Электронная библиотека » Иэн Стюарт » » онлайн чтение - страница 6


  • Текст добавлен: 24 ноября 2016, 20:10


Автор книги: Иэн Стюарт


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 22 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +
Дважды два

Существует бесчисленное множество карикатур на тему Ноева ковчега. Мой любимый рисунок посвящен его биологическому аспекту. На ковчег по трапу заводят последние несколько пар животных – слонов, жирафов, обезьян. Ной что-то ищет вокруг, ползая на четвереньках. Его жена кричит, перегнувшись через борт: «Ной! Не ищи вторую амебу, обойдемся!»

Существуют и математические шутки на тему ковчега.

После того, как вода спала, Ной отпустил всех животных и велел им плодиться и размножаться. Примерно через год он решил проверить, как идут дела. Он отправился в путь и всюду встречал слонят, крольчат, козлят, детенышей крокодилов, жирафов, гиппопотамов и казуаров. Но затем он наткнулся на одинокую пару змей, которые выглядели потерянными.

– В чем проблема? – спросил Ной.

– Не можем размножаться, – ответила одна из змей. (Не забывайте, что наш Ной чем-то напоминает доктора Айболита и умеет разговаривать по-звериному.)

Разговор услышала пробегавшая по соседнему дереву обезьяна.

– Сруби несколько деревьев, Ной.

Ной ничего не понял, но сделал так, как посоветовала обезьяна. Еще через несколько месяцев он вновь посетил змей, и на этот раз его встретили многочисленные змееныши. В общем, все были счастливы.

– Ну хорошо, как же вам это удалось? – спросил Ной у змей.

– Мы – гадюки. Мы можем размножаться, только используя бревна.

Загадка гусиного клина

Не секрет, что стаи перелетных птиц в полете часто приобретают форму клина. Особенно привычны глазу клинья диких гусей, нередко состоящие из десятков и даже сотен птиц. Что заставляет их летать подобным строем?

Исследователи давно предположили, что такой строй в полете помогает сберечь энергию, позволяя птицам избегать турбулентного следа от крыльев тех, кто летит впереди, и недавние экспериментальные и теоретические исследования подтвердили, в общем и целом, эту точку зрения. Однако эта теория опирается на предположение о том, что птицы способны чувствовать воздушные течения и подстраивать свой полет соответственно, но до сих пор не ясно, могут ли они на самом деле это делать.

Есть и альтернативное объяснение. Оно состоит в том, что у стаи есть вожак – тот, что летит впереди, – и все остальные гуси просто следуют за лидером. Может быть, лидер лучше всех ориентируется – или просто знает, куда лететь. А может быть, первой в строю может оказаться любая птица.



Прежде чем перейти к ответу, необходимо разобраться в некоторых основных качествах птичьего полета. При устойчивом полете птица машет крыльями циклически, вверх-вниз. Вверх она поднимается за счет движения крыла вниз, когда воздушные завихрения уходят, вращаясь, от кромки крыла; движение вверх возвращает крыло на исходную позицию, чтобы цикл мог повториться. Длина цикла называется его периодом.

Предположим, две птицы машут крыльями с одинаковой периодичностью, как обычно и происходит в стае во время перелета. Однако, хотя крылья птиц движутся одинаково, это не означает, что одни и те же движения делаются одновременно. К примеру, в тот момент, когда одна из птиц ведет крыло вниз, другая, возможно, возвращает его вверх. Соотношение между движениями крыльев разных птиц называют относительной фазой – это доля цикла между тем моментом, когда одна из птиц начинает движение крылом вниз, и тем, когда то же движение начинает другая птица.

Благодаря замечательной, почти детективной, работе Стивена Португала и его группы мы теперь знаем, что теория энергосбережения верна и что птицы действительно чувствуют невидимые воздушные течения достаточно хорошо, чтобы подстраиваться под них. Серьезная проблема экспериментальных исследований состоит в том, что птицы, за которыми вы пытаетесь наблюдать, стремительно исчезают из виду вместе со всем закрепленным на них оборудованием.

И здесь на сцену выходит лысый ибис.

