Текст книги "Фронт идет через КБ: Жизнь авиационного конструктора, рассказанная его друзьями, коллегами, сотрудниками"
Автор книги: Михаил Арлазоров
Жанр: Современная русская литература, Современная проза
сообщить о неприемлемом содержимом
Текущая страница: 13 (всего у книги 15 страниц)
Глава шестая. По ту сторону звука
Не вникая в технические тонкости этого явления, скажу, что мы оказались перед стеной, возведенной из загадок. Аэродинамические законы, известные ученым, теряли на звуковом барьере свою силу, больше того, многое приобретало обратный смысл. Техника требовала научного объяснения новых явлений. Да, наука стала очень нужна нам, инженерам.
С. А. Лавочкин
Конструкторы и наука
Пятилетие, начавшееся в 1946 году в авиации, без преувеличения можно назвать пятилетием загадок. Случилось то, чего и ожидать никто не мог. Теория внезапно отстала, позволив практике совершить смелый, хотя и незаконный, никем не предусмотренный обгон.
Много лет назад знаменитый русский ученый Дмитрий Иванович Менделеев сравнил теорию с фонарем, освещающим путь практике. Нетрудно представить себе, что произошло, когда фонарь стал светить вперед на очень короткое расстояние. Его света хватало лишь для авиации малых, дозвуковых скоростей.
Очень скоро после серии катастроф, нередко с трагическим исходом, происшедших во многих странах мира, выяснилось, что «старые добрые» физические законы справедливы далеко не на всех скоростях и не на всех высотах. Практика ставила эти вопросы перед наукой с большой остротой. Чтобы ответить на них и создать новую [182] технику, нужны были совместные действия ученых и конструкторов.
Вероятно, Мах – австрийский физик, скончавшийся полвека назад, и предполагать не мог, сколь грозно прозвучит его имя в середине XX столетия. Собственно говоря, вспомнить о нем – заставило число его имени, измерявшее отношение скорости полета к скорости звука. Чем большей становилась эта бесхитростная десятичная дробь, чем ближе подбиралась она к единице, тем больше неожиданностей обрушивалось на летчика и машину.
Советский народ увидел реактивных первенцев в августе 1946 года. Яковлев показал Як-15, Микоян и Гуревич – МиГ-9. Лавочкин – машины с ускорителями: Все самолеты произвели впечатление. Инженеры-испытатели Р. А. Арефьев и М. Л. Барановский рассказывают: «Летчик на нашей машине с прямоточным ускорителем Бондарюка прошел заданный маршрут и благополучно приземлился. У Давыдова на Ла-7Р получилось иначе. Салют окутал аэродром дымкой. Давыдов промазал и прошел левее трибун. Заметив ошибку, летчик, имея в запасе всего полминуты, резко развернулся и спикировал. Раздался страшный грохот. Публика в панике. Большая скорость полета и солидный факел реактивного двигателя создавали впечатление пожара. Перейдя затем почти на боевой разворот, Давыдов ушел с аэродрома…».
А примерно через месяц, сжигая при рулежках траву аэродрома, покатился на испытания и Ла-150. Испытанный в конце лета 1946 года, Ла-150 тотчас же запустили в небольшую серию. Вместе с Миг-9 и Як-15 пятнадцать Ла-150 должны были принять участие в воздушном [183] параде над Красной площадью. Параду придавалось большое значение. Шутка ли – впервые в истории одновременно поднять в воздух несколько полков военных реактивных самолетов!
– Семену Алексеевичу пришлось трудно, – вспоминал генерал Ефимов. – Еще не кончились испытания, еще летчики не умели летать на таких машинах, еще и летчиков не было, а ему уже предлагалось обеспечить полную безопасность самолетов при полете над Красной площадью.
– Но серия была построена не только для парада, к тому же не состоявшегося из-за плохой погоды, – уточняет М. Л. Барановский. – На ней учились технологи, эксплуатационники, летчики. Она позволила проверить, как справляются с новой техникой заводы, сумеют ли овладеть этой машиной военные. Одним словом – Учеба, Учеба с большой буквы для всех.
Учиться действительно пришлось многому. Подступы к звуковому барьеру трудны. Скорость потока, обтекающего самолет в разных местах его поверхности, различна. Некоторые участки «летят» быстрее звука. Именно это – смешанное дозвуковое и сверхзвуковое обтекание самолета – и приносит множество неприятных неожиданностей, затрудняя управление.
Почти одновременно пришла тряска. Местные скачки уплотнения, эти маленькие «махи», вызывали микровибрацию. Жесткие части самолета передавали ее друг другу. Самолет начинало внезапно «знобить» и «лихорадить». Возникал так называемый волновой кризис.
В ноябре 1945 года с этим неприятным явлением встретились англичане, установив на самолете «Глостер Метеор IV» мировой рекорд – 976 километров в час.
«Даже в самую тихую погоду, – писала газета „Британский союзник“, – полет на машине типа „Глостер Метеор“ напоминает езду на деревянном велосипеде по булыжной мостовой. Уже при скорости 960 километров в час начались короткие резкие толчки, и все время, когда они шли на полном ходу, летчиков швыряло о стенки кабины».
Избавиться от тряски, отработать управление, уменьшить сопротивление, чтобы тем самым сократить и потребную тягу двигателя, – таковы основные проблемы [184] внешней аэродинамики. Но не меньшей сложности проблемы занимали внутреннюю аэродинамику, изучавшую поведение воздушных струй внутри самолета, струй, проходивших через двигатель. Нужно было неукоснительно строго выдерживать направление этих струй, организовать их вход и выход без потерь, без снижения коэффициента полезного действия двигателя.
Обе проблемы – уменьшение и внешнего и внутреннего сопротивления – отступали перед третьей, еще более значительной: «отодвинуть» неприятные явления, перевести их в область иных, гораздо более высоких скоростей.
На первый взгляд сама постановка вопроса нереальна и фантастична. Сместить явление, сопутствующее какой-то определенной скорости. Да возможно ли это?
– Возможно! Поскольку возникновение скачков уплотнения связано с конфигурацией частей самолета, совершенно ясно, что, изменив аэродинамические формы, можно отсрочить возникновение волнового кризиса.
Но, зная цель, никто не видал к ней кратчайшей дороги. Не знал этой дороги и Лавочкин.
Терпеливо и последовательно Лавочкин повел необходимые эксперименты на Ла-150, раскрывшие пути в незнаемое младшим собратьям этого самолета – Ла-152, Ла-154, Ла-156 и, наконец, Ла-160, принесшему конструктору сладость успеха.
Каждая из этих машин, сохраняя основные черты прародителя, несла в себе нечто новое, все глубже и глубже вторгаясь в мир больших скоростей. Семейство экспериментальных «Ла» позволило опробовать не только трофейные реактивные двигатели, но и разработанные В. И. Нижним двигатели с дожиганием. Прошли проверку тонкие крылья, скоростные ламинарные профили, элероны с внутренней компенсацией и прочие технические новинки.
Крыло, сотканное из загадок
В той комнате КБ, где работала группа общих видов, стоял длинный и узкий стол. На нем раскатывался рулон с компоновочной схемой самолета. Вокруг стола – высокие, как в баре, табуреты. Семен Алексеевич взбирался [185] на один из них и начинался разговор, в котором все были равны, невзирая на должности и звания…
Посторонний человек – случайный свидетель таких дискуссий – был бы немало удивлен. Разделав под орех оппонентов, Лавочкин меньше всего выглядел победителем. Казалось бы, его логика безупречна, его аргументы сложились в строжайшую систему, но тем не менее, обводя глазами собеседников, Семен Алексеевич просил:
– Спорьте со мной! Я еще не уверен, что идея правильна…
Он знал, идеи, проверенные за длинным столом, никогда не оборачивались потом мыльными пузырями.
В КБ Лавочкина любили и умели спорить, но остроты, с которой происходило обсуждение последнего, самого рискованного варианта, не помнили даже старожилы. Речь шла о стреловидных крыльях.
– Быть может, это один из очень немногих периодов, когда мы видели Семена Алексеевича в таком взволнованном и нервном состоянии, – вспоминали его сотрудники, – он нервничал. Нервничал здорово. Не решить вопрос нельзя, а решение выглядело чертовски рискованным.
Что знал Лавочкин о стреловидных крыльях? Как я уже отмечал, Семен Алексеевич был достаточно искушен в вопросах аэродинамики. К тому же он получил исчерпывающую информацию от главного аэродинамика своей «фирмы» Н. А. Хейфица.
Большие скорости полета поставили аэродинамику в сложное положение. Во многом она отстала и была бессильна – отсюда кровь, пролитая при штурме звукового барьера. Но многое уже известно. Стреловидное крыло – белое пятно на картах практики, но отнюдь не диковинка для теоретиков. Именно они, ученые, руководимые академиком С. А. Христиановичем и профессором В. В. Струминским, и поставили на повестку дня эту интереснейшую научно-техническую проблему.
История, завершившаяся работами Струминского, началась в 1935 году. В тот год, собравшись на конгрессе в Риме, аэродинамики всего мира открыли для себя докторскую диссертацию Сергея Алексеевича Чаплыгина «О газовых струях» – фундаментальную теоретическую работу по аэродинамике больших скоростей, написанную еще в 1902 году. [186]
И (такое не раз бывало в науке) высоко оценив труд Чаплыгина, аэродинамики не придали большого значения докладу немецкого ученого Буземана, сообщившего тому же конгрессу о подмеченном им эффекте стреловидности. Буземан – известный ученый. Он создал теорию сверхзвукового обтекания. Однако и сам не оценил по достоинству открытый им эффект стреловидности. Отметив факт, Буземан не сумел дать интересное практике толкование возможностей и перспектив своего открытия.
Между открытием эффекта стреловидности и его воплощением в реальных конструкциях пролегала «дистанция огромного размера».
И вот что любопытно. В годы войны, когда немецкая наука и техника занялись проблемами скоростной авиации, Буземан продолжил исследования, но самолета со стреловидным крылом немцы все же не построили. И не мудрено. Они не достигли скоростей, при которых продвигаться вперед без такого крыла было просто нельзя.
Когда конструкторы разных стран почти одновременно и почти одинаково подошли к скоростям, требовавшим стреловидного крыла, знание теории облегчило им многое.
Начальник группы аэродинамики КБ профессор Хейфиц – дальновидный и эрудированный исследователь. Он отлично понимал, какие заманчивые перспективы сулят новые крылья.
Бригада у Хейфица небольшая – человек пятнадцать расчетчиков. Оснащены они плохо. Электронных вычислительных машин еще не существовало. В ход пошли счеты, арифмометры и логарифмические линейки.
Не случайно и сотрудники Лавочкина, и ученые, не сговариваясь, называли Хейфица полпредом. Он действительно был полпредом Лавочкина в науке и полпредом аэродинамической науки у Лавочкина. Это во многом способствовало тому, что после обширных дискуссий за длинным столом было принято решение – стреловидное крыло строить. Однако и здесь Семен Алексеевич остался верен себе. До последней минуты он продолжал сравнительный анализ крыльев разного типа.
«В области больших скоростей, – рассказывал мне профессор Струминский (ныне действительный член Академии наук СССР), – стреловидные крылья позволяли [187] продвинуться гораздо дальше, чем обычные. Но они очень осложняли взлет и посадку. Да не только взлет и посадку. Стал невозможным полет на. больших углах атаки. А большие углы атаки – это маневр. Нужно ли говорить, что без маневра не может существовать боевой истребитель?
Нарушение устойчивости на больших скоростях полета в условиях маневра, а также на режимах взлета и посадки, связано с тем, что на верхней поверхности стреловидного крыла возникают интенсивные поперечные токи. Они гонят воздух вдоль поверхности крыла, накапливаются в концевой части, резко ухудшая ее обтекание…».
К чему приводило явление, о котором рассказывал Владимир Васильевич? К тому, что на концах крыльев подъемная сила падала, а в их корне увеличивалась. Равновесие нарушалось. Самолет стремился задрать нос, еще больше увеличивая угол атаки. А стоило самолету выйти на большие углы атаки, как начиналось беспорядочное вихревое обтекание, грозившее переходом в штопор.
Эти опасные поперечные токи почти одновременно стали исследовать Струминский, американец Сирс и немец Прандтль.
«Поток воздуха из корневого сечения устремлялся в конец, – рассказывал Струминский. – Возникали совершенно непривычные для аэродинамики явления: падение несущих свойств на конце и улучшение несущих свойств в корне. Чтобы самолет не задрал нос, понадобилось улучшить обтекание на концах и ухудшить у корня…
Так на крыльях появились перегородки, задерживающие поперечные течения».
Возникло много сомнений. Появилось много опасностей. Поставить перегородку совсем не просто. Силы, действовавшие на этот небольшой гребешок в полете, измерялись не килограммами, а тоннами.
«Создание стреловидного крыла, – продолжал свой рассказ Струминский, – потребовало профилей с очень низкой подъемной силой, чтобы поставить их в корне. Таких профилей не существовало. Лучшие умы ЦАГИ соревновались в их создании. Это было совсем не просто – разработать профиль, хорошо работающий на [188] больших скоростях и не дающий подъемной силы на малых…
Одновременно профили с самыми высокими несущими свойствами и характеристиками устойчивости поставили на конце крыла…».
Стреловидное крыло взорвало и опрокинуло привычные представления аэродинамических расчетов. И все же не это стало самой сложной частью дела. За небольшой группой инженеров и ученых, работавших под руководством Хейфица в КБ Лавочкина, стоял ЦАГИ. Многочисленный коллектив высокоавторитетных исследователей с возможностью провести необходимый эксперимент надежно защищал и подкреплял группу энтузиастов лавочкинского КБ, работавших на переднем крае.
Прочнисты не имели той опоры, которой обладали аэродинамики. Опробированную десятилетиями схему расчета, похожую на алгебраическую формулу, куда предстояло подставлять те или иные конкретные цифры, пришлось отбросить. Все стали решать заново. Заново и совершенно самостоятельно.
Читатель помнит, что сложность и стремительность развития послевоенной авиации вынудила главных конструкторов ограничиться стратегией своей профессии, отдав помощникам решение задач инженерной тактики. Стреловидное крыло очень обострило и без того нелегкую ситуацию. Весь свой огромный опыт, всю недюжинную эрудицию в вопросах аэродинамики и прочности пустил в ход Лавочкин. Ведь именно ему и прежде всего ему пришлось разбивать проблему на ряд четких конкретных задач, ответ на которые и позволял осуществить новый рывок вперед.
В КБ всегда ценили такой талант главного, как умение подобрать людей, способных раскрыть свои творческие возможности прежде всего в минуты наибольшего напряжения.
Помимо Хейфица, ближайшими помощниками Семена Алексеевича в создании самолета со стреловидными крыльями стали еще два человека – его заместитель доктор технических наук Наум Семенович Черняков, человек высочайшей инженерной культуры, огромной эрудиции, редкого обаяния, и начальник группы прочности профессор И. А. Свердлов. [189]
С главным прочнистом лавочкинского КБ я познакомился еще в институте. Но не лично: толстая книга «Расчет самолета на прочность» – важное пособие при разработке студенческого проекта.
В жаркие дни работы над Ла-160 практическими делами пришлось дописывать Иосифу Абрамовичу Свердлову новые главы этого увесистого фолианта.
Свердлов работал одновременно в КБ Лавочкина и Военно-воздушной академии имени Жуковского. Это было нелегко, но практика КБ обогащала профессора бесценным опытом, а научные исследования, проводимые в академии, несли свою лепту производству. Свердлов многому научил людей, с которыми работал у Лавочкина. Настойчиво и упорно воспитывал он своих помощников, прививая им скрупулезную точность и высокую требовательность, без которых невозможно гарантировать самолету полную безопасность.
Это был самоотверженный, влюбленный в свое дело человек. Работяга. Из тех, кто мечтает, чтобы в сутках было 25 часов. Он имел большую семью и жил в маленькой комнатушке. Вечерами, закончив трудовой день в академии и в КБ, он усаживался в кухне (другого места у него не было, а отдельные квартиры в ту пору были далеко не у каждого), теребя себя за волосы (такая уж была у него привычка), принимался за расчеты. Как вспоминает об отце А. И. Свердлов, «у него не было письменного стола и книжного шкафа. Все, что было необходимо для работы, лежало в большом цинковом баке для вываривания белья».
Лавочкин и Свердлов понимали друг друга с полуслова – один умел поставить задачу, другой быстро отыскать наиболее целесообразное решение.
Вместе с Семеном Алексеевичем Свердлов непременный участник всех прочностных испытаний. Он дотошно осматривал проверяемую конструкцию, и горе было ведущим инженерам, если он находил какие-либо упущения.
Свердлов наизусть знал чертежи, понимал и чувствовал, как работает каждая заклепка. И если Свердлов говорил «да», то оно было полной гарантией надежности.
Ответственная работа у прочниста. И не только потому, что цена его ошибки – развалившийся в полете самолет, погибший летчик. Малейшая неточность – и [190] сложное уравнение, каким был в глазах конструкторского коллектива самолет со стреловидными крыльями, пополнялось новыми неизвестными. Провести границу, отделявшую прочность от аэродинамики, было, пожалуй, просто невозможно.
Казалось бы, высокая ответственность должна была прежде всего породить предельную осторожность. Со Свердловым этого не произошло. Будучи предельно аккуратным и исключительно тщательным в работе, он одновременно проявлял и незаурядную смелость, качество авиационному прочнисту крайне необходимое. Сын Иосифа Абрамовича, Артур Иосифович Свердлов, унаследовавший профессию отца («не только сын, но и его прилежнейший ученик», как сам он себя рекомендует) рассказывал мне:
«В конструкторском бюро Семена Алексеевича был впервые проведен расчет однолонжеронных треугольных крыльев, а также треугольных крыльев с лучевым расположением лонжеронов, силовую схему которых предложил отец, а также стреловидных крыльев различной стреловидности. Много изобретательности было проявлено при проведении статических испытаний отдельных частей конструкции самолета. Впервые достаточно эффективно инженерная теория прочности стреловидного (а затем и треугольного крыла) с привлечением большого количества натурных экспериментов была начата и развивалась в конструкторском бюро С. А. Лавочкина.
В дальнейшем, развивая теорию прочности стреловидных крыльев, уже после смерти Семена Алексеевича, отец активно сотрудничал с конструкторскими бюро А. Н. Туполева и С. В. Ильюшина».
Сложные проблемы аэродинамики, возникавшие в КБ Лавочкина, теснейшим образом переплелись с не менее сложными проблемами прочности, а затем, наращиваясь по законам цепной реакции, град хитрых задач обрушивался на конструкторов. Вот почему за длинным столом с высокими табуретами, где обсуждались результаты поисков, гул стоял, как на пчельнике…
Стреловидное крыло сдавало экзамен ярким солнечным днем. Небольшая группа людей стояла на крыше ангара. Говорили о разном. Но один вопрос, словно сговорившись, обходили все: пройдет ли полет благополучно? Все рассчитано, размерено, взвешено… Но очень уж [191] ново то, что должно сдать экзамен. А ведь в новом не все можно строго доказать. Явление всегда может пойти чуть-чуть иначе.
Это очень опасное «чуть-чуть»! Из-за него летчик может никогда не вернуться к жене, к детям… Нет, совсем не просто послать человека на такое опасное дело. Вот почему так нервно переминается с ноги на ногу Лавочкин…
«Звуковой барьер казался тогда авиационным работникам всего мира очень страшным, – вспоминал Н. С. Черняков, стоявший в тот достопамятный день рядом с Семеном Алексеевичем. – Казалось, преодолеть его невозможно. А преодоление этого барьера было конечной целью наших работ по созданию Ла-160. Мне трудно передать волнение, которое испытывали мы все, хорошо зная, какие опасности поджидают машину и испытателя.
Первый вылет самолета всегда волнует. Всегда волнует, хотя ты знаешь, что процесс необратим. Чем ближе мгновение отрыва от земли, тем сильнее охватывающее тебя волнение. Особенно томительны последние часы, а последние минуты просто кажутся вечностью. Испытываешь такое огромное физическое напряжение, что за ним неизбежно приходит реакция – большая слабость.
Когда самолет выруливает на старт и ты знаешь, что на нем есть что-то новое, не волноваться нельзя. На этот раз волнение было особенно сильным…».
Не меньше волновался и Струминский. Даже сейчас, спустя много лет, слушая его рассказ, я ощущал в нем взволнованные ноты:
«Вот он летит, идет на посадку. Сядет или не сядет? И как сядет? Это ведь первый полет, а посадочные режимы для „Стрелки“ особенно опасны.
Федоров приземлился великолепно. Мы его расцеловали и бросились к самолету. Осмотрели крылья, оперение, обшивку. Все цело, все держится. И рули и перегородки на крыльях целы. Нигде никаких трещин».
Вот так и вошло стреловидное крыло в практику советской авиации. А дальше – словно рванулась лавина…
Именно этого и добивался Лавочкин. Не раз говорил он своим сотрудникам: [192]
– Генеральный конструктор должен толкнуть первый камень. Тот, с которого начинается лавина!
Многое стало иным после завершения этой работы. Без преувеличения можно сказать, что Ла-160 открыл стреловидные крылья для всей советской авиации.
Но… в бочке меда оказалась и ложка дегтя. Пролив яркий свет на возможности стреловидных крыльев, Ла-160 пал жертвой другой особенности околозвукового полета. Путь к большим скоростям преградила тряска.
Вибрации были не в новинку для самолетостроения, но тряска скоростных самолетов – это страница особая в истории авиации.
Летчики привозили самую невообразимую информацию. То заявляли – тряска непреодолима, то вдруг сообщали, что ее обрывает выпуск шасси или просто покачивания.
Ученые собирались, спорили… Но способа преодолеть тряску Ла-160 так и не нашли.
Конечно, всем хотелось, чтобы Ла-160, или, как его нежно называли в КБ, «Стрелка», достиг звуковой скорости. Не получилось. Не вышло. Блестяще подтвердив целесообразность стреловидных крыльев, первым в нашей стране показав скорость, превысившую тысячу километров в час, этот самолет так и не смог выйти на штурм звукового барьера.
И все же Ла-160 сделал огромное дело. Через считанные месяцы после завершения его испытаний все три истребительных КБ выпустили стреловидные самолеты. Не экспериментальные, не исследовательские, а настоящие боевые истребители. [193]
Рождению семьи стреловидных истребителей способствовали не только успехи Ла-160. Почти одновременно появились новые двигатели. На основе приобретенных за рубежом английских двигателей «Нин» и «Дервент» удалось создать отечественные РД-45 и РД-500.
Для знакомства с этими двигателями, созданными фирмой Роллс-Ройс, в Англию выехали авторитетные специалисты – конструктор самолетов А. И. Микоян, конструктор двигателей В. Я. Климов и большой знаток авиационных материалов С. Т. Кишкин.
Как вспоминает Т. Т. Самарин, работавший в то время в Англии, после немецких маломощных ЮМО-003 и ЮМО-004 английские двигатели выглядели очень обещающими. И когда продемонстрированный советским гостям «Глостер Метеор» легко, с небольшим пробегом поднялся в воздух (а после установленного в 1945 году мирового рекорда скорости этот самолет усовершенствовали в еще большей степени), он произвел очень хорошее впечатление.
«На „Дервент“ у фирмы покупатели были, – рассказывает Т. Т. Самарин, – но „Нин“ был настолько мощным, что ни один английский авиаконструктор еще не был готов к практическому использованию мощности, которой этот двигатель располагал. В этом смысле наши самолеты, аэродинамически более совершенные и глубоко продуманные, оказались тогда намного впереди английских».
Мы купили у англичан около шестидесяти экземпляров этих двигателей. И создали на их основе отечественные РД-500 и РД-45. Вот тут и повторилось то, что случилось в пору конструкторского дебюта Лавочкина, Яковлева и Микояна в области истребительной авиации. Тогда Лавочкин и Яковлев взяли для своих самолетов мотор М-105, Микоян – более мощный АМ-35. И на этот раз Лавочкин для Ла-15, Яковлев для ЯК-23 выбрали РД-500, Микоян же поставил на МиГ-15 более мощный РД-45. Этот выбор многим предопределил огромный успех его истребителя.
…Высокая скорость полета резко увеличила нагрузки на рулевое управление и элероны. От летчика потребовались нечеловеческие усилия, чтобы вести машину. И вот, избавляя его от этих усилий, Лавочкин впервые в нашей стране поставил бустер – гидравлический агрегат, [194] значительно уменьшивший усилия на рукоятки и педали управления. Такие устройства, разработанные в одном из специализированных конструкторских бюро, с легкой руки Лавочкина быстро вошли в практику самолетостроения. Даже появились специализированные заводы-смежники, поставлявшие самолетостроителям бустеры, подобно тому, как поставляются моторы, вооружение, оборудование.
Кроме стремительного устойчивого полета и надежного управления, машина больших скоростей настойчиво требовала высоты, а высота росла медленно. И не потому, что двигатель, как несколько лет назад, задыхался без кислорода. Нет, с появлением компрессоров преодолевать эту преграду стало проще. На пути конструкторов возник новый барьер – физиологический.
Сама природа ограничила возможности забираться на большие высоты. Старая задача о высотных скафандрах и герметических кабинах, до конца не решенная перед войной, грозила обернуться для истребительной авиации непреодолимой преградой.
На поршневых самолетах, освоивших лишь подступы К стратосфере, трудности высотного полета, как правило, исчерпывались кислородным голоданием. Надень летчик кислородный прибор, поставь конструктор на мотор хороший нагнетатель, глядь и отвоевали дополнительную тысячу метров. Теперь, после войны, такие победы уже перестали быть победами.
Реактивный двигатель создал неслыханные возможности увеличения высоты полета. Но при жестоких, доходящих до пятидесяти градусов морозах стратосферы [195] одной кислородной маской уже не обойтись. Так возникла задача создания летчику микроклимата с благоприятными для здоровья давлением, температурой и влажностью воздуха – очень сложная проблема герметической кабины.
Решая эту проблему, конструкторские коллективы Лавочкина, Микояна, Яковлева, находящиеся в непрерывном соревновании, из «конкурентов» превратились в союзников, объединив свои усилия.
Рассказ доктора технических наук В. Е. Ишевского помог мне представить масштабы этой борьбы.
Каждая заклепка (их на самолете десятки тысяч) грозила возникновением микрощели, а общая площадь таких микрощелей не должна была превышать площади одной пятимиллиметровой заклепки. Иными словами говоря, даже одна вышедшая из строя заклепка могла зачеркнуть труд огромного коллектива.
Сделать стенки непроницаемыми для воздуха помогла химия. Поставленные на специальном клее заклепки уже не угрожали кабине опасными микрощелями.
И все же эта часть проблемы оказалась, вероятно, самой простой. Последующие задачи располагались по нарастающей конструктивной и технической сложности. В самом деле, летчику, сидевшему внутри кабины, надо двигать рулями и элеронами, находившимися на оперении и концах крыльев. Так возникал парадокс. В непроницаемой оболочке кабины приходилось пробивать отверстия для тяг управления, трубопроводов, электропроводов. Но пробить эти отверстия следовало так, чтобы через них не проходил воздух.
Далее. Летчик садится в кабину, захлопывает крышку фонаря. Крышка должна обеспечить непроницаемый, герметический стык со стенкой кабины, при необходимости легко открываться и закрываться. Нужен замок, удовлетворяющий всем этим требованиям. Какой из них будет работать надежно и безотказно – механический, электрический, электромагнитный?
Конструируя замок, инженеры помнили еще об одном его качестве – о мгновенности действия. В случае нужды кабина должна мгновенно разгерметизироваться для катапультирования летчика.
Вот и произнесено слово «катапультирование». Проблема, рожденная большими скоростями. Летчик уже не [196] мог без риска для жизни покинуть самолет. Ему просто не хватало для этого силы. Катапультирование в аварийных случаях – необходимость, но кресло, на котором сидел человек, должно вылететь из самолета, ни за что не задев. От качества замков не меньше, чем от ката-пульт, зависела жизнь пилота.
И тут все пришлось начинать с нуля. Никаких предшественников не было. Немцы освоили скорости только порядка 750–800 километров в час. Фашистские инженеры «выстреливали» пилота сжатым воздухом. Наши самолеты намного превзошли эти скорости. В 1946 году они летали со скоростью 900, а в 1947 – 1000 километров в час. В таком стремительном полете сжатый воздух для катапультирования непригоден. Катапульту сделали пороховой.
Опытную конструкцию прежде всего подвергли придирчивым наземным испытаниям. Грузы, манекены, затем животные. Катапульта «стреляла» кроликами, кошками, собаками и, наконец, обезьянами. Подопытные животные подвергались разносторонним исследованиям. Строгость врачей чрезвычайно велика. Перегрузки слишком грозны, чтобы вести себя с ними панибратски.
Настало время выстрела человеком. Место в кабине согласился занять исследователь, выполнивший теоретические расчеты, необходимые создателям катапульт. Он считал, что имеет право на риск больше, чем кто-либо другой. Комиссия, проверив его здоровье, удовлетворила желание ученого. В белоснежном костюме, облепленный приборами, похожий на героя фантастического романа, совершил Р. А. Стасевич первое катапультирование.
После многократных наземных экспериментов 24 июня 1947 года катапульта впервые выбросила в полете парашютиста-испытателя Г. Кондрашева.
Реактивный двигатель увеличил потолок самолета, а это, в свою очередь, утвердило в правах гражданства герметическую кабину. Помог «обжить» герметическую кабину и компрессор двигателя. Создавая повышенное давление воздуха, он позволил конструкторам отвести небольшую часть этого воздуха в кабину.
И все же найти источник воздуха лишь половина дела. Не менее важно сделать его пригодным для дыхания. Воздух, идущий от двигателя, мог быть загрязнен самыми различными примесями. [197]
Вспоминая опыты по герметизации кабин в тридцатых годах, А. В. Чесалов рассказывал:
«Мне приходилось летать в построенной тогда герметической кабине. Наддув, осуществлявшийся от двигателя (речь идет о дизельном двигателе. – М. А.), приводил к проникновению в кабину опаснейшего врага – окиси углерода. Мы не имели индикаторов, позволявших определять содержание угарного газа, и воспользовались старым шахтерским приемом, взяв в кабину невероятно чувствительных к угарному газу канареек. И пока не были созданы приборы, они охраняли экипаж от отравления.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.