Электронная библиотека » Льюис Кэрролл » » онлайн чтение - страница 5

Текст книги "История с узелками"


  • Текст добавлен: 26 февраля 2024, 08:21


Автор книги: Льюис Кэрролл


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 8 страниц)

Шрифт:
- 100% +

б. Результат экзамена, как и прежде, зависит от относительного уровня знаний кандидатов, но оценку по французскому языку по новым правилам при выведении общей оценки надлежит учитывать с вдвое большим весом, нежели оценки по немецкому или итальянскому языку. Поскольку такая постановка задачи необычна, я сформулирую ее еще раз несколько подробнее. Итоговая оценка по новым правилам должна быть ближе к отношению оценок за французский язык, чем в случае а, причем ближе настолько, что для получения итоговой оценки, выведенной комиссией в случае а, каждый из сомножителей, отвечающих относительному уровню знаний кандидатов по немецкому и итальянскому языкам, надлежит возвести в квадрат. Например, если относительный уровень знания кандидатами французского языка оценен в 9/10, а двух других языков – в 4/9 и 1/9, то итоговая оценка, вычисляемая по методу а, была бы равна 2/45, а по методу б1/5, то есть ближе к 9/10, чем 2/45. При вычислении итоговой оценки по методу б я извлек из 4/9 и 1/9 квадратный корень, то есть «учел» их с вдвое меньшим весом по сравнению с оценкой за французский язык.

в. Результат экзамена должен зависеть не от относительного, а от абсолютного уровня знаний каждого кандидата и оцениваться по сумме баллов, полученных по всем трем языкам. Здесь мы должны остановиться и уточнить правила, задав целый ряд вопросов.

1) Что принять за единицу измерения («эталон») знаний по каждому языку?

2) Должны ли все эти единицы иметь одинаковое или различное значение при выводе общей оценки за экзамен?

Обычно за «эталон» знаний принимается умение правильно ответить на все вопросы экзаменационного билета. Если эту высшую оценку принять, например, за 100, то все остальные оценки будут колебаться между 0 и 100. В предположении, что все единицы равны, мы найдем общую оценку за экзамен для А и В, сложив баллы, полученные каждым из кандидатов за французский, немецкий и итальянский языки.

г. Условия те же, что и в случае в, но с одним изменением: оценку по французскому языку при выводе окончательной оценки надлежит засчитывать с удвоенным весом. В этом случае, прежде чем подсчитывать сумму баллов, необходимо сначала еще умножить оценку по французскому языку на 2.

д. Оценку по французскому языку при выводе итоговой оценки надлежит брать таким образом, чтобы при одинаковых оценках по немецкому и итальянскому языкам итоговая оценка совпадала с оценкой по французскому (таким образом, нуль по французскому означает, что получивший его кандидат окончательно выбывает из игры). При различных оценках по немецкому и итальянскому языкам они обе должны влиять на окончательный итог экзамена лишь в сумме, каждая – в той же мере, что и другая. В этом случае я бы сложил оценки, полученные, например, А по немецкому и итальянскому языкам, а сумму умножил на оценку по французскому языку.

Вряд ли нужно продолжать примеры: данную задачу, очевидно, можно формулировать по-разному и каждый тип условий требует своего метода решения. Задача из узелка VI по замыслу автора должна была принадлежать к классу а. Чтобы подчеркнуть это обстоятельство, я специально вложил в уста губернатора следующие слова: «Обычно участницы конкурса расходились лишь по одному из трех пунктов. Например, в прошлом году Фифи и Гого в течение испытательного срока – недели – успели связать одинаковое количество одинаково легких шарфов, но шарфы, связанные Фифи, оказались вдвое теплее, чем шарфы, связанные Гого, поэтому Фифи и сочли вдвое лучшей вязальщицей, чем Гого».

Узелок VII

Задача. Стакан лимонада, 3 бутерброда и 7 бисквитов стоят 1 шиллинг 2 пенса. Стакан лимонада, 4 бутерброда и 10 бисквитов стоят 1 шиллинг 5 пенсов. Найти, сколько стоят: 1) стакан лимонада, бутерброд и бисквит; 2) 2 стакана лимонада, 3 бутерброда и 5 бисквитов.

Ответ. 1) 8 пенсов; 2) 1 шиллинг 7 пенсов.

Решение. Эту задачу лучше всего решать алгебраически. Пусть х – стоимость (в пенсах) одного стакана лимонада, у – стоимость бутерброда и z – бисквита. Тогда по условию задачи, х + 3у + 7z = 14 и x + 4у + 10z = 17. Требуется вычислить, чему равны х + у + z и 2х + 3y + 5z. Располагая лишь двумя уравнениями, мы не можем найти значения каждого из трех неизвестных в отдельности, но вычислить значения некоторых комбинаций неизвестных в наших силах. Известно также, что с помощью двух данных уравнений мы можем исключить два из трех неизвестных, после чего искомые выражения будут зависеть лишь от одного неизвестного. Значения искомых выражений могут быть вычислены лишь в том случае, если единственное неизвестное, оставшееся неисключенным, само собой уничтожается. В противном случае задача не имеет решения.

Исключим лимонад и бутерброды и сведем все к бисквитам – ситуации еще более удручающей, нежели та, о которой говорится в проникновенных строках:

 
Ну, скажи на милость,
Кто бы думать мог?
Все вдруг превратилось
В яблочный пирог.
 

Для этого вычтем первое уравнение из второго, исключив тем самым лимонад, и получим у + 3z = 3. Подставляя у = 3–3z в первое уравнение, найдем: х – 2z = 5, или, что то же, х = 5 + 2z. Если теперь мы подставим выражения для х и у в те выражения, значения которых нам необходимо вычислить, то первое из них превратится в (5+2z) + (3–3z) + z = 8, а второе – в 2 (5 + 2z) + 3 (3–3z) + 5z = 19. Следовательно, стоимость первого набора составляет 8 пенсов, а второго – 1 шиллинг 7 пенсов.

Изложенный нами метод универсален. Иными словами, он абсолютно во всех случаях позволяет либо получить ответ, либо доказать, что решения не существует. Разумеется, следовать ему отнюдь не обязательно. Искомые величины можно, например, найти, комбинируя величины, значения которых известны. Такой способ решения требует лишь остроумия и известного «везения». Я не могу оценивать его столь же высоко, как и универсальный метод, поскольку он не гарантирует от неудач даже в том случае, когда решение существует, и оказывается совершенно бесполезным, когда требуется доказать, что задача не имеет решения. Кроме того, составление нужных комбинаций, даже если оно и приводит к успеху, может оказаться довольно утомительным занятием.

Здесь мне хочется остановиться подробно на разборе одного из присланных решений, принадлежащего читателю, скрывающемуся под псевдонимом Бальбус, ибо речь пойдет о вещах, достаточно важных для всех читателей.

Бальбус решил считать стоимость любого завтрака окончательно установленной лишь в том случае, если «два разных предположения приводят к одинаковой сумме» (израсходованной на завтрак). Приняв два предположения – согласно первому бутерброд ничего не стоит, согласно второму – бисквит выдается в виде бесплатного приложения к лимонаду и бутербродам (если бы хоть одно из этих предположений соответствовало действительности, в кондитерскую нельзя было бы пробиться!), Бальбус получает, что завтрак Клары стоил 8 пенсов, а завтрак старушек – 19 пенсов независимо от принятой гипотезы. Отсюда в соответствии со своим правилом Бальбус заключил, что «обнаруженное совпадение доказывает правильность полученных результатов». Я опровергну правило Бальбуса, указав всего лишь один пример, в котором это правило нарушается. Для того чтобы опровергнуть любое утверждение, одного противоречащего примера вполне достаточно. Если воспользоваться специальной логической терминологией, то можно сказать, что для опровержения общеутвердительного суждения достаточно опровергнуть противоположное ему частноотрицательное суждение. (Здесь необходимо остановиться и совершить небольшой экскурс в логику вообще и в женскую логику в частности. Общеутвердительное суждение «Все говорят, что такой-то и такой-то – мокрая курица» мгновенно опровергается доказательством истинности частноотрицательного суждения «Питер говорит, что такой-то и такой-то – гусь лапчатый», эквивалентного суждению «Питер не говорит, что такой-то и такой-то – мокрая курица». Общеотрицательное суждение «Никто не бывает у нее» великолепно парируется частноутвердительным суждением «Я был у нее вчера». Короче говоря, любое из двух противоположных суждений опровергает другое. Отсюда мораль: поскольку доказать частное суждение гораздо легче, чем общее, в разговоре с дамой разумно ограничивать собственные высказывания частными суждениями, предоставляя своей собеседнице доказывать, если это в ее силах, общие суждения. Тем самым вы всегда сможете обеспечить себе логическую победу. Особенно рассчитывать на то, что вам практически удастся одержать верх над вашей собеседницей, не следует, поскольку она всегда может отступить, сделав обескураживающее заявление: «Это к делу не относится!» Ни одному мужчине еще не удавалось удовлетворительным образом парировать подобный ход. А теперь вернемся к Бальбусу.) Частноотрицательное суждение, на котором я хочу проверить его правило, можно сформулировать так. Предположим, что два счета за завтрак гласят: «2 булочки с изюмом, 1 пирожок, 2 сосиски и бутылка лимонада. Итого: 1 шиллинг 9 пенсов» и «1 булочка с изюмом, 2 пирожка, 1 сосиска и бутылка лимонада. Итого: 1 шиллинг 4 пенса». Предположим также, что Клара заказала себе на завтрак 3 булочки с изюмом, 1 пирожок, 1 сосиску и 2 бутылки лимонада, а две сестры-старушки довольствовались 8 булочками с изюмом, 4 пирожками, 2 сосисками и 6 бутылками лимонада (бедняжки, как им захотелось пить!). Если Бальбус любезно согласится испытать свое правило «двух разных предположений» на этом «суждении» и предположит сначала, что булочка с изюмом стоит 1 пенс, а пирожок 2 пенса, а затем – что булочка с изюмом и пирожок стоят по 3 пенса, то за первый счет ему придется «уплатить» 1 шиллинг 9 пенсов, а за второй – 4 шиллинга 10 пенсов независимо от предположения. Полное согласие результатов, скажет он, «доказывает их правильность». Между тем булочка с изюмом в действительности стоила 2 пенса, пирожок 3 пенса, сосиска 6 пенсов, а бутылка лимонада – 2 пенса. Поэтому третий завтрак обошелся Кларе в 1 шиллинг 7 пенсов, а ее умирающим от жажды приятельницам в 4 шиллинга 4 пенса!

Я хотел бы процитировать и кратко прокомментировать еще одно замечание Бальбуса, ибо, как мне кажется, некоторые читатели могли бы извлечь из него мораль. Вот что он пишет: «В сущности безразлично, будем ли мы при решении данной задачи пользоваться словами и называть это арифметикой или прибегнем к буквам и символам и назовем его алгеброй». Оба определения (и арифметики, и алгебры) мне представляются неверными. Арифметический метод решения задачи является чисто синтетическим: от одного известного факта он переходит к другому до тех пор, пока желанная цель не будет достигнута. Алгебраический же метод решения по своей природе аналитический: он начинает с конца и, обозначив цель поиска условным символом, устремляется к началу и влечет за собой свою жертву-инкогнито до тех пор, пока не выходит на ослепительный свет известных фактов, срывает с нее маску и говорит: «Я тебя знаю!»

Чтобы не быть голословным, приведу пример. Представьте себе, что к вам в дом забрался грабитель и, похитив какие-то вещи, скрылся. Вы зовете на помощь дежурного полисмена. Отчет о дальнейших событиях в устах полисмена мог бы звучать, например, так:

– Да, мэм, я видел, как какой-то верзила перелез через забор вашего сада, но от меня это было далековато и сразу схватить я его не мог. А что, думаю, если я побегу ему наперерез? И точно, только я выбежал на соседнюю улицу, гляжу – из-за угла на всех парах катит Билл Сайке собственной персоной. Я его цап за воротник:

– Ага, голубчик, попался! Тебя-то мне и надо!

Больше я ему ничего не сказал. А он мне в ответ:

– Ладно, – говорит, – фараон, твоя взяла. Веди в участок, ничего не попишешь!

Так действовал бы арифметический полисмен. А вот другой отчет о тех же событиях:

– Вижу, кто-то бежит. Что делать? Пуститься за ним вслед? Не имеет смысла: больно далеко он ушел, все равно не догонишь. Вот я и решил осмотреть сад. Гляжу – на клумбе, где этот парень помял все ваши цветы, следы остались: такие, знаете, ясные, четкие отпечатки его ножищ. Пригляделся повнимательнее – так и есть: левый каблук везде отпечатался глубже, чем правый. Тут я и говорю себе: «Парень, что их оставил, должно быть, высокого роста и хром на левую ногу». Провел я рукой по стене в том месте, где он перелез, и вижу: на руке сажа. Я и подумал: «Где я мог видеть здоровенного парня, трубочиста, да к тому же хромого на левую ногу?» И тут меня как громом ударило: «Да ведь это же Билл Сайкс!»

Так действовал бы алгебраический полисмен – на мой взгляд, более интеллектуальный тип полисмена, чем первый.