Когда-то лысых ибисов было так много, что древние египтяне даже использовали стилизованное изображение этой птицы в качестве иероглифа «ах», означающего «сиять». На сегодняшний день их уцелело всего несколько сотен, в основном в Марокко. В связи с этим в зоопарке Вены была начата программа по размножению этих птиц в неволе. Много усилий тратится на то, чтобы научить птиц правильным маршрутам миграции. Для этого их учат следовать за сверхлегким летательным аппаратом, который летает вдоль отдельных участков пути а также возвращается вместе с птицами на базу.

Португал понял, что, используя этот летательный аппарат, можно наилучшим образом измерить все параметры полета птиц, их положение в пространстве и характеристики движения крыла, ведь птицы при этом не исчезают за горизонтом с пугающей скоростью, а остаются все время рядом. То, что удалось обнаружить его группе, оказалось поразительно и элегантно. Каждая птица располагается позади и чуть в стороне от передней и так настраивает относительную фазу ударов крыльями, что может воспользоваться восходящим потоком, который создает вихрь из-под крыла впереди летящей птицы. При этом для того, чтобы эффективно воспользоваться восходящим движением воздуха, вторая птица должна не только попасть концом крыла в нужное место (а оно относительно невелико), но и точно настроить фазу движений крыльями.



На первый взгляд эта методика позволяет не только клиновидное построение в полете, но и зигзагообразное, при котором каждая птица летит сзади сбоку от предыдущей, но все вместе не образуют единого клина. (Каждая птица может выбирать, слева ей лететь от лидера или справа.) Однако в этом случае первая птица, нарушившая клиновидное построение, окажется прямо позади птицы, летящей на две позиции впереди нее. В этом месте воздух будет турбулентным из-за возмущения, производимого передней птицей, и попасть кончиком крыла в нужную точку – а значит, и воспользоваться подъемной силой – будет намного сложнее. Этой проблемы можно избежать, если каждая птица будет устраиваться обязательно с внешней стороны клина, где воздух ничем не возмущен.

В принципе, птицы могли бы образовать единую диагональную линию, примерно соответствующую одному из плечей V. Однако при этом место с другой стороны – ближе к лидеру – оставалось бы свободным. Но следует заметить, что один из концов птичьего клина, как правило, длиннее другого.



В экспериментах с ибисами молодым птицам требовалось немало времени, чтобы научиться занимать в полете правильную позицию. На практике обычно находятся птицы, у которых это не получается, а клин редко бывает правильным. Тем не менее детальные эксперименты убедительно показывают, что ибисы достаточно хорошо ощущают потоки воздуха, чтобы занимать самую энергоэффективную или близкую к ней позицию по отношению к передней птице.


Дополнительную информацию см. в главе «Загадки разгаданные».

Мнемоника для e

Для запоминания числа π существует бесчисленное количество мнемонических правил. Для другой знаменитой математической постоянной – числа e, основания натурального логарифма

e = 2,7182818284 5904523536 0287471352662497757…,

таких правил гораздо меньше. Два из них позволяют запомнить по десять цифр этой константы:

 
To disrupt a playroom is commonly a practice of children.
It enables a numskull to memorise a quantity of numerals[12]12
  Приведем перевод этого текста (разумеется, нам не удалось сохранить его мнемонические свойства): «Разрушение игровой комнаты – обычное дело детей. Это позволяет тупицам запоминать множество цифр». – Прим. ред.


[Закрыть]
.
 

Существует также мнемонический текст на 40 знаков, в котором рассказывается о числе e и который придумал Зив Бэрел (Zeev Barel, A mnemonic for e, Mathematics Magazine 68 (1995) 253), его вы можете проверить по числовому варианту, приведенному выше. Для обозначения нуля в этом тексте используется восклицательный знак в кавычках «!», и выглядит это так:

We present a mnemonic to memorise a constant so exciting that Euler exclaimed: '!' when first it was found, yes, loudly '!'. My students perhaps will compute e, use power or Taylor series, an easy summation formula, obvious, clear, elegant[13]13
  Замечание в предыдущем примечании касается и этого перевода: «Мы представляем мнемоническое правило для запоминания постоянной столь замечательной, что Эйлер воскликнул: "!", когда она была найдена, да, громко воскликнул"!". Мои студенты, возможно, вычислят e при помощи степени или ряда Тейлора по простой формуле суммирования, очевидной, ясной, элегантной». – Прим. пер.


[Закрыть]
.

«Простая формула суммирования», упомянутая в тексте, такова:



и так до бесконечности. Теперь знак! обозначает факториал


n! = n× (n – 1) × … × 3 × 2 × 1.

Поразительные квадраты

Существует бесконечно много натуральных чисел, которые можно выразить в виде суммы трех квадратов двумя разными способами: a² + b² +c² = d² + e² + f². Но возможны и дальнейшие выводы. Вот поразительный пример:

123789² + 561945² + 642864² = 242868² + 761943² + 323787².

Это соотношение сохраняется, если мы будем последовательно убирать из каждого числа крайнюю левую цифру:


23789² + 61945² + 42864² = 42868² + 61943² + 23787²;

3789² + 1945² + 2864² = 2868² + 1943² + 3787²;

789² + 945² + 864² = 868² + 943² + 787²;

89² + 45² + 64² = 68² + 43² + 87²;

9² + 5² + 4² = 8² + 3² + 7².


Оно сохраняется также, если последовательно убирать из каждого числа крайнюю правую цифру:


12378² + 56194² + 64286² = 24286² + 76194² + 32378²;

1237² + 5619² + 6428² = 2428² + 7619² + 3237²;

123² + 561² + 642² = 242² + 761² + 323²;

12² + 56² + 64² = 24² + 76² + 32²;

1² + 5² + 6² = 2² + 7² + 3².


А также если мы будем убирать цифры одновременно с двух сторон:


2378² + 6194² + 4286² = 4286² + 6194² + 2378²;

37² + 19² + 28² = 28² + 19² + 37².


Эту математическую загадку прислали мне Молой Де и Нирмалья Чаттопадхьяй, объяснившие простую, но умную идею, на которой все это основано. Сможете ли вы уподобиться Хемлоку Сомсу и раскопать этот секрет?


Ответ см. в главе «Загадки разгаданные».

Загадка тридцати семи
Из мемуаров доктора Ватсапа

– Как любопытно! – заметил я, размышляя вслух.

– В мире много любопытного, Ватсап, – отозвался Сомс, дремавший, как мне казалось, в своем кресле. – Что именно вы имеете в виду?

– Я взял число 123 и повторил его шесть раз, – объяснил я.

– И получили 123123123123123123, – пренебрежительно сказал Сомс.

– Ну да, но я еще не закончил.

– Вы, несомненно, умножили это число на 37, – сказал великий детектив, вновь подрывая мою убежденность в том, что я могу сказать что-нибудь новое для него.

– Да! Умножил! И вот я получил… нет, Сомс, не прерывайте меня, пожалуйста… вот ответ… 4555555555555555551, и цифра 5 в нем повторяется много-много раз.

– И это любопытно?

– Без сомнения. Причем если один такой пример может быть случайным совпадением, то в данном случае все это не случайно. Нечто подобное происходит и в тех случаях, когда я беру не 123, а 234, или 345, или 456. Взгляните! – и я показал ему свои расчеты:

234234234234234234 × 37 = 8666666666666666658;

345345345345345345 × 37 = 12777777777777777765;

456456456456456456 × 37 = 16888888888888888872.

– И не только это: если я повторю 123, или 234, или 345, или 456 какое-то другое число раз и умножу это на 37, то в ответе опять же будет много-много повторений одной и той же цифры, а нарушения будут только по бокам.

– Я склонен думать, – пробормотал Сомс, – что структура числа 123, 234, 345 и т. д. не имеет значения. Другие числа вы пробовали?

– Я пробовал 124, и ничего не получилось. Взгляните:

124124124124124124 × 37 = 4592592592592592588.

– Цифры здесь повторяются блоками по три, но мне это не кажется удивительным – ведь и первое число имеет такую же структуру.

– 486 вы пробовали?

– Нет… ну вообще-то, поскольку с 124 не получается, мне не кажется… Ну хорошо, хорошо, – я вернулся к своему блокноту и записал новый расчет. – Как любопытно! – воскликнул я вновь, увидев ответ:

486486486486486486 × 37 = 1799999999999999982.

Вдохновленный новым успехом, я попробовал еще несколько случайных трехзначных чисел, выписывая их по несколько раз подряд и умножая на 37. Иногда результат содержал множество повторений одной и той же цифры, чаще нет. Я показал Сомсу результаты своей работы и признался:

– Я в недоумении.

– Загадка, несомненно, разрешится, – ответил Сомс, – если вы рассмотрите число 111.

Я записал

111111111111111111 × 37 = 4111111111111111107

и уставился на получившееся число. Минут через 20 Сомс поднялся, заглянул мне через плечо и иронично покачал головой.

– Нет-нет, Ватсап! Я не предлагал вам попробовать свой метод на числе 111.

– Ох. А я полагал…

– Сколько раз я говорил вам, Ватсап: «Никогда ничего не полагайте!» Да, на первый взгляд эта загадка связана с числом 37, но на самом деле это, как бы это сказать, побочный эффект. Я предлагал вам посмотреть, как число 111 соотносится с числом 37.


Ответ см. в главе «Загадки разгаданные».

Средняя скорость

Из-за большого потока машин автобус, следующий из Эдинбурга в Лондон, проходит расстояние в 400 миль за 10 часов со скоростью 40 миль в час. На обратный путь у него уходит 8 часов со скоростью 50 миль в час. Какова средняя скорость автобуса за все время пути?

Очевидный ответ – 45 миль в час, среднее арифметическое между 40 и 50, для получения которого числа складывают, а сумму делят пополам. Однако в целом автобус проезжает 800 миль за 18 часов, и средняя скорость при этом равна 800/18 = 44 4/9 миль в час.


Как это может быть?


Ответ см. в главе «Загадки разгаданные».

Четыре псевдоку без указаний

Головоломку без дополнительных указаний придумали Джерард Баттерс, Фредерик Хенле, Джеймс Хенле и Колин МакГоги. Это вариант судоку, который мне нравится называть псевдоку без дополнительных указаний. Вам предлагается решить еще четыре такие головоломки. Правила:

• Каждая строка и каждый столбец должны содержать каждое из чисел 1, 2, 3, …, n ровно по одному разу, где n – размер квадрата.

• Числа в каждой из областей, обведенных жирной линией, должны при сложении давать одну и ту же сумму. Я выписал значение этой суммы над каждым квадратом, чтобы избавить вас от необходимости искать ее самостоятельно. Все головоломки, кроме последней, имеют единственное решение, а последняя – два симметричных варианта.



Ответы и ссылку на дополнительные материалы см. в главе «Загадки разгаданные».

Суммы кубов

Треугольные числа 1, 3, 6, 10, 15 и т. д. определяются сложением последовательных чисел, начиная с 1:


1 = 1;

1 + 2 = 3;

1 + 2 + 3 = 6;

1 + 2 + 3 + 4 = 10;

1 + 2 + 3 + 4 + 5 = 15


и т. д. Для таких чисел существует формула:


1 + 2 + 3 + … + n = n (n + 1)/2.


Чтобы доказать ее, можно, в частности, записать сумму дважды, примерно так:


1 + 2 + 3 + 4 + 5;

5 + 4 + 3 + 2 + 1.


Из этой записи видно, что числа в вертикальных столбцах при сложении дают одно и то же, в данном случае 6. Поэтому удвоенная сумма равна 6 × 5 = 30, а сумма равна 15. Если проделать то же самое с числами от 1 до 100, все получится примерно так же: будет 100 колонок, дающих при сложении сумму 101, так что сумма первых 100 чисел должна составлять половину от 100 × 101, то есть 5050. В более общем случае при сложении первых n чисел мы получаем половину от n (n + 1). Формула готова.

Существует формула и для суммы квадратов, но более сложная:


1 + 4 + 9 + … + n² = n (n + 1) (2n + 1)/6.


А вот с кубами происходит нечто поразительное:

1³ = 1;

1³ + 2³ = 9;

1³ + 2³ + 3³ =36;

1³ + 2³ + 3³ + 4³ = 100;

1³ + 2³ + 3³ + 4³ + 5³ = 225.


Результаты здесь – квадраты соответствующих треугольных чисел.

Почему в результате суммирования кубов получаются квадраты? Можно найти формулу и доказать таким способом все, что нам нужно, но существует очень аккуратное наглядное доказательство того, что 1³ + 2³ + 3³ + … + n³ = (1 + 2 + 3 + … + n)², для которого не нужны никакие формулы.



На рисунке показан один квадрат со стороной 1, два квадрата со стороной 2 (образующие куб 2 × 2 × 2), 3 квадрата со стороной 3 (куб 3 × 3 × 3) и т. д. Так что суммарная площадь этой фигуры представляет собой сумму последовательных кубов. Следуя вдоль одной из сторон (к примеру, верхней), видим 1 + 2 + 3 + 4 + 5, то есть сумму последовательных чисел. Но площадь квадрата равна квадрату его стороны. Готово!

Если вам непременно нужна формула, то мы знаем, что (1 + 2 + 3 + … + n) = n (n + 1)/2, а возведение в квадрат дает 1³ + 2³ + 3³ + … + n³ = n² (n + 1)²/4.

Загадка похищенных бумаг
Из мемуаров доктора Ватсапа

Сомс передал мне конверт и поднял в руке извлеченное из него письмо.

– Проверка на наблюдательность, Ватсап. Кто, по-вашему, мог прислать мне это?

Я поднес конверт к свету, оглядел марку и штемпель, понюхал, исследовал клей в том месте, где письмо было запечатано.

– Отправитель – женщина, – сказал я. – Незамужняя, но еще не старая дева, находится в активном поиске мужа. Она напугана, но храбрится, – я немного помолчал, и меня осенила еще одна мысль: – У нее плохо с финансами, но положение пока не катастрофическое.

– Очень хорошо, – сказал он. – Я вижу, вы усвоили некоторые из моих методов.

– Я стараюсь, – скромно заметил я.

– Объясните, что привело вас к этим выводам.

Я собрался с мыслями.

– Конверт розовый и несет на себе отчетливые следы какого-то аромата. Nuits de Plaisir, если я не ошибаюсь: моя приятельница Беатрис часто использует такой же. Для замужней женщины он слишком откровенен, а для молодой, напротив, недостаточно откровенен. Тот факт, что она вообще пользуется духами, указывает на активный поиск мужского внимания. Следы косметики на клапане это подтверждают. Но клеевой след был смочен лишь частично, а смачивают его языком, так что во рту у нее, вероятно, было сухо, когда она запечатывала конверт. Сухость во рту – признак страха. Но раз она все же заклеила конверт и отправила письмо, значит, она пока в состоянии действовать рационально, хотя и испытывает сильное напряжение, а это признак храбрости. Наконец, по марке заметно, что ее отклеили над паром от другого конверта и использовали вторично – загнутый уголок, следы предыдущего почтового штемпеля. Это указывает на бережливость. Однако на духи деньги нашлись, так что нельзя сказать, что отправительница письма стоит на пороге бедности.

Он задумчиво кивнул, а я мысленно похвалил себя.

– Кое-какие признаки вы упустили, – негромко заметил Сомс, – что показывает всю эту историю в новом свете. Форма и размер конверта говорят о правительственной рассылке, такой конверт не купишь в первом попавшемся писчебумажном магазинчике. Вы можете прочесть об этом в моей монографии о канцелярских принадлежностях и характерных для них размерах. Чернила, которыми написан адрес, имеют необычный темно-коричневый оттенок; опять же, такие чернила не купишь в магазине, а вот в некоторые департаменты Уайтхолла их поставляют в больших количествах.

– Ах! Значит, ее нынешний сердечный друг – чиновник, конверт и чернила она позаимствовала у него.

– Разумная теория, – сказал он. – Совершенно неверная, разумеется, но в высшей степени разумная, к тому же в основном соответствует нашим данным. Однако на самом деле это письмо от моего брата Спайкрафта.

Я был поражен до глубины души.

– У вас есть брат? – Сомс никогда не говорил о своей семье.

– Да, неужели я не упоминал его? Большое упущение с моей стороны.

– Откуда вы знаете, что письмо от него?

– Оно подписано.

– Ах. Но что вы скажете про остальные признаки?

– Это небольшая шутка со стороны Спайкрафта. Но надо спешить, нам назначена встреча в клубе «Диофант», едем немедленно. Дайте шестипенсовик какому-нибудь мальчишке, пусть приведет нам кэб, по пути я введу вас в курс дела.

Пока мы тряслись в кэбе вдоль Портленд-плейс, Сомс рассказал, что его брат – отставной специалист по простым числам и иногда частным образом выполняет заказы правительства Ее Величества. Он отказался говорить о сути предстоящего нам дела, сказав лишь, что оно в высшей степени конфиденциальное и связано с политикой.

По прибытии в клуб «Диофант» нас провели в гостевой зал, где в удобном кресле нас дожидался какой-то джентльмен. С первого взгляда он произвел на меня впечатление вялой тучности, но быстро выяснилось, что за этой внешностью скрываются острый ум и активное тело, полностью опровергающие ту, первую оценку.

Сомс представил нас.

– Вы часто находите мои дедуктивные способности поразительными, Ватсап, – сказал он, – но Спайкрафту я в подметки не гожусь.

– Есть все же одна область, в которой твои способности превосходят мои, – возразил его брат. – Речь идет о логических головоломках, в которых точные условия текучи, как вода. В них я всегда чувствую, что лишен опоры, с которой мог бы атаковать задачу. Отсюда моя записка.

– Насколько я понял, ты не возражаешь против того, чтобы рассказать все доктору Ватсапу?

– Его послужной список в Ал-Гебраистане безупречен. Он должен поклясться в сохранении тайны, но его слова будет достаточно.

Сомс бросил на брата острый взгляд.

– С каких это пор ты готов принять чье-то слово, это на тебя не похоже.

– Этого будет достаточно, когда я проинформирую его о последствиях его нарушения.

Я должным образом поклялся, и мы перешли к делу.

– Некий важный документ был случайно положен в ненадлежащее место, а затем украден, – сказал Спайкрафт. – Безопасность Британской империи требует безотлагательно найти его и вернуть на место. Если этот документ попадет в руки наших врагов, полетят головы и части империи могут пасть. К счастью, местный констебль мельком видел вора, и этого оказалось достаточно, чтобы сузить круг подозреваемых до четырех человек.

– Кто они? Мелкие воришки?

– Нет, все четверо весьма уважаемые джентльмены. Адмирал Арбатнот, банкир Берлингтон, врач Волверстон и генерал Гамильтон.

Сомс резко выпрямился.

– Значит, здесь отметился Могиарти.

Не успев проследить за его рассуждениями, я попросил объяснить.

– Все четверо – шпионы, Ватсап. И работают на Могиарти.

– Значит… Значит, Спайкрафт, должно быть, связан с контрразведкой! – воскликнул я.

– Да, – он коротко взглянул на брата. – Но вы не слышали этого от меня.

– А этих предателей допросили? – спросил я.

Спакрафт вручил мне досье, и я прочел вслух, чтобы Сомс тоже мог слышать.

– На допросе Арбатнот сказал: «Это сделал Берлингтон». Берлингтон сказал: «Арбатнот лжет». Волверстон сказал: «Это не я». Гамильтон сказал: «Это сделал Арбатнот». Это все.

– Не совсем все. Из другого источника нам известно, что ровно один из них сказал правду.

– У вас есть информатор в близком окружении Могиарти, Спайкрафт?

– У нас был информатор, Хемлок. Его удавили его собственным галстуком, прежде чем он успел назвать нам реальное имя. Очень печальная история: это был галстук выпускника Итонского колледжа, и он совершенно испорчен. Однако не все еще потеряно. Если мы сможем вычислить вора, мы получим ордер на обыск и вернем документ. За всеми четверыми наблюдают, у них не будет возможности передать бумагу Могиарти. Но руки у нас связаны – мы должны придерживаться буквы закона. Более того, если мы придем с обыском не в тот дом, юристы Могиарти предадут нашу ошибку огласке и нанесут нам тем самым непоправимый ущерб.


Кто из подозреваемых вор? Ответ см. в главе «Загадки разгаданные».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации