Текст книги "Все дыхательные гимнастики. Для здоровья тех, кому за…"
Автор книги: Михаил Ингерлейб
Жанр: Здоровье, Дом и Семья
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 21 страниц) [доступный отрывок для чтения: 7 страниц]
Глава 3. Транспорт газов кровью
«Переносчиком» кислорода от легких к тканям и органам и углекислого газа от тканей и органов к легким является кровь. В свободном (растворенном) состоянии переносится настолько малое количество газов, что им можно смело пренебречь при оценке потребностей организма. Для простоты объяснения в дальнейшем будем считать, что основное количество кислорода и углекислого газа транспортируется в связанном состоянии.
Транспорт кислородаКислород транспортируется в виде оксигемоглобина. Оксигемоглобин — это комплекс гемоглобина и молекулярного кислорода.
Гемоглобин содержится в красных кровяных тельцах – эритроцитах. Эритроциты под микроскопом похожи на слегка приплюснутый бублик, дырку в котором забыли проткнуть до конца. Такая необычная форма позволяет эритроцитам лучше, чем шарообразным клеткам, взаимодействовать с кровью (за счет большей площади), ведь как известно, из тел, имеющих равный объем, шар имеет наименьшую площадь. Кроме того, эритроцит способен сворачиваться в трубочку, протискиваясь в узкий капилляр, добираясь в самые отдаленные «уголки» организма.
В 100 мл крови при нормальной температуре тела растворяется лишь 0,3 мл кислорода. Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу же связывается гемоглобином, образуя оксигемоглобин, в котором кислорода 190 мл/л. Скорость связывания кислорода велика – время поглощения диффундировавшего кислорода измеряется тысячными долями секунды. В капиллярах альвеол (при соответствующих вентиляции и кровоснабжении) практически весь гемоглобин крови превращается в оксигемоглобин. Скорость диффузии газов «туда и обратно» значительно медленнее скорости связывания газов, из чего можно сделать второй практический вывод: чтобы газообмен шел успешно, воздух должен «получать паузы», время, за которое успеет выровняться концентрация газов в альвеолярном воздухе и притекающей крови.
Превращение восстановленного (бескислородного) гемоглобина (дезоксигемоглобина) в окисленный (содержащий кислород) гемоглобин (оксигемоглобин) напрямую зависит от содержания растворенного кислорода в жидкой части плазмы крови, причем механизмы усвоения растворенного кислорода весьма эффективны и стабильны.
Чтобы газообмен шел успешно, воздух должен «получать паузы», время, за которое успеет выровняться концентрация газов в альвеолярном воздухе и притекающей крови.
Например, подъем на высоту 2 000 м над уровнем моря сопровождается снижением атмосферного давления с 760 до 600 мм рт. ст., парциального давления кислорода в альвеолярном воздухе – с 105 до 70 мм рт. ст., а содержание оксигемоглобина снижается лишь на 3 % – несмотря на снижение атмосферного давления, ткани продолжают снабжаться кислородом.
В тканях, требующих для нормальной жизнедеятельности много кислорода (работающие мышцы, печень, почки, железистые ткани), оксигемоглобин «отдает» кислород очень активно, иногда почти полностью. И наоборот: в тканях, в которых интенсивность окислительных процессов мала (например, в жировой ткани), большая часть оксигемоглобина «не отдает» молекулярный кислород – уровень диссоциации оксигемоглобина низкий. Переход тканей из состояния покоя в активное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.
Способность гемоглобина «удерживать» кислород (сродство гемоглобина к кислороду) снижается при увеличении в крови концентрации углекислого газа и ионов водорода. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры.
Таким образом, становится понятно, как взаимосвязаны и сбалансированы друг относительно друга природные процессы. Изменение способности оксигемоглобина удерживать кислород имеет огромное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация углекислого газа и ионов водорода увеличивается, а температура повышается. Это ускоряет течение обменных процессов и облегчает «отдачу» гемоглобином кислорода.
В волокнах скелетных мышц содержится «родственный» гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду. «Ухватившись» за молекулу кислорода, он не отдает ее обратно в кровь.
Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. Кислородная емкость крови зависит от содержания в ней гемоглобина.
В артериальной крови содержание кислорода лишь немного (на 3–4 %) ниже кислородной емкости крови. В обычных условиях в 1 л артериальной крови содержится 180–200 мл кислорода. Даже в случае, когда в экспериментальных условиях человек дышит чистым кислородом, количество кислорода в артериальной крови практически соответствует кислородной емкости. По сравнению с показателями, когда человек дышит обычным атмосферным воздухом, количество переносимого кислорода увеличивается мало (на 3–4%).
Венозная кровь в состоянии покоя содержит около 120 мл/л кислорода. Таким образом, проходя через капилляры, кровь отдает не весь кислород.
Часть кислорода, поглощаемая тканями из артериальной крови, называется коэффициентом утилизации кислорода. Для его вычисления делят разность содержания кислорода в артериальной и венозной крови на содержание кислорода в артериальной крови и умножают на 100, например:
(200 – 120): 200 × 100 = 40 %.
Коэффициент утилизации кислорода организмом, когда он находится в состоянии покоя, колеблется от 30 до 40 %. При интенсивной мышечной работе он повышается до 50–60 %.
Углекислый газ транспортируется кровью в трех формах. В венозной крови содержится около 58 объемных процентов (580 мл/л) CO2, причем из них лишь около 2,5 объемных процентов находятся в растворенном состоянии. Некоторая часть молекул CO2соединяется в эритроцитах с гемоглобином, образуя карбгемоглобин (около 4,5 объемных процента). Остальное количество CO2 химически связано и содержится в виде солей угольной кислоты (примерно 51 объемный процент).
Углекислый газ является одним из самых частых продуктов химических реакций обмена веществ. Он непрерывно образуется в живых клетках и из них диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту (CO2 + Н2O > Н2CO3).
Этот процесс катализируется (ускоряется) в двадцать тысяч (!) раз ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет, соответственно, процесс соединения углекислого газа с водой происходит только в эритроцитах. Но этот процесс обратим, т. е. он может изменять свое направление. В зависимости от концентрации углекислого газа карбоангидраза катализирует и образование угольной кислоты, и расщепление ее на углекислый газ и воду (в капиллярах легких): CO2 + Н2O – Н2CO3.
Благодаря вышеописанным процессам связывания концентрация CO2 в эритроцитах невысока, поэтому все поступающие молекулы CO2 продолжают диффундировать внутрь эритроцитов. Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления. В результате увеличивается количество воды во внутренней среде эритроцитов, поэтому их объем в капиллярах большого круга кровообращения несколько увеличивается.
Гемоглобин имеет большее сродство к кислороду, чем к углекислому газу, поэтому в условиях повышения парциального давления кислорода карбогемоглобин превращается сначала в дезоксигемоглобин, а затем в оксигемоглобин. Кроме того, при превращении оксигемоглобина в гемоглобин увеличивается способность крови связывать двуокись углерода. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов калия (К+), необходимых для связывания угольной кислоты в форме углекислых солей – бикарбонатов.
Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин. В таком виде двуокись углерода переносится к легким.
В капиллярах малого круга кровообращения концентрация двуокиси углерода снижается. От карбогемоглобина отщепляется CO2. Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на Н2O и CO2 – круг завершен.
Осталось сделать только одно примечание:
Угарный газ (СО) обладает большим сродством к гемоглобину, чем углекислый газ (CO2) и кислород, поэтому отравления угарным газом столь опасны: вступая в устойчивую связь с гемоглобином, угарный газ блокирует механизм нормального транспорта газов, фактически «душит» организм. Жители больших городов, особенно владельцы автомобилей, постоянно вдыхают воздух с повышенной концентрацией угарного газа, причем кондиционеры не снижают его количество. Это приводит к тому, что даже достаточное количество полноценных эритроцитов в условиях нормального кровообращения не способно выполнить транспортные функции. Как результат – обмороки, сердечные приступы и даже внезапные смерти относительно здоровых людей в условиях автомобильных пробок.
Глава 4. Обмен газов в тканях
Наименьшая концентрация кислорода в тех внутренних средах организма, где его потребление максимально, – в митохондриях клеток, где кислород используется для процессов биологического окисления. Молекулы кислорода, освобождающиеся при прохождении по кровеносным капиллярам в результате диссоциации оксигемоглобина, движутся в направлении более низких величин концентрации кислорода. Концентрация кислорода в тканях зависит от многих факторов:
• скорости тока крови;
• просвета капилляров и расстояния между ними;
• расположения клеток по отношению к капиллярам;
• интенсивности окислительных процессов и т. д.
В тканевой жидкости, около капилляров, концентрация кислорода значительно ниже (20–40 мм рт. ст.), чем в крови. Особенно низка она в участках тканей, равноудаленных от соседних капилляров. При большой интенсивности окислительных процессов концентрация молекулярного кислорода в клетках может приближаться к нулю. Увеличение скорости кровотока резко повышает концентрацию кислорода в тканях. Например, увеличение скорости тока крови вдвое может повысить уровень содержания кислорода в нервной клетке на 10 мм рт. ст. Увеличению снабжения кислородом при интенсификации физиологических процессов способствует раскрытие резервных капилляров – тех капилляров, которые не используются при обычном режиме «работы» организма, наиболее масштабно этот процесс протекает в мышцах. Из всего вышесказанного можно сделать еще один – побочный, но очень важный практический вывод: физическая работа за счет открытия резервных капилляров способствует «вымыванию» шлаков и улучшению газообмена в тканях, именно физическая работа является наилучшим физиологическим (т. е. – естественным) стимулятором этих процессов.
Рис. 9. Тканевое дыхание
Наибольшая концентрация углекислого газа (до 60 мм рт. ст.) отмечается в клетках в результате образования этого газа в митохондриях. В тканевой жидкости концентрация углекислого газа изменчива (в среднем 46 мм рт. ст.), а в артериальной крови составляет 40 мм рт. ст. Углекислый газ из клеток и межклеточной жидкости диффундирует по направлению снижения концентрации в кровеносные капилляры и транспортируется кровью к легким. Этот механизм мы разбирали в предыдущей главе.
Глава 5. Клеточное дыхание
Сложными, но верными в выбранном направлении тропами мы добрались до того момента, когда вам наконец станет ясно, для чего же столько хлопот – «тянуть» в глубь организма, к каждой его клеточке кислород, да еще и стараться, чтобы каждой клетке досталось, как при коммунизме, – не по труду, а по потребностям.
Рис. 10. Митохондрия
Ни для кого не секрет, что наше тело состоит из множества живых клеток – непохожих по своему строению, но работающих с одной целью – обеспечить своим существованием жизнедеятельность цельного организма, являющегося материальной основой нашей Личности, который мы обычно называем телом. Однако, различаясь по своим функциям и строению, все клетки все же имеют общие черты – как люди, различающиеся как отдельные личности, но имеющие одинаковый набор внутренних органов (сердце, легкие, мозг и т. д.) и примерно одинаковый набор биологических потребностей (воздух, питание, тепло и т. д.). Эти закономерности в равной степени относятся как ко всему организму, так и к каждой его клетке, и в первую очередь любая клетка нашего тела нуждается в энергии. Эту энергию клетка получает путем окисления органических веществ, для процесса окисления необходим кислород – другими словами, клетка получает энергию в процессе клеточного дыхания. Но и здесь все совсем непросто.
Законы биоэнергетикиКлеточное дыхание присуще всем организмам, живущим в содержащей кислород среде. Этот процесс лежит в основе обеспечения потребностей клетки в энергии. Любая живая клетка удовлетворяет свои энергетические потребности за счет внешних ресурсов. Такими «внешними ресурсами» для клетки могут быть поступающие из внешней среды химические вещества или даже солнечный свет для растительных клеток, содержащих хлорофилл Если говорить о потребностях живой клетки, то они складываются из различных процессов, каждый из который требует энергии для своего совершения. Сами эти процессы, в свою очередь, необходимы для совершения отдельных видов полезной работы для нужд как самой клетки, так и целостного организма. Даже у простейших живых существ, каковыми являются бактерии, таких процессов насчитывается несколько десятков, и все они нуждаются в энергетическом обеспечении. Что же в таком случае говорить о высокоспециализированных клетках человеческого тела – о нервных, железистых, мышечных клетках? Их «энергетические траты» значительно выше.
Любая живая клетка удовлетворяет свои энергетические потребности за счет внешних ресурсов.
Трудно себе представить, что Природа, стремящаяся к максимальной целесообразности действий любого организма, заложила для каждого из этих процессов отдельный механизм обеспечения энергией. Конечно, это не так. Как верно и точно заметил действительный член РАН В.П. Скулачев, «живая клетка располагает особой «энергетической валютой», играющей роль посредника между процессами запасания энергии и ее траты».
В течение достаточно долгого времени ученые считали, что единственным видом такой «валюты» служат так называемые высокоэнергетические химические соединения, – в первую очередь, известный даже школьникам аденозинтрифосфат (АТФ). Однако современные исследования опровергли эту догму. Оказалось, что клетка располагает не одним, а тремя типами «энергетической валюты». Наряду с АТФ такую роль выполняют водородный (протонный) и натриевый потенциалы на биологических мембранах.
На основе полученных данных учеными были сформулированы три закона биоэнергетики. Кратко их суть сводится к следующим положениям:
Живая клетка не использует внешние ресурсы для получения энергии, необходимой для обеспечения внутренних процессов, «напрямую». Клетка «конвертирует» энергию внешних ресурсов в одну из трех внутренних «энергетических валют»: АТФ, натриевый или протонный (водородный) потенциал, затем «валюта» расходуется на осуществление различных энергоемких процессов.
По еще одному меткому замечанию В.П. Скулачева, который дал подробное описание законов биоэнергетики, «клетка предпочитает денежное обращение, а не бартер». Простейшим примером запасания энергии в «конвертируемой» форме может быть гликолиз, или расщепление углеводов до молочной кислоты с получением молекулы АТФ. Если затем АТФ используется, например, для совершения механической работы (у животных для мышечного сокращения), цепь процессов завершается расщеплением АТФ до АДФ и фосфата сократительным белком мышечной клетки (актомиозином). Если источником энергии для мышечной работы служит не гликолиз, а дыхание (что энергетически более выгодно), то есть окисление кислородом питательных веществ (например, углеводов), результатом также будет получение АТФ, но путь к нему будет более сложным.
Живая клетка в результате эволюции приобрела способность использовать как минимум две «энергетические валюты»: водорастворимую (АТФ) и связанную с мембраной – натриевый или водородный потенциал.
Старая народная мудрость «не держи все яйца в одной корзине» находит подтверждение и на клеточном уровне. Если же использовать экономические выкладки и для дальнейших объяснений физиологических процессов, можно сказать, что клетка держит часть капитала в наличных деньгах, а часть в акциях, причем в двух разных банках.
«Энергетические валюты» клетки могут превращаться одна в другую, поэтому получения хотя бы одной из них за счет внешних ресурсов достаточно для поддержания жизнедеятельности.
Вывод простой, сформулируем его с точки зрения «экономики клетки»: не важно, в какой «валюте» поступил доход. Главное, чтобы «валюта» была конвертируемая. Очень часто живая клетка располагает несколькими источниками энергии. Так, животные клетки могут использовать для энергообеспечения как дыхание, так и гликолиз – бескислородное извлечение энергии из органических веществ. Однако, как правило, даже в самых сложных случаях, какой-то один процесс доминирует в каждый конкретный момент времени и сменяется другим при изменении условий. В наиболее эволюционно «продвинутой» животной клетке есть все три вида «энергетической валюты», это увеличивает ее способность к выживанию и выполнению функций в организме.
Функции клеточного дыханияФункции процесса клеточного дыхания достаточно разнообразны. В упрощенном виде они могут быть разделены на четыре группы:
1. Запасание «энергетической валюты» в конвертируемой форме (АТФ или протонного потенциала).
2. Выделение энергии в виде тепла.
3. Образование веществ, необходимых клетке для ее существования.
4. Удаление веществ, наличие которых во внутренней среде клетки нежелательно.
Если рассматривать процессы, происходящие в клетках, с позиций затраченных усилий и поглощенного кислорода, функция накопления «энергетической валюты» является, пожалуй, ведущей, основной функцией клеток. Поглощенный кислород используется для окисления субстратов дыхания (к примеру, глюкозы) в митохондриях клетки и получения на выходе этой реакции АТФ и протонный потенциал. Митохондрии в этом случае выступают и в роли «топок», и «энергогенераторов». Гидролиз АТФ в дальнейшем используется для различных целей – это своеобразная «наличность» клетки, которую она может использовать сразу или чуть позже, при возникновении потребности. Кислород для этого уже не нужен. Энергия гидролиза АТФ используется для обеспечения различных энергоемких процессов, таких как биосинтез веществ, мышечное сокращение и внутриклеточное движение, транспорт ионов через внешнюю мембрану клетки и т. д.
О солидных (в размерах целостного организма) масштабах этого процесса говорят весьма солидные цифры:
• митохондрии взрослого человека среднего роста и веса «перекачивают» через свои мембраны около 500 г ионов водорода в день, образуя протонный потенциал;
• за это же время в митохондриях производится около 40 кг (!) АТФ и такое же его количество утилизируется обратно в АДФ;
Сразу «бросающаяся в глаза» важность функции накопления «энергоносителей» и связанных с ней процессов формирует ошибочное представление, что роль дыхания в жизнедеятельности клетки исчерпывается участием кислорода в образовании АТФ. Однако существуют и другие функции клеточного дыхания. Наиболее очевидный пример – образование тепла в целях терморегуляции.
Практически вся энергия, которую производят клетки, в конечном итоге превращается в тепло. Расщепляются синтезированные ранее вещества, кровь нагревается за счет трения о стенки кровеносных сосудов, тепло образуется и в результате протекания внутриклеточных процессов, сопряженных с расходом АТФ. Для сравнения, на совершение мышечной работы уходит всего около 20 % вырабатываемой организмом энергии, а все остальное ее количество – это «энергия тепла». Поэтому чтобы, например, согреться на холоде, организму, в принципе, не нужно подключать процессы дыхания. Иногда согревание так и происходит: дрожь на сильном морозе не что иное как мышечные сокращения, помогающие расщепить АТФ посредством актомиозина. Никакой полезной работы при этом не совершается, и вся энергия дыхания превращается в тепло. Однако такой способ вырабатывания тепла вряд ли можно назвать оптимальным, поскольку не достигается глобальная цель терморегуляции – вывести биологические процессы из зависимости от температуры окружающей среды.
Практически вся энергия, которую производят клетки, в конечном итоге превращается в тепло.
Неудивительно, что при адаптации к холоду у животных и человека дрожь постепенно исчезает, тепло начинает вырабатываться каким-то другим способом, при котором дыхание по-прежнему активировано, но мышечных сокращений не происходит.
Итак, рассмотрев энергетические функции дыхания, мы узнали о том, что энергия накапливается в форме протонного потенциала и АТФ или расходуется на выработку тепла. Мы убедились в альтернативности энергозапасающей и тепловыделяющей функций дыхания, которое образует либо АТФ, либо тепло. Обратите внимание на то, что речь идет опять-таки не о «прямом противопоставлении». Эти функции представляют собой две чаши одних весов, находящихся у живых организмов в состоянии неустойчивого равновесия. В таком же состоянии неустойчивого равновесия находится и процесс превращения АТФ в АДФ, а также процесс транспорта CO2 и O2 – направление процесса четко связано с концентрациями газов, т. е. против естественной разницы потенциалов идти не будет.
Теперь нам предстоит уже в более краткой и простой форме познакомиться с двумя другими функциями дыхания, отвечающими за «превращение» (синтез) веществ, а не выработку энергии.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?