Узелок VIII

Задача 1. Расположить 24 поросенка в четырех свинарниках так, чтобы при обходе свинарников по кругу число поросят в очередном свинарнике неизменно оказывалось ближе к 10, чем число поросят в предыдущем свинарнике.

Ответ. В первом свинарнике должно находится 8 поросят, во втором – 10 и в четвертом – 6. Ничего не должно находиться в третьем свинарнике: он должен быть пуст. Совершаем контрольный обход свинарников. Десять ближе к 10, чем 8. Что может быть ближе к 10, чем 10? Ничто! Но именно «ничто» и находится в третьем свинарнике. Шесть ближе к 10, чем 0 (арифметический псевдоним «ничего»), 8 ближе к 10, чем 6. Условия задачи выполнены.


Задача 2. Из некоторого пункта в обе стороны каждые 15 минут отправляются омнибусы. Пешеход выходит из того же пункта в момент отправления омнибусов и встречает первый омнибус через 12½ минут. Когда пешехода нагонит первый омнибус?

Ответ. Через 6¼ минуты после встречи с первым омнибусом.

Решение. Пусть а – расстояние, проходимое омнибусом за 15 минут, а х – расстояние от пункта отправления до того места, где омнибус нагонит пешехода. Поскольку встреченный пешеходом омнибус прибывает в пункт отправления через 2½ минуты после встречи, он за эти 2½ минуты проезжает расстояние, на преодоление которого у пешехода ушло 12½ минут. Следовательно, скорость омнибуса в 5 раз превышает скорость пешехода. Омнибус, который нагонит пешехода в тот момент, когда пешеход пускается в путь, находится на расстоянии а от пункта отправления. Следовательно, к тому моменту, когда путешественник проходит расстояние х, омнибус успевает проехать расстояние а + х. Учитывая соотношение скоростей, получаем a + х = 5х, то есть 4х = а, откуда х = a/4. Это расстояние омнибус преодолевает за 15/4 минуты. Следовательно, пешеход проходит его за 5 × 15/4 минут. Таким образом, омнибус нагоняет пешехода через 18¾ минуты после того, как тот отправится в путь, или (что то же) через 6¼ минуты после встречи с первым омнибусом.

Узелок IX

Задача 1. В учебниках физики говорится, что тело, полностью погруженное в жидкость, вытесняет столько жидкости, что ее объем равен объему самого тела. Справедливо ли это утверждение для маленького ведерка, плавающего в другом ведерке несколько больших размеров?

Решение. Говоря о теле, «вытесняющем жидкость», авторы учебников имеют в виду, что оно «занимает пространство, которое можно заполнить жидкостью, не вызывая каких-либо изменений в окружающей среде». Если уничтожить ту часть меньшего ведерка, которая выступает над поверхностью воды в большем ведерке, а вместо остальной части ведерка взять столько воды, сколько оно вмещает, то уровень воды в большем ведерке в полном соответствии с учебниками физики останется неизменным.


Задача 2. Из рассуждений, приводимых в трактате Бальбуса, следует, что при погружении тела в сосуд с водой уровень воды последовательно поднимается на 2 дюйма, 1 дюйм, ½ дюйма и т. д. Бальбус считает ряд, образуемый приращениями уровня, бесконечным и заключает отсюда, что уровень воды должен неограниченно возрастать. Правильно ли такое заключение?

Решение. Нет, неправильно. Сумма всех приращений уровня никогда не достигает 4 дюймов, ибо, сколько бы членов ряда мы ни взяли, от отметки 4 дюйма нас будет отделять расстояние, равное последнему взятому члену ряда.


Задача 3. Сад имеет форму «вытянутого» прямоугольника, длина которого на ½ ярда больше ширины. Дорожка шириной в 1 ярд и длиной в 3630 ярдов, усыпанная гравием и закрученная спиралью, заполняет весь сад. Найти длину и ширину сада.

Ответ. Ширина сада 60 ярдов, длина – 60½ ярдов.

Решение. Разделим дорожку на прямые участки и «повороты» – квадраты размером 1 × 1 ярд в «углах». Число полных ярдов и их долей, пройденных вдоль прямых участков дорожки, очевидно, равно площади прямых участков дорожки, измеряемой в квадратных ярдах. Расстояние, проходимое на каждом «повороте», равно 1 ярду, а площадь «уголка» также равна 1 ярду (но уже квадратному). Таким образом, площадь сада равна 3630 квадратным ярдам. Если х – ширина сада в ярдах, то х (х +

+ ½) = 3630. Решая это квадратное уравнение, получаем х = 60. Следовательно, ширина сада равна 60 ярдам, а его длина – 60½ ярдам.

