Текст книги "Реактивная авиация Второй мировой войны"
Автор книги: Михаил Козырев
Жанр: Военное дело; спецслужбы, Публицистика
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 25 (всего у книги 27 страниц)
Характеристики Enzian E-4: силовая установка – 1 х ЖРД Конрада тягой 2180 кгс, размах крыла – 4,0 м и его площадь – 5.0 м2, длина – 4,0 м, максимальный диаметр фюзеляжа – 0,88 м, стартовый вес – 1800 кг, вес боевого заряда – 500 кг, максимальная скорость – 300 м/с, практический потолок – 15 000 м, дальность – 25 км.
Hecht
В июле 1939 г. RLM выдало LFA контракт на разработку планирующих бомб. Через год был готов проект бомбы с трапециевидным крылом, два опытных образца длиной 1,65 м были испытаны в полете. Следующий вариант бомбы получил обозначение Hecht («Щука») K-1750, в октябре 1941 г. на фирме «Рейнметалл-Борзиг» изготовили несколько опытных образцов бомбы этого варианта.
Затем последовал Hecht K-2010 с увеличенной до 2,01 м длиной. Размах крыла остался таким же, как и у предыдущего варианта, но несколько увеличились размеры хвостового оперения. В конце 1942 г. LFA представил еще один проект бомбы под обозначением Doppelrumpf-GB с ракетным двигателем тягой 2000 кгс (продолжительность горения 6 секунд). Эта 900-кг бомба должна была состоять из двух соединенных боками корпусов диаметром по 0,45 м, размах крыла составлял 2.0 м. Так как в это время в производстве уже находились ракеты Hs 293, то проекты бомб Hecht отложили, чтобы использовать их позднее для разработки ракеты Hecht К-2700, ставшей предшественницей зенитных ракет Feuerlilie F25 и F55.
Характеристики Hecht K-1750: размах крыла – 0,588 м, длина – 1,75 м, максимальный диаметр корпуса – 0,177 м.
Hs 117
Разработка зенитной ракеты Hs 117 Schmetterling началась в 1943 г. под руководством инженера Хенрици, весной следующего года ракета была готова. Она напоминала маленький самолет длиной 4,29 м с ракетным двигателем в хвостовой части и двумя ускорителями, установленными сверху и снизу его фюзеляжа. Ракета имела раздвоенную носовую часть, в правой (короткой) части располагалась ветрянка генератора. После старта твердотопливные ускорители сбрасывались, а полет продолжался с помощью ЖРД HWK 729 тягой 375 кгс. Старт ракеты осуществлялся с наклонного лафета. Дальность полета составляла около 32 км, ракета могла использоваться против целей на высотах до 10 000 м. Нацеливание осуществлялось визуально, управляющие сигналы передавались по радио. С мая по ноябрь 1944 г. произвели 21 пуск, при этом достигались высоты до 11 000 м. Проводились также эксперименты с запуском ракеты с самолета и с использованием радара для управления.
В 1944 г. RLM и комиссия по противодействию массированным бомбардировкам союзников потребовали ускорить разработку ракеты класса «воздух – воздух», способной нести заряд взрывчатого вещества весом 40 кг. В соответствии с этими требованиями фирма «Хеншель» предложила переделать зенитную ракету Hs 117 в авиационную ракету. Уже в мае 1944 г. приступили к испытаниям опытного образца под обозначением Hs 117H Schmetterling, сначала без двигателя, а затем с ЖРД BMW 558, всего испытано 28 опытных ракет. Управление ракетой Hs 117H должно было осуществляться по радио, но предусматривалась также возможность управления по проводам, как у Hs 293B. Первую серийную ракету поставили в январе 1945 г., в это же время доктор Вагнер и инженер Хенрици закончили проект улучшенного варианта ракеты под обозначением Hs 117V. Однако 6 февраля 1945 г. главный уполномоченный по «оружию возмездия» обергруппенфюрер СС Каммлер зачислил проект Hs 117H в группу оружия, разработку которого необходимо прекратить.
