагаясь именно на эти законы!
Такая головоломка стояла перед физиками. Не первая головоломка квантовой эпохи. Решения предыдущих – Планком и Эйнштейном – не проясняли горизонт, но двигали к нему, решая конкретные задачи и давая новые инструменты познания.
Головоломку атома решил 27-летний датский теоретик Нильс Бор, попавший в лабораторию к Резерфорду в 1912 году, вскоре после появления планетарной модели атома.
Счастливой идеей Бора было связать устройство атома с главным внешним проявлением “внутренних движений атома”, о которых говорил Максвелл, – со спектрами излучения и поглощения. Спектры изучали уже почти век. Многие сотни высокоточных измерений, записанных в таблицах, что-то говорили об устройстве атомов, но не известно, на каком языке. Бор был не первым, кто всматривался в колонки цифр – спектральных частот – в надежде уловить какую-то закономерность. Единственный успех достался школьному учителю математики Бальмеру, который еще в 1885-м подобрал формулу, дающую положение некоторых спектральных линий водорода:
ν = A(1/22 – 1/n2), где A — некоторая константа, n = 3, 4, 5, …
Почему именно такая формула и что делать с остальными линиями, было неизвестно еще четверть века, пока эту формулу не увидел Бор. Смотрел он вооруженным глазом – вооруженным квантовыми идеями Планка и Эйнштейна. И увидел, что если умножить эмпирическую формулу Бальмера на постоянную Планка h, то получится, что квант энергии излучения частоты равен разнице каких-то двух энергий
hν = hA/22 – hA/n2 .
За этим последовал очередной – в истории фундаментальной физики – взлет теоретического разума, и Бор изобрел два постулата, управляющие “внутренними движениями атома”:
1. Электрон в атоме может двигаться со скоростью V лишь по круговым орбитам с радиусом r, когда mVr = nh, n – любое целое число, m – масса электрона; при этом скорость V и энергия E электрона на данной орбите определяются старыми законами механики и номером орбиты n.
2. При перескоке электрона с орбиты на орбиту излучается или поглощается квант электромагнитной энергии hν = En – Ek. При перескоке на нижний уровень энергия излучается, при перескоке на верхний – поглощается.
Боровская модель атома дала ключ к пониманию спектров и других атомных свойств и стала шагом к созданию общей квантовой теории, способной объяснить атомы более сложные, чем водород, и свойства более сложные, чем спектры.
Оценить изобретение Бора по-настоящему могли лишь те его современники, что усиленно пытались понять явления атомного масштаба, как, например, Эйнштейн, вспоминавший тридцать лет спустя:
Все мои попытки изменить теоретический фундамент физики с учетом результатов Планка полностью провалились. Словно земля ушла из-под ног, и не было твердой почвы, на которой можно строить. Чудом казалось, что этой шаткой и противоречивой основы хватило Бору, с его уникальной интуицией, чтобы найти главные законы спектральных линий… Это мне кажется чудом и сейчас. Это наивысшая музыкальность мысли.
А Планк в своей лекции при получении Нобелевской премии, назвав атомную теорию Бора главной поддержкой “квантовой гипотезы”, подчеркнул, что “подлинной квантовой теории все еще нет”, и предсказал, что “путь, который предстоит проложить исследователю, не меньше пути от открытия Ремером скорости света до создания теории света Максвеллом”.
Драма квантовых идей
От измерения скорости света до открытия его физической природы прошло два столетия. И лишь десяток лет отделял приведенные слова Планка от создания квантовой механики – первой квантовой теории, нацеленной не на какое-то одно явление или объект. Планк, Эйнштейн и Бор получили свои нобелевские награды в 1919–1922 годах за объяснения отдельных явлений – в формулировках Нобелевского комитета, Планк – “за открытие квантов энергии”, Эйнштейн – “за объяснение фотоэффекта”, Бор – “за исследование строения атомов и их излучения”. А создатели квантовой механики – Гейзенберг, Шредингер и Дирак – получили Нобелевские премии в 1933 году.
Однако, если мерить путь не годами, а поворотами – числом поворотных идей и, значит, уровнем драматизма, прогноз Планка оправдался. Драматизм проявился уже в самих нобелевских формулировках.
Вопреки Нобелевскому комитету, Планк считал, что его главное открытие – не кванты энергии, а квант действия, то есть константа h. Именно выражение “квант действия” он в основном использовал в своей нобелевской лекции, а “кванты энергии”, с которыми он так и не примирился, числил за Эйнштейном. Похоже, Планк надеялся, что в “подлинной квантовой теории” ключевым станет обновленное понятие действия, как-то обобщенное константой h, и тогда можно будет забыть противоречивое – промежуточное – представление о квантах электромагнитной энергии, или квантах света.
Полная формулировка Нобелевской премии Эйнштейна звучала так: “За заслуги перед теоретической физикой и особенно за объяснение закона фотоэффекта”. Прямо не упомянуты ни знаменитая теория относительности, опубликованная в том же 1905 году, что и объяснение фотоэффекта, ни теория гравитации, опубликованная за шесть лет до его Нобелевской премии. При том, что Планк в своей нобелевской лекции упомянул обе как великие достижения.
Членам Нобелевского комитета можно посочувствовать. Эти несколько шведских физиков вершили суд истории, можно сказать, в военно-полевых условиях. Они опирались на мнения видных физиков мира, но решать-то приходилось самим шведам, что особенно трудно, когда мнения мировых светил расходятся. Послушаем председателя Нобелевского комитета по физике С. Аррениуса:
Нет, вероятно, современного физика известнее Альберта Эйнштейна. Более всего обсуждается его теория относительности. Она касается в основном эпистемологии и была поэтому предметом оживленных дебатов в философских кругах. Не секрет, что знаменитый философ Бергсон подверг эту теорию сомнению, тогда как другие философы горячо ее приветствовали. Теория эта имеет также астрофизические следствия, которые тщательно проверяются в настоящее время.
Примерно столько же слов Аррениус уделил эйнштейновской работе о броуновском движении, в которой видел не столько окончательное подтверждение атомизма, сколько начало коллоидной химии. А основную часть своей речи он посвятил закону фотоэффекта, к тому времени надежно подтвержденному. И в идее световых квантов увидел не столько новый шаг за пределы существующей фундаментальной физики, сколько основу для количественной фотохимии.
Надо учесть, что 63-летний Аррениус, Нобелевский лауреат по химии 1903 года, был далек от фундаментальной физики. Настолько далек, что не отличал ее от философии, а теорию относительности 1905 года от теории гравитации 1916-го.
Философы могут обсуждать все что хотят, но теория относительности к 1922 году уже работала в физике. Об этом, в частности, рассказал в своей нобелевской лекции Бор. Электроны в атоме движутся со скоростью, близкой к скорости света, и в их движении проявляется теория относительности. В результате удалось описать так называемую тонкую структуру спектров и подтвердить ее на опыте.
Как отреагировал автор теории относительности на речь Аррениуса? Он ее не слышал. О своей награде Эйнштейн узнал в Японии, где читал лекции, а принял награду от его имени посол Германии.
Свою нобелевскую лекцию “Фундаментальные идеи и проблемы теории относительности” Эйнштейн прочел полгода спустя. В ней вовсе не упомянуты кванты света или кванты энергии, а эпитет “квантовая” идет лишь вместе со словом “проблема”. Он не усомнился в своей старой идее “частиц света”, которые несколько лет спустя назовут фотонами. Но он – так же, как другие фундаментальные физики, – понимал, что эта эвристическая идея, плодотворно объясняя некоторые явления, сама указывает на фундаментальную проблему – необходимость построения общей квантовой теории.
Путь к этой теории разные физики видели по-разному. Эйнштейн в 1923 году считал, что этот путь следует прокладывать через его теорию гравитации. И выбрал направление пути – объединенное описание гравитации и электричества, надеясь, что такая теория объяснит и элементарные заряды, и кванты.
Бор эту надежду не разделял, но вполне разделял взгляд Эйнштейна на квантовую проблему как самую глубокую в тогдашней физике. А гвоздь проблемы он видел в гипотезе Эйнштейна о световых квантах, которая, “несмотря на ее эвристическую ценность, несовместима с явлениями интерференции и неспособна прояснить природу излучения”.
За решение квантовой проблемы Бор готов был заплатить высокую цену. В нобелевской речи он еще об этом не сказал, но к тому времени уже закончил статью, в которой предложил обойтись без понятия фотонов, предполагая соблюдение законов сохранения лишь “в среднем”. Он видел пропасть между квантовым дискретным и классическим непрерывным описаниями и, чтобы построить мост теории через эту пропасть, даже нарушение закона сохранения считал не слишком большой ценой. По опыту создания теории атома он знал, что иногда достигнуть цель нельзя, двигаясь только малыми шагами.
Фундаментальным физикам-теоретикам – таким как Планк, Эйнштейн и Бор – труднее было, чем химику Аррениусу, мириться с отсутствием целостной квантовой теории. И вовсе не удивительно, что в 1922 году все три великих основоположника квантовой физики ошибались, предсказывая путь ее развития. Хотя науке присуща способность предсказывать исход опыта, истории науки столь же присуща непредсказуемость. Гравитация ничем не помогла квантовой теории, а идея квантов света, или фотонов, осталась ключевой навсегда или по меньшей мере на столетие, до наших дней. Непредсказуемой была идея, к которой год спустя пришел Луи де Бройль, заподозрив волновые свойства у электрона, самой что ни на есть, как тогда считалось, частицы. Волновые свойства оказались присущи любой частице: длина волны де Бройля равна h/mV, где m – масса частицы, V – ее скорость, h – постоянная Планка.
Два края пропасти между понятиями квантовой частицы и волнового поля оказались двумя коренными свойствами физической реальности. И надо было не строить мост через пропасть, а научиться летать мыслью над пропастью так, чтобы видеть оба ее края и уметь приземляться по обеим сторонам. Такой летательный аппарат дала квантовая механика, созданная во второй половине 1920-х годов трудами прежде всего физиков молодого поколения и сразу показавшая свою плодотворность.
Теорию эту основоположники восприняли по-разному.
Планк, которому уже было под семьдесят, – с грустью. Вместо того чтобы прояснить его же парадоксальные идеи, квантовая механика добавила новые. Тихо страдая, он сформулировал грустный закон истории:
Новые идеи входят в науку не потому, что их противники признают свою неправоту; просто противники эти постепенно вымирают, а подрастающее поколение усваивает новые понятия с самого начала.
Представители “вымирающего поколения”, такие как Планк, молча переживают внутреннюю драму, мучаясь тем, что их научные идеалы обнаружили свою ограниченность. Другие, критически анализируя новую физику, проясняют ее. Так вел себя Эйнштейн. Он понимал, что квантовая механика успешно работает, но считал ее лишь промежуточным этапом, отказываясь признать ее полной теорией. При этом главное неприятие вызывала идея, которую он сам, по существу, впервые ввел в физику, – фундаментальная роль вероятности.
Новая вероятность
Новая вероятность принципиально отличалась от той, которую Максвелл положил в основу статистической физики, а Эйнштейн применил в задаче броуновского движения. Там речь шла об учете огромного числа факторов – например, толчков множества молекул. В подобных задачах нет практической возможности, да и надобности, следить за деталями движений всех молекул. Однако теоретически можно было думать, что каждая молекула движется неким определенным образом под воздействием толчков других молекул и соударений о стенки сосуда. Начиная с открытия радиоактивности, так думать уже не получалось. Радиоактивное ядро распадалось с некоторой вполне определенной вероятностью, казалось, независимо от окружения, и это не было результатом множества каких-то случайностей.
Устройство ядра, впрочем, еще долго оставалось непроницаемым, но уже поведение атомных электронов намекало на какую-то новую вероятность – вероятность перескока электрона с одной орбиты на другую. Ведь электрон мог перескочить с высокой орбиты на любую из нижних. Каждому перескоку соответствовала своя частота излучения, то есть положение спектральной линии, и это положение давалось моделью Бора. Но спектральная линия характеризуется еще и яркостью, которая как-то соответствует “охотности” данного перескока. Именно яркостью Эйнштейн занимался в 1916 году, когда ввел два типа излучения – спонтанное и вынужденное. Спонтанный перескок происходит сам собой, независимо ни от чего, и определяется некой величиной вероятности. А вынужденный перескок происходит под воздействием излучения той же частоты и пропорционален его интенсивности. Эйнштейн получил связь между интенсивностями этих излучений, начав фактически путь к теории лазеров, но для нас сейчас – и для создания квантовой теории в 1920-е годы – особенно важно само понятие спонтанного излучения, характеризуемого некой “первичной”, фундаментальной вероятностью, а не результатом множества каких-то нано-микро-случайностей.
Такая вероятность стала ключевой особенностью квантовой механики и… неприемлемым понятием для самого Эйнштейна, как и для Планка. Они не верили, что подлинная теория может основываться на понятии вероятности. Почему, сказать трудно. Планковский закон истории науки дает ответ, но применять его к Планку и Эйнштейну, выдвинувшим прорывные квантовые идеи, особенно трудно.
Эйнштейн 20-х годов сильно отличался от Эйнштейна 1916 года. Избрав направлением поиска обобщение своей теории гравитации, он не видел там места для вероятности. А объясняя свою позицию, говорил об идеале причинности, который, по его мнению, должен был воплотиться в “полной” теории. Своему близкому другу он писал в 1926 году:
Квантовая механика внушает большое уважение. Но внутренний голос говорит мне, что все же это НЕ ТО… Эта теория многое дает, но к тайне Создателя она едва ли нас приближает. Во всяком случае, я убежден, что Он не играет в кости.
Такие доводы не убеждали Бора, который всей душой принял вероятностную основу квантовой механики и принял участие в ее осмыслении. Он признавал значение критики Эйнштейна для прояснения фундаментальных особенностей квантовой механики, но считал эти особенности необратимым изменением фундамента физики. А на довод Эйнштейна о Боге, не играющим в азартные игры, отвечал, что “уже мыслители древности указывали на необходимость величайшей осторожности в присвоении Провидению свойств, выраженных на языке повседневной жизни”.
Это не только остроумный ответ в тон Эйнштейну, а еще и напоминание о том, что явления классической физики гораздо ближе к повседневной жизни, чем явления атомных масштабов. Соответственно, понятия и научные идеалы квантовой физики могут кардинально отличаться от привычных. Тут стоит вспомнить слова Галилея о Природе, которая “вовсе не заботится о том, доступны ли человеческому восприятию ее скрытые причины и способы действия”, и о Боге, который “наделил нас органами чувств, языком и разумом, чтобы с их помощью мы сами могли получить знания об устройстве Природы”.
Освоение нового языка требует усилий. В квантовой физике нужно было выработать новый язык для мира квантовых явлений и говорить на нескольких языках сразу. Когда речь шла о зримо-осязаемых рукотворных приборах, нужен был язык классической физики. А говорить о квантовых явлениях, измеряемых этими приборами, нужно было на новом – квантовом – языке. И это было нелегко даже тем, кто этот новый язык изобретал.
Когда некий физик посетовал, что при одной мысли о квантовых проблемах у него кружится голова, Бор ответил: “Если кто-то думает о проблемах квантовой теории без головокружения, значит, он ничего в них не понимает”. К трудностям двуязычия, впрочем, добавлялось головокружение от успехов теории.
Главным средством от головокружения было понимание, что квантовая механика – это еще не подлинная теория. Не потому, что она не соответствовала вкусам, или, скажем прямо, предрассудкам Эйнштейна, а потому, что квантовая механика не учитывала одно из главных его достижений – теорию относительности, которой было уже двадцать лет от роду. Создатели квантовой механики принимали теорию относительности как несомненную истину. Еще в модели атома Бора удалось, применив теорию относительности, объяснить тонкости спектра, но квантовая механика делала вид, что никакой теории относительности нет. Физика жила в двух эпохах параллельно – в квантовой и в релятивистской. Квантовая физика развивалась на основе константы Планка h, а релятивистская – на основе скорости света c, которая тоже оказалась фундаментальной константой.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.