Узелок X

Задача 1. 70 процентов инвалидов потеряли глаз, 75 процентов – ухо, 80 процентов – руку и 85 процентов – ногу. Каков процент ветеранов, лишившихся одновременно глаза, уха, руки и ноги?

Ответ. 10 процентов.

Решение. Предположим, что инвалидов ровно 100 человек. Общее число всех увечий равно

70 + 75 + 80 + 85 = 310.

Следовательно, на каждого инвалида приходится по 3 увечья, а десятерым особенно не повезло: они получили все 4 увечья. Таким образом, наименьшая доля инвалидов, лишившихся глаза, уха, руки и ноги, равна 10 процентам.


Задача 2. Решение географической задачи – о смене дат – я вынужден отложить на неопределенный срок отчасти потому, что я не знаю, как ее решить[8]8
  См. также «Трудность первую» на стр. 125. – Примеч. пер.


[Закрыть]
.


Задача 3. Некогда сумма возрастов двух сыновей была равна возрасту третьего сына. Через несколько лет сумма возрастов стала равна удвоенному возрасту третьего сына. Когда число лет, прошедших с тех пор, когда сумма возрастов двух сыновей была равна возрасту третьего, составит ⅔ от суммы возрастов всех трех сыновей, третьему сыну исполнится 21 год. Сколько лет будет двум другим сыновьям?

Ответ. 15 и 18 лет.

Решение. Обозначим возраст сыновей в момент первого знаменательного события х, у и (х + у). Заметим, что если а + b = 2с, то (а – п) + (b – п) = 2 (с – п) при любых п. Следовательно, последнее соотношение, коль скоро оно выполняется хоть когда-нибудь, выполняется всегда, в частности в момент первого знаменательного события. Но по условию задачи сумма возрастов двух сыновей (х и у) в этот момент равна возрасту третьего и, следовательно, не может быть вдвое больше возраста третьего. Следовательно, условие должно выполняться для суммы возраста третьего сына (х + у) и возраста какого-нибудь из первых двух сыновей, то есть х или у (какого именно, безразлично). Предположим, например, что (х + у) + х = 2у, тогда у = 2х. Таким образом, в момент первого знаменательного события возрасты сыновей образуют арифметическую прогрессию х, 2х, 3х, а число лет, прошедших с тех пор, составляет ⅔ от 6х, то есть равно 4х. Итак, в момент, когда отец произносил свою последнюю торжественную речь, его сыновьям исполнилось по 5х, 6х и 7х лет. Возраст любого из сыновей выражается целым числом. Об этом свидетельствует то место в речи отца, где говорится: «В этом году одному из моих сыновей исполняется…» Поэтому 7х = 21,

х = 3, 5х = 15 и 6x = 18.

Один из читателей обратил внимание на допущенную мной неточность. Я упустил из виду, что, хотя одному из сыновей «в этом году исполняется» 21 год, ниоткуда не следует, что он уже достиг этого возраста, ибо его день рождения мог прийтись и на более позднюю дату. В день же, когда все герои собрались у отца, сыну могло быть еще 20 лет. Отсюда возникает второе решение: 20 лет, 24 года и 28 лет.

Пользуясь случаем, я благодарю всех, кто выразил свое сожаление по поводу того, что узелок X был не только десятым, но и последним, или просьбу пересмотреть мои намерения и продолжить публикацию «Узелков». Я чрезвычайно признателен за любезные слова и добрые пожелания, но все же считаю наиболее разумным закончить на этом то, что в лучшем случае можно было бы назвать не слишком удачной попыткой. «Размеренный ритм античной песни» недосягаем для меня. Куклы, послушно игравшие в «Узелках» отведенные им роли, не заняли (в отличие от тех, кому я адресую эти строки) заметного места в моей жизни и не стали (подобно Алисе и Морскому Деликатесу[9]9
  Так назван один из персонажей «Алисы в Стране чудес» Mock Turtle в пересказе Бориса Заходера – «Пионер», № 12 (1971) – 3 (1972). – Примеч. пер.


[Закрыть]
) живыми существами вне ее. И все же, дорогой читатель, сейчас, когда я откладываю перо и возвращаюсь к тихой жизни, мне приятно думать, что меня провожает ваша незримая улыбка, и ощущать дружеское пожатие вашей бесплотной руки. Итак, доброй ночи! Грусть расставания настолько приятна, что я буду повторять до самого утра: «Доброй ночи!»


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации