Текст книги "Математические головоломки профессора Стюарта"
Автор книги: Иэн Стюарт
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 22 страниц) [доступный отрывок для чтения: 7 страниц]
Растерянные родители
Математика с одним из самых странных, на мой взгляд, имен звали Герман Цезарь Ганнибал Шуберт (1848–1911). Он был зачинателем исчислительной геометрии – области геометрии, которая занимается подсчетом того, сколько прямых или кривых, определяемых алгебраическими уравнениями, удовлетворяют тем или иным условиям. Вероятно, его родители желали сыну великого будущего, но никак не могли разобраться, на чьей они стороне.
Парадокс зигзага
Казалось бы, эти два треугольника имеют одинаковую площадь, а именно (13 × 5)/2 = 32,5. Но один из них имеет вырез с одной из сторон, так что чертеж доказывает, что 31,5 = 32,5. Что здесь не так (если, конечно, здесь и правда что-то не так)?
Ответ см. «Загадки разгаданные».
Дверца страха
Из мемуаров доктора Ватсапа
Копыта скользили по мокрой глинистой дороге. Кэб со скрипом обогнул угол, едва не задев тачку, нагруженную картофелем. Кэбмен не спеша промокнул лоб грязной тряпицей.
– Господи, начальник! Мне уж показалось, что еще немного, и вместо картошки у нас будут чипсы![9]9
Это не анахронизм: Джозеф Малин открыл в Лондоне первую лавку, где торговали жареной рыбой и чипсами, в 1860 г. Вообще-то с этим деликатесом Британию познакомили в XVI в. еврейские беженцы из Испании и Португалии, называвшие блюдо pescatofrito, то есть зажаренная до хрустящей корочки рыба. Чипсы были добавлены позже. – Прим. авт.
[Закрыть]
– Поезжайте, не стойте! Получите гинею, если домчите во весь опор, невзирая на препятствия!
Наконец мы на месте. Я выпрыгнул из кэба, бросил человеку на козлах несколько монет и метнулся мимо ошарашенной миссис Сопсудс в дверь, вверх по лестнице и дальше, в квартиру Сомса. Ворвался без стука.
– Сомс! Это ужасно! – выдохнул я. – Мои…
– Ваших кошек украли.
– Умятнули, Сомс!
– Вы, конечно, хотите сказать «умыкнули»?
– Да нет, их выманили при помощи пучка кошачьей мяты на веревочке.
– Откуда вам это известно?
– Котнеппер его бросил.
Сомс остро взглянул на меня.
– Необычно. Не похоже на него. Совсем на него не похоже.
– На него?
– Да. Он вернулся.
Я подошел к окну.
– Да, вернулся. Но сейчас вряд ли подходящее время для жареных каштанов, Сомс.
– Ватсап, вы в своем уме?
– Вернулся старик, который обычно продает жареные каштаны с тележки напротив вашего дома, – объяснил я. – Вчера его не было, но сегодня он здесь. Я решил, что вы говорите о нем.
– Вы решили, – язвительно передразнил Сомс. – Не нужно решать, Ватсап. Нужно анализировать факты и делать выводы. С помощью дедукции.
Я понял, что это были не просто общие слова. Сомс явно хотел, чтобы я сделал какие-то вполне конкретные выводы.
Я втайне горжусь, откровенно говоря, своей необычайной чувствительностью к настроениям Сомса, поэтому после некоторых раздумий я припомнил, что несколько дней назад застал его за сбором небольшого арсенала из пистолетов, винтовок и ручных гранат. Теперь же меня осенило, что у Сомса, возможно, возникли проблемы. Я изложил свою гипотезу, и он кивнул.
– Как будто призрак прошлого поднялся из могилы и высасывает жизнь из множества людей, – сказал он.
– Да? – сказал я. – О чем вы говорите, Сомс?
– Подлый и опасный злодей, Веллингтон преступного мира.
– Может быть, вы хотели сказать «Наполеон»? Это, наверное, было бы более подходящее сравнение. Герцог был совершенно…
– Он носит резиновые сапоги-веллингтоны, – объяснил Сомс. – С чрезвычайно распространенным рисунком на подошве, чтобы замаскировать свои отпечатки. Вообще, он мастер маскировки. Он беспрепятственно приходит и уходит через запертые двери. Он легко получает доступ к любому политику, очаровывает его жену, и задолго до того, как наши пути впервые пересеклись, его уши торчали в Англии из каждого преступного замысла. Но мне сверхчеловеческим усилием удалось выследить его, собрать убедительные доказательства и разрушить созданную им сеть преступных банд. Он бежал из страны, и я наивно считал, что ему конец. Но теперь я убедился, что он просто притаился на время. Он вернулся и возобновил свою гнусную деятельность. И теперь он перешел на личности.
– О ком вы говорите?
– Ну конечно о Могиарти! Профессор Джим Могиарти, блестящий, но безнравственный математик, переметнувшийся на Темную сторону. Начинал он как простой вор-кошатник, но потом занялся более выгодными объектами. Он способен не просто спереть все, что не приколочено гвоздями: он готов украсть также гвозди, молоток и доски пола. Он преследует меня по пятам с тех самых пор, когда…
– Сомс, как вор-кошатник может кого-то преследовать? Он же не собачник…
– Как я уже сказал, он мастер перевоплощений, Ватсап. Слушайте внимательнее.
– И как он проявляет себя?
– Вымогательство, воровство, убийство, похищение людей. И вот теперь котнеппинг. Могиарти возвращается к истокам и вспоминает молодость, – лицо Сомса обрело мрачное и решительное выражение. – Не бойтесь, Ватсап. Мы спасем ваших любимиц… – Поймав мой яростный взгляд, он поправился: – Ваших пушистых компаньонок из семейства кошачьих. Даю слово.
Я наконец додумался задать главный вопрос:
– Сомс! Откуда вы узнали, что мои кошки пропали?
Он молча протянул мне вскрытый конверт. Внутри лежал клочок бумаги и изжеванная мышка из кошачьей мяты.
– Да, это игрушка Геморроя! – я мужественно подавил рыдание. – А что в записке?
Он показал мне клочок бумаги. На нем было написано:
– Написано немного путано, Сомс, но я вижу здесь слова ККК, АТЛ и СИЛО. Э-э… Здесь что, говорится, что спортсменов заманивают в ку-клукс-клан?
– Нет, Ватсап! Это шифр. Я уже расшифровал записку.
– Как?
– Я заметил, что здесь 33 буквы. На какую мысль это вас наталкивает, Ватсап?
– Э-э… Клочок маленький, на большее не хватило места.
– Ватсап! 33 – это 3 × 11, произведение двух простых чисел. Я сразу же вспомнил о математическом прошлом Могиарти. И мне пришло в голову записать эти буквы в виде прямоугольника 3 × 11. Вот так.
Он буквально сиял от гордости; я не мог понять почему. Мне все это по-прежнему казалось бессмысленной чепухой.
– Читайте по столбцам сверху вниз, Ватсап!
– ПРЕКРАТИТЕСЛЕДСТВИЕИЛИКОШКАМКОНЕЦ. О господи! – теперь я дрожал с ног до головы. – Но почему? Почему Могиарти поступает так жестоко с невинными существами?
– Он посылает нам сообщение.
– Это-то ясно…
– Нет, я говорил метафорически.
– А! Он что, потребовал выкуп?
– Нет. Мне кажется, это проверка. Я подозреваю, что это преступление – всего лишь прелюдия к куда более страшным деяниям. Он играет с нами, как кошка с мышкой.
Я подавил очередное рыдание.
– Что мы можем сделать?
– Игра началась, и мы должны всегда быть на шаг впереди, чтобы нас не захватили врасплох. Мои доверенные информаторы уже отыскали ваших кошек в совершенно обыкновенном на первый взгляд доме – как ни смешно, в Гавкинге. На самом деле дом оборудован ловушками, стальными дверями, пуленепробиваемыми стеклами и охранными системами нескольких типов. Нет никакой возможности незаметно проникнуть внутрь.
Я вернул свой армейский револьвер обратно в карман.
– Жаль.
– Однако Могиарти допустил ошибку. В доме есть заколоченная дверца для кошки. Может быть, нам удастся восстановить ее функции и выманить ваших кошек наружу.
– Да! – воскликнул я. – Я понял! Мы сможем выманить их любимыми лакомствами. Аневризма любит артишоки, Ботулизм без ума от бананового хлеба, Ветрянка ни за что не устоит перед ватрушкой, а погибель Геморроя – гренки!
– Гренки… – отозвался Сомс. – Ну, неважно. Немного поработать головой, немного принципиально важной информации – и вы видите? Мы продвигаемся вперед. Мы можем воспользоваться этими предметами, чтобы выманить ваших кошек наружу через кошачью дверцу.
– У меня дома имеются значительные запасы необходимых продуктов, – поспешил я заверить Сомса. – Я привезу.
– Это будет просто замечательно, Ватсап, но всему свое время. Пока же у нас есть проблема. Мы должны подносить эти деликатесы к дверце в правильном порядке; ни в коем случае нельзя допустить, чтобы ваши кошки подрались.
– Конечно. Они могут поранить друг друга.
– Нет, дело не в этом. Подвал дома Могиарти заполнен мощной взрывчаткой, и злодей устроил так, что все взорвется, если животные подерутся.
– Что?! Почему?
– Потому что он уверен, и не без оснований, что любая попытка спасти их вызовет кошачью драку. Он хочет использовать самих животных в качестве сигнализации. Как обычно, ему наплевать на страшные последствия его кровавых махинаций. Как я уже сказал, он подает нам сигнал: он ни перед чем не остановится.
– Вижу, это и правда так.
– Вы видите, Ватсап, но вы не замечаете. Наблюдение начинается с расспросов, которые дают материал для дедукции. Я сейчас занимаюсь расспросами. При каких обстоятельствах ваши кошки дерутся? Будьте точны, от этого зависит успех или неудача нашего замысла.
– Они дерутся только в помещении, – ответил я, немного поразмыслив.
– Но тогда дом может в любой момент взлететь на воздух!
– Нет, мои кошки могут быть совершенно мирными, если удастся избежать некоторых их сочетаний.
Я записал на листе бумаги несколько условий.
• Если Ветрянка и Аневризма находятся в помещении вместе, они дерутся, если рядом нет Геморроя. Если Геморрой и Ботулизм находятся в помещении вместе, они дерутся, если рядом нет Аневризмы.
• Если Аневризма и Геморрой находятся в помещении вместе, они дерутся, если рядом нет Ботулизма или Ветрянки (или их обоих).
• Если Ветрянка и Геморрой находятся в помещении вместе, они дерутся, если рядом нет Ботулизма или Аневризмы (или их обоих).
• Если Аневризма или Ботулизм остаются в помещении поодиночке, они вообще отказываются выходить наружу.
Как Сомсу и Ватсапу выманить кошек наружу, не вызвав при этом взрыв? Одновременно в кошачью дверцу может протиснуться лишь одно животное. Забудьте о тривиальных ходах, когда какая-то из кошек выходит наружу и ее тут же возвращают обратно. Однако при необходимости любую из кошек в процессе выманивания можно в нужный момент втолкнуть обратно через ту же дверцу.
Ответ см. в главе «Загадки разгаданные».
Блинные числа
Вот настоящая математическая загадка – простая задача, решение которой пока ускользает от ученых не хуже, чем преступный гений Могиарти.
Дается стопка круглых блинов разных неповторяющихся размеров. Ваша задача – поменять порядок блинов таким образом, чтобы они располагались снизу вверх в порядке убывания диаметра. Единственное действие, которое вам разрешается производить, – это вставить условную лопаточку под один из блинов стопки, поднять стопку, которая оказалась сверху, и перевернуть ее целиком. Вы можете повторять эту операцию столько раз, сколько потребуется, и произвольно выбирать место, куда вставлять лопаточку.
Приведем пример с четырьмя блинами. Для их упорядочивания требуется три переворота.
Вот несколько вопросов для вас.
1. Любую ли стопку из четырех блинов можно упорядочить не более чем за три переворачивания?
2. Если нет, то каково наименьшее число переворачиваний, при помощи которых можно упорядочить любую стопку из четырех блинов?
3. Определите для n-го блина число Pn – наименьшее число переворачиваний, при помощи которых можно упорядочить любую стопку из n блинов. Докажите, что Pn всегда конечно. То есть что любую стопку блинов можно упорядочить при помощи конечного числа переворачиваний.
4. Найдите Pn для n = 1, 2, 3, 4, 5. Я остановился на n = 5, потому что здесь мы уже имеем 120 различных вариантов стопки, все из которых нужно рассмотреть, а это, говоря откровенно, уйма работы.
Ответы на вопросы, а также то, что еще известно об этой задаче, см. в главе «Загадки разгаданные».
Фокус с суповой тарелкой
В продолжение кулинарной темы существует забавный фокус, который вы можете проделать с суповой тарелкой или другим похожим предметом. Начните с того, что поставьте тарелку на пальцы примерно так, как это делает официант, подавая кушанья. Затем объявите зрителям, что вы сейчас проделаете поразительный трюк: сделаете полный круг рукой, все время удерживая тарелку в горизонтальном положении.
Для этого сначала заверните руку внутрь – так чтобы тарелка оказалась примерно под мышкой. Затем продолжайте двигать тарелку по кругу, но руку поднимите над головой. Все естественным образом повернется в исходную позицию, и тарелка не упадет, несмотря на то что вы ее не придерживаете.
Видео трюка с тарелкой (суповой) можно найти в Интернете, к примеру на сайте
http://www.youtube.com/watch?v=Rzt_byhgujg,
где его называют балийским трюком с чашей и связывают с балийским танцем, где вместо тарелки используется чаша с жидкостью. Аналогичный филиппинский танец, где задействованы винные бокалы (по два на человека, по одному в каждой руке), можно увидеть на YouTube по адресу
http://www.youtube.com/watch?v=mOO_IOznZCQ
Движение руки при исполнении трюка может показаться достаточно простым, но имеет глубокий математический смысл. В частности, оно помогает специалистам по физике элементарных частиц разобраться в одном из любопытных квантовых свойств, который называют спином. В действительности квантовые частицы не вращаются на самом деле, как шарик на пальце жонглера, но существует число, которое называется «спин» и в определенном смысле обозначает что-то похожее. Спин может быть положительным и отрицательным, что аналогично вращению по часовой стрелке или против нее. У некоторых частиц спин выражается целым числом; эти частицы называются бозонами (помните охоту на бозон Хиггса?). Другие, что куда более необычно, имеют полуцелые спины, такие как 1/2 или 3/2. Такие частицы называются фермионами.
Половинки спина возникают благодаря одному очень странному явлению. Если взять частицу со спином 1 (или любым другим целым спином) и повернуть ее в пространстве на 360°, она окажется в прежнем состоянии. Но если взять частицу со спином ½ и повернуть ее в пространстве на 360°, то спин ее превратится в −½. Нужно повернуть частицу на 720°, на два полных оборота, чтобы получить прежний спин.
Математический смысл всего этого заключается в том, что существует «группа преобразований» под названием SU (2), которая описывает спин и действует путем преобразования квантовых состояний, и другая группа SO (3), которая описывает вращения в пространстве. Они родственны между собой, но не идентичны: каждое вращение в SO (3) соответствует двум различным преобразованиям в SU (2), противоположным одно другому. Такое отношение называется двойным накрытием. SU (2) как бы накручивается вокруг SO (3), но при этом совершает два оборота. Это немного напоминает резиновую ленту, дважды обернутую вокруг гимнастической палки.
Физики иллюстрируют эту идею посредством фокуса со струной Дирака, названной в честь великого квантового физика Поля Дирака. Идея реализуется во множестве разных форм; в одной из простейших реализаций используется лента, один конец которой закреплен неподвижно, а другой прикреплен к свободно плавающему в пространстве вращающемуся объекту – ротору. Лента имеет форму вопросительного знака. После поворота на 360° она не возвращается в первоначальное положение, а занимает положение, повернутое относительно первоначального на 180°. А вот второй полный оборот ротора (720°) не перекручивает ленту, а возвращает ее в начальное положение. Лента движется приблизительно так же, как рука с суповой тарелкой, разве что тарелка при этом слегка перемещается. Астронавт в невесомости мог бы проделать те же движения вокруг зафиксированной тарелки, сохраняя при этом ориентацию тела.
Компьютерная анимация Air On Dirac String, подготовленная Джорджем Фрэнсисом, Лу Кауфманом и Дэниелом Сандином (графика Криса Хартмана и Джона Харта) и располагающаяся по адресу http://www.evl.uic.edu/hypercomplex/html/dirac.html, наглядно демонстрирует связь между фокусом со струной Дирака и филиппинским танцем с чашей вина.
Ту же идею можно использовать для связи электрического тока с неким вращающимся устройством, к примеру с колесом. На первый взгляд здесь возникает техническая проблема: чтобы лента могла распутываться, колесо должно висеть в воздухе без всякой поддержки. Однако в 1975 г. Д. А. Адамс разработал и запатентовал устройство, при помощи специального передаточного механизма позволяющее ленте беспрепятственно огибать колесо со всех сторон. Это устройство слишком сложно, чтобы описывать его здесь, но тот, кого это заинтересовало, может заглянуть в статью: C. L. Strong, The Amateur Scientist, Scientific American (December 1975) 120–150.
Математические хайку
Хайку – это малая японская стихотворная форма, состоящая традиционно из трех отдельных фраз (строк) и 17 слогов. Реальное японское слово не соответствует в точности английской[10]10
Или русской. – Прим. пер.
[Закрыть] концепции слога, но для англоязычного хайку такая параллель вполне годится. Строгая традиционная форма предполагает наличие пяти слогов в первой и третьей фразах и семи – в центральной. В качестве примера приведем хайку Мацуо Басё (1644–1694), где как оригинал (не приводится), так и приведенный ниже английский перевод имеют верный формат:
At the age old pond
a frog leaps into water
a deep resonance.
Старый пруд заглох.
Прыгнула лягушка.
Слышен тихий всплеск.
(пер. Н. И. Конрада)
В нынешние декадентские времена формула 5-7-5 зачастую не соблюдается, допускаются и другие варианты, такие как 6-5-6. Полное число слогов также может не равняться 17. Самое важное в хайку – не точность формы, а эмоциональное содержание, которое требует наличия двух различных, но связанных образов.
Простой формат хайку несет в себе определенный математический «аромат», и любителями во всем мире написано бесчисленное количество хайку на математические сюжеты. К примеру:
Дэниел Мэтьюз
Ruler and compass
Degree of field extention
Must be power of two.
Джонатан Алперин
Beautiful Theorem
The basic lemma is false
Reject the paper.
Джонатан Розенберг
Иногда случайные хайку возникают в прозе, когда автор, не задумываясь о том, строит предложение в соответствующем формате. К примеру, в «Машине времени» Г. Уэллса:
And in the westward
sky, I saw a curved pale line
like a vast new moon.
В 1977 г. мы с Тимом Постоном в качестве посвящения поместили в своей книге «Теория катастроф и ее приложения» такое хайку:
To Christopher Zeeman
At whose feet we sit
On whose shoulders we stand.
Дело о таинственном колесе
Из мемуаров доктора Ватсапа
Сомс пересматривал сложенные стопкой газеты в поисках преступления, которое послужило бы достаточным вызовом для его талантов, чтобы за его расследование стоило браться. В этот момент я случайно выглянул в окно и увидел, как из двухколесного кэба появляется знакомая фигура.
– О, Сомс! – воскликнул я. – Это же…
– Инспектор Роулейд. Он сейчас будет здесь, чтобы попросить нас о помощи.
В дверь постучали. Я открыл и увидел за дверью миссис Сопсудс и инспектора.
– Сомс! Я пришел насчет…
– Дела о похищении Даунингема. Да, в этом деле есть интересные особенности, – он передал Роулейду газету.
– Статья написана охотником за сенсациями, мистер Сомс. Невежественные разглагольствования о вероятной судьбе эрла Даунингема и размерах выкупа, который требуют с его родственников.
– Пресса весьма предсказуема, – заметил Сомс.
– Да. Хотя в данном случае она играет нам на руку; в статье не упомянуты некоторые ключевые факты, которые, возможно, помогут нам распознать…
– Преступника. Такие, к примеру, как полное отсутствие каких бы то ни было требований о выкупе.
– Но откуда…
– Если бы такое требование было, к настоящему моменту оно уже стало бы достоянием публики. Ничего такого нет. Очевидно, это не обычное похищение. Нам следует как можно быстрее ехать в Даунингем-холл. Который, если мне не изменяет память – а она никогда мне не изменяет, – находится в Верхнехэмских низинах.
– Поезд на Аппингем уходит через 11 минут с вокзала Кингс-Кросс, – сказал я. Поняв, к чему движется дело, я сразу взял с полки справочник Брэдшоу.
– У нас есть шанс успеть на него, если мы пообещаем кэбмену гинею! – воскликнул Сомс. – А дело можно будет обсудить в пути.
По прибытии в Даунингем-холл герцог Саутморленд – он приходился отцом эрлу Даунингему, который по освященной временем аристократической традиции пока носил один из не самых значимых титулов отца, – встретил нас лично и быстро провел на место похищения – к грязному истоптанному загону возле сарая.
– Мой сын пропал в какой-то момент ночью, – объявил он. По его внешности было ясно, как он потрясен происшедшим.
Сомс вытащил увеличительное стекло и несколько минут ползал вокруг, рассматривая истоптанную грязь. Время от времени он бормотал что-то себе под нос. Затем он вытащил из кармана рулетку и произвел несколько измерений в одном из углов сарая.
Проделав все это, Сомс поднялся на ноги.
– У меня есть почти все необходимые данные, – сказал он. – Мы должны вернуться в Лондон и найти последний недостающий фрагмент.
Оставив ошарашенного герцога стоять на собственном пороге рядом с равно ошарашенным инспектором, мы так и сделали.
– Но Сомс… – начал я, когда мы сели в поезд.
– Разве вы не заметили отпечатка колес? – раздраженно бросил он.
– Колес?
– Полиция затоптала все следы, как обычно, но кое-что все же осталось. Достаточно, чтобы я мог определить, что эрл отбыл на телеге, одно из колес которой плотно прижалось к углу сарая в том месте, где он примыкает к высокой стене. След глины на стене говорит о том, что некая точка на ободе колеса находилась одновременно в 8 дюймах от земли и в 9 дюймах от стены сарая. Если мы сможем вычислить диаметр колеса, то, может статься, окажемся близки к разрешению этого дела.
– Может статься?
– Это зависит от ответа. Мы должны также помнить, что у телег не бывает колес меньше 20 дюймов в диаметре. Так, дайте посмотреть… Ну да, все так, как я и подозревал.
По прибытии на вокзал Кингс-Кросс он вызвал одного из Нерушимых сил Бейкер-стрит – рядом с нами всегда крутился кто-нибудь из этих маленьких сорванцов – и отправил его на телеграф с посланием, которое нужно было отправить Роулейду.
– Что в телеграмме?
– Там сказано, где можно найти пропавшего эрла.
– Но…
– Я знаю только одну ферму в окрестностях Даунингем-холла, где есть телега с колесами, диаметр которых точно соответствует тому, что я вычислил, – это довольно большой диаметр для тележного колеса. Я убежден, что эрл покинул Даунингем-холл добровольно под покровом тьмы, а примитивной телегой воспользовался, чтобы не привлекать внимания. Он найдется в том месте, где обычно держат эту телегу.
На следующее утро миссис Сопсудс принесла телеграмму от инспектора: ЭРЛ Д ЦЕЛ И НЕВРЕДИМ МОИ ПОЗДРАВЛЕНИЯ РОУЛЕЙД.
– Так куда же уехал из дома эрл? – спросил я с любопытством.
– Эта тайна, Ватсап, могла бы разрушить репутацию нескольких в высшей степени уважаемых семейств Европы. Зато я могу сказать вам размер тележного колеса.
Какого диаметра было колесо? Ответ см. в главе «Загадки разгаданные».
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?