Характеристики Hs 117H: силовая установка – 1 х ЖРД BMW 558 тягой 380 кгс, размах крыла – 2,0 м, длина – 3,69 м, максимальный диаметр фюзеляжа – 0,35 м, стартовый вес – 260 кг, вес боевого заряда – 40 кг, максимальная скорость – 250 м/с, вес SV-Stoff – 58,6 кг, вес R-Stoff – 12,4 кг, тяга двигателя – 380 кг, время работы двигателя – 57 с.
Hs 293
В 1939 г. фирма Gustav Schwartz Propellerwerke разработала проект планирующей бомбы, управлявшейся посредством автопилота. Такой способ управления требовал проводить бомбометание с больших высот, чтобы обеспечить бомбе достаточную дальность полета, а самолету находиться вне зоны действия зенитной артиллерии противника. Потом было решено использовать двигатель, превратив бомбу в ракету, чтобы дать возможность осуществлять атаки с малой высоты и на большом удалении от противника, в начале 1940 г. к работам подключили фирму «Хеншель».
Под руководством доктора Вагнера была разработана противокорабельная управляемая ракета Hs 293А. Силовая установка, которая состояла из ЖРД HWK 507, размещалась в отдельной гондоле, подвешенной под корпусом ракеты. ЖРД фирмы «Вальтер» работал на топливе Z-stoff (водный раствор марганцовокислого натрия или марганцовокислого кальция) и окислителе T-stoff (концентрированная перекись водорода). Двигатель ракеты мог обеспечивать тягу 600 кг в течение десяти секунд. На хвосте ракеты устанавливался маячок-вспышка, позволявший оператору отслеживать полет ракеты на большом расстоянии и в условиях плохой видимости.
Боеголовка, располагавшаяся в передней части корпуса, представляла собой стандартную 500-кг бомбу SC 500. Так как эта бомба не являлась бронебойной, то ракета Hs 293A предназначалась для атак торговых и других небронированных судов. Длина корпуса ракеты составляла 3,82 м, полный вес составлял 1045 кг. Управление ракетой Hs 293A осуществлялось с помощью системы Kehl-Strassburg. Приемное устройство ракеты предварительно настраивалось на одну из 18 имевшихся частот в полосе 48–49,7 МГц, что позволяло 18 бомбардировщикам одновременно запускать по одной ракете и управлять своей ракетой, не создавая помех друг другу.
Помимо варианта Hs 293A были разработаны еще несколько модификаций ракеты, в том числе:
– Hs 293B – с проводной системой управления (катушки с проводами находились на крыле), предназначенная для использования в случае осуществления противником радиопомех, серийно не строилась;
– Hs 293C – с отделяемой боеголовкой в форме конуса, которая могла плыть под водой как торпеда, построено всего лишь несколько штук;
– Hs 293D – с телевизионной системой управления, использующей радио– или проводную связь, приблизительно 20 ракет Hs 293D были построены в 1942 г. и испытаны в полете, но телевизионный механизм оказался ненадежным, и работы по проекту прекратили;
– Hs 293E – экспериментальная модель для отработки различных вариантов аэродинамических поверхностей управления;
– Hs 293F – проект ракеты-бесхвостки, не получивший дальнейшего развития;
– Hs 293H (Pulkzerstorer-Rakete) – вариант ракеты с акустической или магнитной системой наведения, предназначенной для разрушения строя союзных бомбардировщиков.
В боевых условиях применялся только вариант Hs 293A, в качестве самолета-носителя сначала приспособили Do 217, а затем He 111, Не 177 и Fw 200. При выполнении боевого задания самолет нес две ракеты Hs 293A, по одной под каждой консолью крыла. Для предотвращения замерзания на больших высотах и выхода из строя системы управления была предусмотрена подача в ракету теплого воздуха от двигателей самолета. После обнаружения цели бомбардировщик заходил на нее так, чтобы цель оказалась правее его курса на 30–60°. В момент пуска ракеты требовалось, чтобы самолет летел строго горизонтально со скоростью 334 км/ч (для Не 111) или 400 км/ч (для Не 177 или Do 217). Двигатель ракеты включался сразу же после ее сброса. После того как расстояние между ракетой и самолетом достигало 90 м (10 секунд полетного времени), двигатель ракеты выходил на максимальную тягу. Бомбардировщик плавным разворотом уходил в сторону, а затем продолжал лететь параллельным курсом по отношению к ракете. Оператор визуально наблюдал за ракетой по трассерам в ее хвостовой части и управлял ракетой, используя небольшой пульт с ручкой управления. Нормальное поле зрения оператора составляло приблизительно 110° направо. Полетное время ракеты не превышало 100 секунд.
Впервые Hs 293A применили 25 августа 1943 г., когда 18 самолетов Do 217E-5 из II/KG 100 атаковали эсминцы союзников в Бискайском заливе. А 27 августа 1943 г. ракетой Hs 293А был потоплен английский сторожевой корабль «Эгрет». Самолеты Не 177 А-5 из состава II/KG 40 совершили множество рейдов в октябре и ноябре против союзнических конвоев в Средиземном море, используя Hs 293A для атак кораблей эскорта с тем, чтобы идущие следом торпедоносцы Ju 88 могли беспрепятственно атаковать пассажирские и грузовые суда. В результате этих атак было потоплено пять эсминцев и один крейсер Valiant, а также повреждено несколько транспортников. В Атлантике против союзных конвоев применяли ракеты Hs 293A самолеты Не 177 А-5 и Fw 200C-4 из состава III/KG 40, потопив при этом эсминец Jervis и несколько торговых судов.
Однако воздушное превосходство союзной авиации все возрастало, и, когда союзники высадились в Анцио в январе 1944 г., немецкие бомбардировщики столкнулись с жестоким противодействием со стороны союзных истребителей и стали нести большие потери, хотя и сумели потопить английский крейсер «Спартан». Основной недостаток применения Hs 293A заключался в том, что бомбардировщику при таком методе наведения ракеты невозможно было уклониться от огня зениток.
Союзники через некоторое время начали применять электронные меры противодействия работе системе управления Kehl-Strassburg. Одной из таких мер был широкополосный передатчик, который просто забивал сигналы управления радиошумом. Другая система была более тонкая – spoofing bomb («обманная бомба»), которая посылала ложные сигналы на приемник аппаратуры управления ракетой, что приводило к заклиниванию управляющих поверхностей ракеты в крайних положениях. Это вызывало пикирование ракеты или ее движение по спирали. Новые методы борьбы с немецкими ракетами союзники успешно применили в июне 1944 г., когда самолеты люфтваффе попытались атаковать союзнический флот во время высадки в Нормандии – часть запущенных ракет была выведена из строя с помощью постановки радиопомех.
После того как появился первый опыт применения Hs 293A, в 1943 г. было построено небольшое количество разрушителей строя Hs 293H с двигателем «Шмиддинг»-543. Метод применения ракеты был относительно прост: Hs 293H должна была сбрасываться с самолета-носителя с превышением от 600 до 2000 м над строем союзнических бомбардировщиков. Ракета оснащалась системой наведения, которая должна была наводить ее на цель с точностью до 50 м. По плану разрабатывались следующие варианты ракеты: Hs 293H-1 – опытные образцы, Hs 293H-2 – улучшенный вариант, Hs 293H-3 – с акустической системой наведения Marder, Hs 293H-4 – с акустической системой наведения Kakadu, Hs 293H-5 – с телевизионной системой наведения, Hs 293H-6 – с барометрической системой наведения, Hs 293H-7 – с инфракрасной системой наведения, Hs 293H-la – серийные образцы. Однако войсковые испытания проходили ракеты Hs 293H с уже отработанной системой радионаведения. Всего за время войны было построено более 2300 ракет Hs 293.
Характеристики Hs 293A: силовая установка – 1 х ЖРД HWK 507B тягой 600 кгс, размах крыла – 3,1 м и его площадь – 2,4 м2, длина – 3,82 м, максимальный диаметр фюзеляжа – 0,47 м, полетный вес – 1045 кг, вес боевого заряда – 500 кг, максимальная скорость – 260 м/с, минимальный радиус разворота – 800 м.
Hs 294
Как правило, поврежденные корабли противника после удара ракетами Hs 293 в борт выше ватерлинии оставались на плаву, и их удавалось отбуксировать в порт для ремонта. Поэтому для усиления повреждающего при ударе эффекта была в 1941 г. разработана ракета Hs 294, которая конечный участок своей траектории проходила под водой и поражала цель ниже ватерлинии.
Hs 294 была подобна Hs 293C, но имела боеголовку меньшего диаметра и два ЖРД HWK 507D тягой по 1300 кгс (время работы 10 секунд). Ракета, запущенная с самолета-носителя, должна была входить в воду за 300–400 м до цели, причем при входе в воду аэродинамические поверхности сбрасывались. Превратившийся в торпеду корпус ракеты двигался к цели под водой со скоростью 230 км/ч. Первый пуск прототипа состоялся в 1941 г., в качестве самолетов-носителей использовались He 177 и Ju 290. Однако от самолета Ju 290, не обладавшего необходимой для пуска ракет скоростью, пришлось отказаться. Предполагалось использовать в качестве носителя реактивный бомбардировщик Ar 234C, для него разрабатывался буксируемый вариант Hs 294.
Более поздние варианты прототипов Hs 294 в опытном порядке оснащались ракетным двигателем Schmidding 573. Длина таких образцов была увеличена до 7 м, а диаметр корпуса уменьшен до 0,535 м, такие образцы получили обозначение GT 1200A (GT – планирующая торпеда). Последующая модификация получила обозначение GT 1200В, она имела длину 7,35 м и оснащалась акустической системой наведения. Всего было построено: 20 прототипов Hs 294V1, 45 прототипов Hs 294V2, около 80 ракет Hs 294A-0 и 20 экземпляров Hs 294D с телевизионным управлением.
Характеристики Hs 294А-0: силовая установка – 2 х ЖРД HWK 507D тягой по 1300 кгс, размах крыла – 4,03 м и его площадь – 5,3 м2, длина – 6,11 м, максимальный диаметр фюзеляжа – 0,62 м, полетный вес – 2170 кг, вес боевого заряда – 630 кг, максимальная скорость – 245 м/с.
Hs 295/Hs 296
В начале 1942 г. велись также работы над ракетами Hs 295 и Hs 296 с боеголовками весом соответственно 1000 кг и 1400 кг. Обе ракеты имели в качестве силовой установки по два двигателя HWK 507D. Наведение Hs 295 осуществлялось у первых образцов по радио, а у последующих – по проводам. Несколько образцов под обозначением Hs 295D испытывались с телевизионным управлением. Hs 296 представлял собой модификацию ракеты Hs 293H, выполненную под руководством доктора Ромбуша из Физического научно-исследовательского института в Дрессенфельде. Ракеты обоих вариантов построены в небольших количествах, серийно не выпускались и в боевых действиях не использовались.
Характеристики Hs 295: силовая установка – 2 х ЖРД HWK 507D тягой по 1300 кгс, размах крыла – 4,09 м и его площадь – 5,4 м2, длина – 5,44 м, максимальный диаметр фюзеляжа – 0,55 м, полетный вес – 2090 кг, вес боевого заряда – 585 кг, максимальная скорость – 235 м/с.
Hs 298
Первый образец ракеты Hs 298 разрабатывался в 1941 г. под руководством доктора Вагнера, однако RLM в то время проектом не заинтересовалось. И только в 1943 г. начались срочные работы по этой ракете под руководством инженера Хески.
Ракета была выполнена по нормальной самолетной схеме с разнесенным хвостовым оперением. В качестве силовой установки применялся двухкамерный твердотопливный двигатель SG 32 фирмы Schmidding, который позднее получил обозначение Schmidding 543. На начальном участке полета ракеты в течение 5 секунд работала первая камера, создавая тягу 150 кгс, после этого в работу вступала вторая, создававшая в течение 20 секунд тягу 50 кгс. На конце нижней штанги ракеты располагалась ветрянка электрогенератора. Двигатель располагался в нижней части корпуса, реактивное сопло его было повернуто вниз под углом 30°, чтобы вектор тяги проходил через центр тяжести ракеты. В верхней части корпуса размещалась аппаратура системы дистанционного управления FuG 232 Colmar, принимавшая сигналы от радиопередатчика Kehl с самолета-носителя. Пуск ракеты производился на расстоянии 1,5–2 км от цели на скорости около 500 км/ч.
Ракета на конечном участке траектории наводилась на цель с помощью акустической системы Kakadu с точностью до 10 м. Однако на работоспособности Kakadu часто сказывалась вибрация из-за работы двигателя. Поэтому рассматривались и другие варианты систем: Max, Maximilian, Kugelblitz, Madrid и Hamburg.
Первую партию ракет запустили в производство в марте 1944 г., ими предполагалось оснастить самолеты Fw 190, Do 217, Ju 88G-1 и Ju 388. Однако первый пуск ракеты Hs 298V1 состоялся только 22 декабря 1944 г., дальнейшие испытания показали, что из трех пусков ракет с самолета только один бывал успешным. Поэтому в дальнейшем предусмотрели переход на систему управления Kehl/StraBburg (FuG 203/FuG 230), а в перспективе и на систему Kogge (FuG 512/FuG 530). Однако испытания проходили неудачно, поэтому 6 февраля 1945 г. производство Hs 298 было прекращено.
Надо сказать, что в сентябре фирма «Хеншель» предложила более мощный образец ракеты, прототипом которой был Hs 298V2. Ракет этого типа построили примерно 135 штук, из них 100 штук в почти готовом состоянии были разрушены немцами на заводе в Вансдорфе незадолго до захвата его советскими войсками. Общее количество построенных Hs 298 составило около 400 экземпляров.
Характеристики Hs 298V1: силовая установка – 1 х РДТТ Schmidding 543 тягой 150 кгс, размах крыла – 1,29 м и его площадь – 0,42 м2, длина – 2,0 м, ширина корпуса – 0,205 м, высота корпуса – 0,42 м, полетный вес – 95 кг, вес боевого заряда – 25 кг, максимальная скорость – 842 км/ч, дальность – 1,6 км.
Диски Беллуццо
О существовании у немцев во время войны так называемых «фу-файтеров», как их прозвали американские пилоты, небольших светящихся летательных аппаратов круглой или дискообразной формы, стало известно в 90-х гг. ХХ в., когда начали рассекречиваться американские и английские военные архивы. Оказывается, ВВС США еще в конце войны в отчете «Оценка немецких способностей в 1945 г.» обсуждали немецкие устройства, называвшиеся американской разведкой Phoo Bomb. Они описывались как «радиоуправляемое, реактивное, ближней дальности, таранящее оружие для использования против формирований бомбардировщиков». В «Сообщении 156» объединенной англо-американской разведки CIOS (Combined Intelligence Objectives Sub-Committee) говорилось о том, что в FFO (Flugfunk Forschungsanstalt Oberpfaffenhoffen) ведется работа по созданию СВЧ-аппаратуры для противодействия радарам союзных бомбардировщиков.
Центр разработки «фу-файтеров» находился в Австрии, в районе Винер-Нойштадта. В этих работах были задействованы такие предприятия, как Wiener-Neustaedter Flugzeugwerke GmbH, Flugzeugbau der Hitenberger Patronenfabrik, Flughafenbetriebsgesellschaft Wiener-Neustadtand, Wiener Neustaedter Lokomotiv-Fabrik (филиал фирмы «Хеншель») и, возможно, Luftfahrtforschungsanstalt-Wien, возглавлявшийся А. Липпишем.
Заметим, что с 1944 г. по приказу Гитлера все работы по созданию немецкого «чудо-оружия» передали СС, ими занимался технический отдел SS-E-IV (Entwicklungsstelle 4), ответственным за создание новых видов оружия был назначен группенфюрер СС Ганс Каммлер. Вот этот отдел и отвечал за разработку летательных аппаратов, довольно экзотических на первый взгляд, оснащенных двигателями, работавшими на альтернативных источниках энергии. В условиях катастрофической нехватки энергоресурсов немцы стали первыми использовать такие топлива, как спирт, водород, угольная пыль, прессованный уголь, перекись водорода и др.
Один из таких экзотических аппаратов разрабатывал итальянский ученый Джузеппе Беллуццо, который был крупным специалистом в области двигателестроения, свою первую паровую турбину он построил еще в 1907 г., а позднее усовершенствовал ее для установки на крейсерах и линкорах. С 1942 г. сначала в Италии, а после выхода Италии из войны в Германии Дж. Беллуццо в обстановке строжайшей секретности работал над совершенствованием конструкции изобретенного им беспилотного диска Turboproietti (Turbina Proiettile – «турбоснаряд»), в основу которого была положена конструкция дискового аппарата с установленными по периметру небольшими ПВРД. Предназначалось такое оружие для двух целей: нанесение ударов по далеко отстоящим наземным целям (аналог дальней артиллерии) и борьба с бомбардировщиками союзников (аналог зенитной артиллерии). И в том и в другом случае в центре диска располагался отсек с боезарядом, аппаратурой и топливный бак, в качестве двигателей использовались прямоточные воздушно-реактивные двигатели.
Запуск диска осуществлялся с наземной пусковой установки следующим образом. Диск раскручивался вокруг своей оси при помощи специального пускового устройства или при помощи сбрасываемых стартовых ускорителей, после достижения определенного числа оборотов включались ПВРД диска. Результирующая подъемная сила создавалась как за счет тяги двигателей, направленной вниз, так и за счет дополнительной подъемной силы, возникавшей при отсосе двигателями пограничного слоя с верхней поверхности диска. Реактивные струи двигателей вращающегося в полете диска создавали иллюзию быстро бегущих по кромке диска и переливающихся огней. Топливо в полете подавалось в двигатели из топливного бака за счет действия центробежных сил. В первом варианте боевого применения после выработки топлива диск падал на землю и взрывался, то есть представлял собой аналог дальней артиллерии. По утверждению Дж. Беллуццо, немцы предполагали к 1950 г. создать аналогичный диск диаметром 10 м, способный нести атомную бомбу. Во втором варианте взрыв диска происходил при приближении к строю бомбардировщиков, то есть диск работал в качестве воздушной мины (Flakmine). Существовал и еще один способ применения воздушных мин путем сбрасывания их с самолета-носителя на высоте 8—10 км, непосредственно над строем бомбардировщиков противника. В случае если у дисковой мины не состоялось столкновение с вражеским бомбардировщиком, то на высоте 1 км она автоматически взрывалась.
Именно над этой модификацией Turboproietti Беллуццо работал в 1945 г. на подземном комплексе фирмы «Фиат» вблизи озера Гарда в Северной Италии. Работы велись под эгидой СС, существует предположение, что этот аппарат в эсэсовской документации назывался Schildkrote («Черепаха»).
Feuerball
В конце осени 1944 г. по заказу технического отдела СС (SS-E-IV) на фирме WNF был разработан беспилотный дисковый аппарат Feuerball («Огненный мяч»), аналог дисков Дж. Беллуццо. В работах по созданию этого оружия, способного влиять на работу систем зажигания самолетных двигателей в полете путем создания мощных электромагнитных полей, участвовали также секретный филиал фирмы «Мессершмитт» в Обераммергау (Бавария), институт OBF (Oberbayerische Forschungsanstalt) и институт авиационной электроники FFO (Flugfunk Forschungsanstalt Oberpfaffenhoffen).
Самые первые варианты Feuerball представляли собой серебристого цвета диски с двигателем, реактивные сопла которого располагались по окружности диска, эти аппараты запускались с катапульт в направлении строя союзных бомбардировщиков. Опытные образцы, еще не оснащенные аппаратурой для создания мощного электромагнитного воздействия на самолеты, использовались в качестве психологического оружия, чтобы проверить реакцию экипажей союзнических бомбардировщиков на необычные летательные аппараты, которые могли непредсказуемо маневрировать.
Первоначально предполагалось в качестве силовой установки применять двигатель Dampfstrahl Antrieb («Паровой реактивный двигатель») на основе турбины Х. Вальтера. Турбина Вальтера применялась в различных вариантах на подводных лодках кригсмарине V60, V80, тип XVII, тип XVIII и тип XXVI, а также в качестве двигателя торпед G7u, G7p и G7r.
Она использовала тепловую энергию, полученную при разложении высококонцентрированной перекиси водорода в присутствии катализатора в газогенераторе. В результате получался газ с температурой 600–700 °C, состоящий из водяного пара и кислорода, который подавался в турбину. Турбина приводила во вращение электрогенератор, вырабатывавший ток для питания аппаратуры летательного аппарата. Газ, отработавший в турбине, поступал в камеру сгорания, где он сжигался вместе с подведенным топливом, например метанолом. Высокотемпературные продукты сгорания выбрасывались через реактивное сопло (цилиндрическое или кольцевое), создавая тягу. В другом конструктивном варианте силовой установки камера сгорания устанавливалась перед турбиной, в ней сжигалась солярка. Самые большие трудности, однако, возникли с изготовлением и хранением пергидроля, который бурно реагировал с любой примесью. Для хранения пергидроля, который стоил дороже солярки примерно в восемь раз, после разнообразных испытаний был подобран нейтральный по отношению к нему материал – синтетический каучук. Dampfstrahl Antrieb предполагали применить на некоторых вариантах аппарата Feuerball, однако перебои в поставках пергидроля заставили отказаться от установки этого типа и заменить ее другой силовой установкой, предположительно на основе турбины Николы Теслы.
Эта турбина представляла собой сидящий на одном валу набор дисков, по окружности которых располагалась кольцевая камера сгорания. Турбина первоначально раскручивалась при помощи стартера, а топливо по каналам внутри вала турбины подавалось во внутренние полости дисков. Под действием центробежных сил оно отбрасывалось к периферии дисков, где по окружности располагались форсунки, на выходе из них топливо распылялось на мелкодисперсные частицы и в виде тумана поступало в камеру сгорания. Там распыленная смесь перемешивалась с воздухом, поступающим через входное устройство, которое автоматически закрывалось при взрыве топливной смеси, при этом прекращалась подача топлива за счет повышения давления в камере сгорания. Продукты сгорания топлива выбрасывались через реактивное сопло в нижней части аппарата, создавая тем самым вертикальную тягу, после чего в камеру сгорания снова поступало топливо и открывалось входное устройство, подавая воздух для следующего поджига смеси. Далее процесс становился циклически повторяющимся, фактически эта силовая установка представляла собой так называемый турбопульсирующий ВРД. После выхода турбины на заданный режим стартер отключался, а вращение турбины, выполнявшей одновременно функцию центробежного топливного насоса, продолжалось в режиме самоподдерживания (наподобие вращения балерины на одной ноге с помощью периодического распрямления и сгибания в колене другой ноги). В некоторых вариантах исполнения турбина вращала воздушный винт, установленный сверху над аппаратом. Это стабилизировало движение аппарата по курсу, а кроме того, воздушный поток, отбрасываемый винтом вниз, обтекал верхнюю крышку аппарата, тем самым увеличивая подъемную силу.
Первое поколение боевых аппаратов Feuerball было оборудовано СВЧ-излучателями, работавшими на частоте самолетных радаров союзников, что делало их невидимыми на экранах радаров и позволяло им приблизиться к строю бомбардировщиков. Более совершенные версии Feuerball сжигали вокруг себя распыленную топливную смесь с добавками (мирол, ацетилен, виниловые эфиры, алюминиевый порошок и пр.), ионизируя воздух около аппарата. Любой двигатель внутреннего сгорания, попадавший в ионизированную область, прекращал свою работу из-за сбоев в системе зажигания, а также из-за попадания распыленных в воздухе твердых частиц-добавок в смазку трущихся узлов двигателя. Летчики союзников, наблюдавшие эти охваченные ореолом пламени аппараты, и прозвали их «фу-файтерами». В результате контакта с «фу-файтерами» радар бомбардировщика прекращал функционировать, а пилоты с трудом пытались удержать самолет на заданном курсе, поскольку системы зажигания двигателей отказывали одна за другой.
Когда советские войска продвинулись в Австрию, производство аппаратов Feuerball было переведено из Винер-Нойштадта в подземное предприятие фирмы Zeppelin Werke в Шварцвальде. Однако до своей капитуляции немцы успели передать несколько аппаратов Feuerball в Японию. «Фу-файтеры» возобновили в августе 1945 г. нападения на американские бомбардировщики B-29, совершавшие массированные налеты на Японские острова, последнее нападение зафиксировано 28 августа 1945 г.
Kugelblitz
В 1943 г. на Zeppelin Werke началась разработка более совершенной модели аппарата, чем Feuerball фирмы WNF. Аппарат весом 2000 кг, получивший обозначение Kugelblitz («Шаровая молния»), иногда еще встречается обозначение Flakmine V7 («Воздушная мина»), имел корпус высотой 2,5 м, в котором находилось топливо, взрывчатое вещество (от 250 до 500 кг) и система распыления. Вокруг корпуса вращался несущий ротор диаметром 7 м с четырьмя ПВРД на концах лопастей.
Запуск аппарата осуществлялся с пусковой платформы. Ротор первоначально раскручивался с помощью стартера, после достижения окружной скорости 200 м/с в работу вступали ПВРД, лопасти устанавливались на угол +3°, и аппарат взлетал в воздух. При достижении формирований союзнических бомбардировщиков Flakmine создавал вокруг себя электростатическое поле и распылял взрывчатое вещество, после чего осуществлялся его подрыв. В системе управления аппаратом применялось телевизионное управление на основном участке наведения, на конечном участке аппарат наводился на цель с помощью инфракрасного датчика.
Первые атаки аппаратов Kugelblitz состоялись в самом конце войны. По крайней мере одна группа союзнических бомбардировщиков была уничтожена с помощью этого оружия вблизи озера Гарда в Италии. Разведки союзников тут же сообщили об «использовании немцами воздушно-зажигательных бомб против формирований бомбардировщиков». Еще до вступления советских войск на территорию Австрии производственные мощности Zeppelin Werke были эвакуированы в Шварцвальд. В апреле 1945 г. по приказу из Берлина специальные команды СС разрушили все оставшиеся аппараты, однако после окончания войны несколько аппаратов были обнаружены англичанами.
Kugelwaffen
В 1942 г. на AEG (Allgemeine Elektrizitaetsgesellschaft) началась разработка аппарата Kugelwaffen («Шаровое оружие»), аналогичного по конструкции аппарату Kugelblitz. Работа была выполнена группой физиков во главе с доктором Рихардом Крамером. Первые версии Kugelwaffen были проверены в 1942 г., несколько образцов испытывались в Японии.
В 1943 г. Kugelwaffen испытывались в Средиземноморье, они наблюдались с бомбардировщиков B-17. Никаких сообщений о враждебных действиях аппаратов не поступало, это означало, что они все еще были на стадии испытаний. Но как только союзники высадились в Нормандии, первые нападения аппаратов были зафиксированы в небе над Францией. Эти модификации аппаратов несли аппаратуру для создания помех самолетным радарам, для повышения эффективности воздействия Kugelwaffen должны были в группах от 3 до 10 штук прорваться как можно ближе к самолету противника.
В первом столкновении формирование из десяти Kugelwaffen приблизилось к истребителю сопровождения Beaufighter, после чего его радар прекратил функционировать. В следующих стычках этих аппаратов с союзническими бомбардировщиками отказы двигателей были обычным явлением.
Lichtscheiben
Lichtscheiben («Светящийся диск») представлял собой очень редкую разновидность зенитных аппаратов, применявшихся в 1945 г. Среди немногих жителей Германии, наблюдавших их в полете, они носили прозвище Gltihscheiben («Пылающий диск»). Эти аппараты обычно применяли женские подразделения зенитной артиллерии люфтваффе (Luftwaffe Flak Helferinnen) с использованием батареи прожекторов. Lichtscheiben представляли собой вертикально запускаемые и начиненные взрывчаткой диски, по конструкции аналогичные аппаратам Feuerball, которые направлялись в ночное время лучами мощных прожекторов на союзные бомбардировщики. Запущенный диск следовал за световым потоком прожектора к цели, управляясь с помощью оптического датчика на нижней части своего корпуса, в то время как другой инфракрасный датчик на верхней части диска разыскивал тепловое излучение от двигателей бомбардировщиков.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.