Текст книги "Симфония № 6. Углерод и эволюция почти всего"
Автор книги: Роберт Хейзен
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 22 страниц) [доступный отрывок для чтения: 7 страниц]
У звезд крупнее Солнца судьба иная, поскольку их внутреннего давления и температуры достаточно, чтобы часть ядер углерода-12, соединившись с альфа-частицами, образовала более тяжелые элементы – кислород-16, неон-20, магний-24 и другие. При этом происходит каскад ядерных реакций, и каждое преобразование добавляет звезде энергии, обогащает ее новыми химическими элементами и противостоит непреклонной силе тяготения. Реакции происходят одна за другой все быстрее и быстрее, пока звезда не примется за образование железа-56. Последние стадии синтеза происходят за секунды. У всех элементов в цепочке, заканчивающейся железом, каждое новое ядро стабильнее предыдущего, а каждая ядерная реакция высвобождает энергию и поддерживает горение звезды, как будто подбрасывая дров в ревущий огонь. Но железо-56 – это конечный ядерный пепел. Что бы вы ни пытались сделать с ядром железа-56 – добавить или забрать протон, добавить или забрать нейтрон, – любая реакция с этим элементом потребует энергии. Когда ядро звезды превращается в железо, направленный вовне напор ядерных реакций прекращается почти мгновенно и гравитация так же быстро берет над ним верх.
Главное последствие этого звездного «выключения» – разрушительный взрыв, в котором участвует вся звездная масса. Весь оставшийся водород, гелий, углерод и остальные элементы затягиваются внутрь со всевозрастающей скоростью, достигающей существенных долей скорости света, пока не взорвутся. В этих хаотических условиях, когда температура и давление вырастают до значений, невиданных со времен Большого взрыва, атомные ядра интенсивно сталкиваются и сливаются, их протоны и нейтроны буквально перемешиваются, образуя все более тяжелые комбинации. Так в конечном счете возникает более половины элементов Периодической таблицы. То, что мы наблюдаем как взрыв сверхновой, на самом деле представляет собой разрушительный распад всей этой звездной массы – беспорядочной смеси множества новых элементов, разлетающихся в пространстве.
Остальные химические новинки, к которым относится бóльшая часть тяжелых элементов Периодической таблицы, появляются как удивительные отголоски взрывов сверхновых. В процессах, которые только сейчас становятся понятными, гравитация захватывает часть остатков каждой сверхновой и образует из них странные плотные звездоподобные объекты. Если эти остатки тяжелее нашего Солнца примерно раза в три, то образуется черная дыра – объект настолько массивный, что он сжимается в точку, откуда ничего, даже свет, не может вырваться.
Если остатки сверхновой составляют одну-две массы Солнца, итоговый гравитационный коллапс порождает другой объект – нейтронную звезду, в которой протоны и электроны сталкиваются друг с другом, формируя сверхплотное скопление нейтронов. Нейтронная звезда, вдвое превышающая по массе наше Солнце, сжимается в объект диаметром всего несколько километров. Принимая во внимание широкое рассеивание атомных частиц после единичного взрыва сверхновой, вполне можно ожидать образования двух нейтронных звезд. Получившаяся в результате нестабильная конфигурация двойной звезды в конечном счете приводит к еще одной космической катастрофе – событию, когда сталкиваются две нейтронные звезды. Это событие называется «килонóвая». Итоговое слияние ядерных частиц происходит с такой интенсивностью, что из этого хаоса возникает почти вся Периодическая таблица элементов.
Последствия ошеломительны. В итоге таких космических катастроф появляются основные химические элементы тяжелее железа – драгоценные золото и платина, практичные медь и цинк, ядовитые мышьяк и ртуть, высокотехнологичные висмут и гадолиний. Каждый атом этих элементов, обнаруженный здесь, на Земле, прибыл сюда после распада массивных звезд. Вольфрамовые абразивы, молибденовые сплавы, германиевые полупроводники, самариевые магниты, циркониевые ювелирные камни, никель-кадмиевые батарейки, стронциевые люминофоры – все это есть у нас благодаря взорвавшимся древним звездам.
Только после того, как первое поколение сверхновых засеяло Вселенную полным набором химических элементов, и смогли возникнуть каменистые планеты (планеты земной группы), а также новое поколение звезд, вырабатывающих углерод. Многие из этих звезд взорвались, создав еще больше углерода и других тяжелых элементов для новых планет и будущих поколений звезд, сильнее обогащенных металлами. Этот нескончаемый бурный цикл создания и рассеивания элементов продолжается во Вселенной по сей день.
Наша Солнечная система сформировалась в результате множества предшествующих звездных циклов, растянувшихся по времени более чем на 13 млрд лет, поэтому она обогащена углеродом – в его кристаллической форме.
Вступление – Земля появляется и эволюционирует
Атомы смешиваются, создавая кристаллы необычайной красоты и разнообразия. Земная кора, мантия и ядро Земли содержат углеродистые соединения в огромных количествах: алмаз, графит и более 400 других кристаллических углеродсодержащих минералов составляют главные запасы углерода в Земле. Эти многочисленные минеральные разновидности рассказывают живую историю широкомасштабной 4 500 000 000-летней эволюции Земли, а их современные синтетические аналоги проявляют удивительное разнообразие и играют важную роль в сегодняшнем высокотехнологичном мире.
Первые кристаллы в космосеУглерод чрезвычайно общителен. Атомы углерода рождаются по одному, но не могут выносить одиночества. Они используют любую возможность, чтобы соединиться с четырьмя другими атомами. Поэтому химия углерода, основанная на этом отчаянном желании углерода соединяться, должно быть, началась очень рано, чуть ли не на заре творения. Окруженные водородом, первичные атомы углерода быстро обзавелись четырьмя компаньонами и стали молекулами CH4 – метана, основного компонента природного газа.
Химия углерода стала гораздо интереснее, когда звезды начали взрываться, рассеивая в небесах новые химические элементы. Важным новым элементом стал кислород – химически активный атом, который вступал в прочные соединения с углеродом. На сцене быстро появились молекулы угарного (CO) и углекислого (CO2) газов. Другие атомы этого элемента соединились с многочисленными атомами азота и водорода в смертельную синильную кислоту (HCN) или с также повсеместно распространенными серой и фосфором – в десятки разнообразных молекул.
Из всех этих небольших первичных молекул образовались газы, которые объединились с водородом и гелием в большие облакоподобные туманности – колыбели звезд[27]27
Составить представление о космохимии поможет обзор: Harry McSween and Gary Huss, Cosmochemistry (New York: Cambridge University Press, 2010).
[Закрыть]. Углерод также не упустил возможности соединять между собой свои же атомы, и в результате возникли структуры типа цепочек, колец и решеток – молекулярных образований со все большей геометрической сложностью. И время от времени в наиболее насыщенных углеродом завихрениях расширяющейся газообразной оболочки звезд каждый атом углерода объединялся с еще четырьмя такими же в растущий объект правильной формы. В результате появился крошечный кристалл алмаза.
Алмаз – это углерод, застывший в кристаллическом совершенстве. Как можно не любить этот драгоценный камень? Сплошные превосходные степени: самый твердый, обладающий самой высокой теплопроводностью, самый сверкающий и прочный на срез, самый ценный. Столетиями алмаз будоражил воображение как обычных потребителей, так и ученых – в равной степени. Крупные без примесей кристаллы – не просто редкие и красивые драгоценности, желанные символы любви и власти. Алмазы являются и научными сокровищами. Они позволяют заглянуть в загадочные недра планеты и хранят данные о ее интригующем прошлом. Алмазы буквально представляют собой временны́е капсулы скрытого сердца Земли, а если заглянуть вглубь времен, то окажется, что они были самыми первыми кристаллами в космосе[28]28
Вероятность того, что алмаз был первым минеральным видом, обсуждается в книге: Robert M. Hazen et al., “Mineral Evolution,” American Mineralogist 93 (2008): 1693–720.
[Закрыть].
Вот как это произошло. При высоких температурах на поверхности звезды, насыщенной углеродом, колебания атомов были слишком сильны и неуправляемы, чтобы какая-либо пара атомов углерода смогла образовать прочную химическую связь. Условия меняются, когда такая звезда взрывается, высвобождая огромное расширяющееся облако атомов в газообразной форме. Когда температура внутри этой расширяющейся газовой оболочки падает ниже 4400 °C, жаждущие компаньонов атомы углерода замедляются в достаточной степени, чтобы соединиться с четырьмя другими в крошечные пирамидки, размером менее миллиардной доли сантиметра. Каждый атом этой пирамидки тоже нуждается в четырех соседях, так что ко всем вершинам добавляется еще по три недостающих атома углерода. Это повторяется снова и снова в правильной геометрической последовательности. Так растет кристалл алмаза.
Именно таким образом в течение миллиардов лет в космосе формировались бесчисленные микрокристаллы алмаза. Они образовались задолго до каменистых планет и продолжают возникать по сей день в окрестностях наиболее активных звезд во Вселенной, кристаллизируясь на нечеткой границе между раскаленной поверхностью звезды и холодным вакуумом космоса.
О замечательном разнообразии углеродных минералов ЗемлиХотя микроскопическая алмазная пыль в космосе распространена повсеместно, алмаз не является здесь преобладающей формой углерода. При экстремальных температурах вблизи звезд (свыше 4400 °C) алмаз кристаллизировался первым, потому что этот минерал – единственная твердая субстанция, способная конденсироваться и расти в таких условиях. Все остальные кристаллы в окрестностях раскаленных добела объектов плавятся или испаряются. Но при более низких температурах и давлениях берет верх другая, более прозаическая кристаллическая форма углерода. В алмазе атомы слишком плотно упакованы, слишком скучены, и поэтому им «неудобно». Микроалмазы достаточно легко образуются из остывающего газа звезды, но, когда температура опускается ниже 4000 °C, вместо них возникает графит – знакомый всем мягкий черный минерал грифельных карандашей и сухих смазок.
Графит и алмаз – это пример противоположностей[29]29
Структуры и свойства этих кристаллических форм углерода обсуждаются в книге: Robert M. Hazen, The Diamond Makers (New York: Cambridge University Press, 1999).
[Закрыть]. Алмаз твердый и «выносливый» благодаря трехмерному, напоминающему балочную ферму, атомному каркасу. В элегантной структуре графита каждый атом углерода соединяется с тремя, а не четырьмя соседями, образуя миниатюрный плоский треугольник. Такая менее плотная атомная упаковка представляет собой слоистую структуру с идеально плоскими углеродными пластинками, наложенными друг на друга, как листы бумаги в стопке. Эти неплотно связанные чешуйки атомов углерода легко переходят с вашего карандаша на бумагу и скользят друг по другу, смазывая ваши замки и подшипники. Мягкий черный графит не годится в драгоценные камни, но его значение для жизни общества ничуть не меньше, чем у алмаза.
Алмаз был первым, а графит, как мы подозреваем, вторым кристаллическим веществом в космосе. Несмотря на их контрастные свойства оба минерала представляют собой чистый углерод, и оба изначально образовались из того, что осталось после звездной бури. Но настоящий взрывной рост новых углеродсодержащих кристаллических форм начался лишь после появления каменистых планет – двигателей многообразия минералов углерода.
Образование планет – давний бурный процесс. Огромные туманности – колыбели звезд и планет – это разреженные облака космической пыли и газа размером в несколько световых лет. Потревоженная гравитационным следом проходящей шальной звезды или ударной волной сверхновой, небольшая область туманности может начать сжиматься. При этом гравитация будет затягивать вращающуюся массу внутрь, и та станет вращаться все быстрее, подобно кружащемуся фигуристу. Бóльшая часть массы провалится в центр и образует звезду типа Солнца, остатки же сконцентрируются в несколько вращающихся планет. В нашей Солнечной системе молодое Солнце поддерживало сильный горячий солнечный ветер, который смел бóльшую часть оставшейся пыли и газа в далекое царство газовых гигантов – до орбиты Юпитера и дальше. Каменные обломки образовали планеты земной группы: Меркурий, Венеру, Землю и Марс.
Планеты начинаются с малого – со сферических скоплений космической пыли, микроскопические частицы которой свободно удерживаются между собой статической связью. Выбросы солнечной энергии или вспышки молний в туманностях сплавляли эти комочки в маленькие капельки не больше дроби – их называют «хондры». Хондры слипались во все бóльшие массы: размером с баскетбольный мяч, потом – аэростат, затем – небольшую гору[30]30
Типы и происхождение метеоритов рассматриваются в издании: James J. Papike, ed., Planetary Materials (Chantilly, VA: Mineralogical Society of America, 1998).
[Закрыть]. Гравитация собирала бесчисленные летящие по орбите камни в еще более крупные планетезимали, которые сливались друг с другом благодаря участившимся мощным столкновениям. Осколки, представляющие эти ранние этапы сборки Солнечной системы, продолжают падать на Землю в виде метеоритов-хондритов. Это самые старые объекты, которые вам дано подержать в руках. Они не так уж редки, их можно купить на eBay за несколько долларов.
Когда планетезимали увеличились до 160 км в диаметре и более, их внутреннее тепло расплавило, очистило и разделило первичное вещество. Плотные металлы вроде железа и никеля погрузились в недра и образовали планетезимальные ядра. Менее плотные скопления блестящих кристаллов оливина и пироксена окутали растущие миры мантией. Горячая вода, циркулирующая по разломам и трещинам, изменила каменную смесь, а разрушительные удары огромных небесных тел привели к образованию новых плотных минералов – импактных. Ближе к концу этого процесса несколько больших протопланет – среди них и Земля – стали доминировать в зарождающейся Солнечной системе, захватывая бóльшую часть оставшихся каменных обломков подобно огромным пылесосам. Последнее крупное столкновение между Землей и ее меньшей сестрой, протопланетой Тейя, привело к полному уничтожению Тейи и формированию Луны.
Создав в небе коалицию с Луной, разогретая поврежденная Земля быстро «залечила рану» и остыла, превратившись в тело из трех оболочек: тонкой хрупкой коры, мощной мантии и недосягаемого металлического ядра. Циркулирующие в глубинах перегретая вода и пар растворяли и концентрировали химические элементы и переносили их к более холодной поверхности молодой планеты, где те образовывали всё новые и новые минеральные формы, среди которых было и множество минералов углерода.
Первичная Земля, испещренная ударами небесных тел, в составе которых были и алмаз, и графит, только начинала собственные эксперименты с шестым элементом. Постепенно, по мере развития нашей планеты, на ней эволюционировала и удивительная минералогия углерода – сотни кристаллических форм, каждая из которых отличалась неповторимым сочетанием химического состава и кристаллической структуры и включала в себя разнообразные соединения углерода с другими химическими элементами. Каждый из этих изумительно разных минералов и поныне является свидетельством нашего динамичного, эволюционирующего мира.
Сейчас углеродсодержащие минералы находят повсюду[31]31
Известные на сегодняшний день минералы углерода рассматриваются в изданиях: Robert M. Hazen et al., “The Mineralogy and Crystal Chemistry of Carbon,” in Carbon in Earth, ed. Robert M. Hazen, Adrian P. Jones, and John Baross (Washington, DC: Mineralogical Society of America, 2013), 7–46. Полный актуальный список всех углеродсодержащих минералов доступен в IMA Database of Mineral Properties базы данных RRAFF Project на 19 сентября 2018 г. по ссылке: http://rruff.info/ima; а перечни их местонахождений – на сайте Mindat.org; доступны на 19 сентября 2018 г. по ссылке: http://mindat.org.
[Закрыть]: от величественных известняковых пиков канадских Скалистых гор до обширных коралловых плато Большого Барьерного рифа, от Белых утесов Дувра до неисчислимых скоплений крошечных раковин на океаническом дне – минералы всех этих объектов хранят в себе гигантские запасы шестого элемента в земной коре. Углерод содержат в своем составе более 400 известных минеральных видов. Но это не всё – результаты недавних исследований указывают на то, что нас ожидает много находок, которые только предстоит описать: более 150 новых, неизвестных еще видов углеродсодержащих кристаллов спрятались от нас замурованными в обнажениях горных пород, выстилающих перегретые жерла вулканов, вырастающих по берегам испаряющихся озер и захламляющих своими обломками заброшенные шахты. Эти редкие кристаллические формы ждут открытия.
Исключительное разнообразие минералов углерода поражает. Их цвета охватывают весь спектр радуги – пламенно-красный, ярко-оранжевый, насыщенно-желтый, изумляюще-зеленый, ошеломительно-синий и глубоко-фиолетовый. Они бывают любых тонов и оттенков: белых, серых, желто-коричневых и черных, некоторые минералы абсолютно прозрачные, другие – полупрозрачные или матовые. Их блеску[32]32
Блеск – это важный диагностический признак минерала наряду с твердостью, спайностью и другими физическими характеристиками. – Прим. ред.
[Закрыть] тоже присуще разнообразие – и металлический, и матовый, и алмазный, и жирный, и восковой, и молочный (перламутровый). То же можно сказать и о формах минералов углерода: среди них изящные кристаллы в виде ограненных кубов и октаэдров, постепенно сужающиеся к концам игольчатые сростки и пластинчатые агрегаты, бесформенные наросты, шероховатые корки, приятные округлые образования и ступенчатые массы неправильной формы – любого размера, от микроскопического до гигантского, больше надувного мяча.
В подвижной земной коре большинство атомов углерода связываются с тремя атомами кислорода, образуя таким образом крошечный плоский треугольник – четырехатомный кластер, известный как карбонатная группа. Из этих атомных строительных блоков состоят разнообразные карбонатные минералы, присутствующие в хорошо знакомых нам крепких раковинах улиток и двустворок, пищевых добавках с кальцием, мраморных столешницах и ярко-розовых украшениях из родохрозита.
Карбонатные минералы, особенно осадочные слои известняка и доломита, представляют собой самое большое хранилище углерода в земной коре – около 100 млн млрд т шестого элемента[33]33
Оценки общего количества минералов углерода земной коры взяты из работ: Paul Falkowski et al., “The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System,” Science 290, no. 5490 (2000): 291–96; и Marc M. Hirschmann and Rajdeep Dasgupta, “The H/C Ratios of Earth’s Near-Surface and Deep Reservoirs, and Consequences for Deep Earth Volatile Cycles,” Chemical Geology 262 (2009): 4–16.
[Закрыть]. Это более чем в тысячу раз превышает запасы углерода во всех других резервуарах земной коры, вместе взятых: в угле и нефти, в океанах и атмосфере, в растениях и животных.
Практически невозможно представить себе современное общество без этих разнообразнейших углеродсодержащих минералов и множества их синтетических аналогов. Они играют важнейшую роль в плавке железа, ковке стали, удобрении полей, производстве стекла и цемента. Они помогают в производстве столь разных продуктов, как стиральные порошки, фейерверки, керамика, фармацевтические препараты, хирургические инструменты, взрывчатые вещества, украшения и пекарный порошок. Они уменьшают кислотность водопроводной воды и удаляют загрязняющие примеси на электростанциях. Они служат абразивами для самых эффективных режущих инструментов и смазкой для самых требовательных устройств. Более того, пышное разнообразие природных углеродсодержащих кристаллов намекает на возможность разработки синтетических материалов с еще бóльшим потенциалом – с техническими свойствами, соответствующими нашим чаяниям, нуждам и желаниям.
Исследование пестроты этих минералов – их многочисленных форм и незримого происхождения – позволяет многое узнать о самом углероде и о том, как этот жизненно важный элемент перемещается и хранится в оболочках нашей планеты. Мы начали каталогизировать это богатство, погружаться все глубже и глубже в недра Земли, даже предсказывать, что может оказаться упущенным при этой нашей все еще неполной инвентаризации. Минералогия углерода – тема со многими вариациями, охватывающая века исследований и открытий.
Чтобы понять ее историю, мы должны вернуться на два столетия назад в Шотландию – в ту эпоху, когда углеродсодержащие минералы были предметом, казалось бы, неразрешимого геологического противоречия.
Карбонатные минералы проливают свет на историю Земли
Человеческому обществу необходим известняк – шероховатая, серая, богатая углеродом горная порода, которая образует величественные утесы и зубчатые горы по всему земному шару. Его обильные древние отложения накапливались постепенно, слой за слоем, иногда как скопления кораллов и раковин, иногда осаждаясь химическим путем из морских и озерных вод, богатых кальцием. Каждый год продаются миллиарды тонн дробленого известняка – он используется в качестве прочной основы для автомобильных трасс, железных дорог, зданий и мостов. Это природный ресурс, ежегодные продажи которого превышают продажи алмазов, серебра или золота. Возможно, и вы покупали его, в более скромных количествах, чтобы благоустроить свои террасы или подреставрировать садовые дорожки.
Из блоков известняка и его более плотного кристаллического собрата – мрамора (известняка, перекристаллизованного глубоко под землей под действием высоких давления и температуры) – создают внушительные здания и монументы, к примеру пирамиды Гизы в Египте или мемориал Линкольна в Вашингтоне, округ Колумбия. Причудливые разновидности известняка, часто насыщенные окаменелыми раковинами, используют главным образом как блочный камень для облицовки зданий, напольных покрытий и кухонных столешниц. Вероятно, вам доводилось применять известковый порошок в своем саду или на лужайке для уменьшения кислотности почвы, и, наверное, вы употребляли кальций в качестве пищевой добавки. Фермеры, выращивающие кур, для их питания также используют известковые добавки, которые укрепляют яичную скорлупу, вследствие чего яйца меньше бьются при транспортировке.
Использование карбонатных минералов лежит в основе различных промышленных технологий, самая главная из которых – производство извести (на химическом языке это оксид кальция), которая получается путем нагрева известняка в обжиговой печи приблизительно до 980 °C. Известь (не путайте с известковым порошком, которым вы посыпаете лужайку) невероятно полезна. Это главный компонент известкового раствора, штукатурки и цемента, который образует твердый и прочный состав, когда его смешивают с водой. Известь обеспечивает белый цвет побелки. И тысячи лет она была основной добавкой при выплавке железа и других металлов, представляя собой флюс, который химическим путем отделяет от них примеси. Во всех промышленно развитых странах загородные пространства пронизаны древними печами для обжига извести, многие из которых сотни лет назад были попросту малыми семейными предприятиями.
Производство извести из известняка – процесс, знакомый любому геологу XVIII в., – сыграло любопытную роль в истории науки. В прямом смысле известняк угрожал отодвинуть науки о Земле на десятилетия назад.
В середине того века среди европейских ученых разгорелся спор об относительной геологической важности воды (восхваляемой так называемыми нептунистами) и тепла (любимого механизма так называемых плутонистов) в образовании горных пород[34]34
Обзор первых геологических дебатов см. в книге: Martin J. S. Rudwick, The Meaning of Fossils: Episodes in the History of Paleontology, 2nd ed. (Chicago: University of Chicago Press, 1976).
[Закрыть]. Нептунисты, некоторые с явной склонностью к библейскому креационизму, считали главным фактором геологических изменений Всемирный потоп – катастрофическое глобальное событие, укладывающееся в рамки насчитывающей 10 000 лет библейской хронологии. Плутонисты же в качестве не менее важного, чем вода, фактора геологических изменений рассматривали вулканическое тепло, которому, однако, требовалось гораздо больше времени, чтобы создать современный ландшафт.
Семена спора были посеяны в континентальной Европе, где геологи, изучающие водные отложения, вполне естественно отдавали приоритет воде, а те, кто изучал вулканическую лаву, – огню. Это противоречие даже отражено в диалоге 4-го акта знаменитой трагедии Гёте «Фауст», где точку зрения плутонистов неубедительно отстаивал сам дьявол. К концу столетия центр научных дебатов – так же, как и их возможного разрешения, – сместился в просвещенный город Эдинбург в Шотландии, где проводил свои поистине революционные полевые исследования Джеймс Геттон[35]35
Биографию Геттона можно почитать в: Jack Repcheck, The Man Who Found Time: James Hutton and the Discovery of Earth’s Antiquity (New York: Perseus, 2003). Идеи Геттона получили поддержку после публикации труда: Charles Lyell, Principles of Geology: Being an Attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation, 3 vols. (London: Murray, 1830–33).
[Закрыть].
Геттон родился в Эдинбурге в 1726 г. Он был одним из пятерых детей Сары Балфур и Уильяма Геттона, богатого торговца, который умер, когда Джеймсу было всего три года. Мать мальчика подчеркивала важность образования, и юный Джеймс это хорошо усвоил, проявив особые способности в математике и химии – предметах, которые помогали ему всю жизнь. Углубленно изучив латынь, философию и медицину в университетах Эдинбурга, Парижа и Лейдена, Геттон отправился в Лондон в надежде заняться прибыльной медицинской практикой. Не сумев обеспечить себя достаточным количеством пациентов, молодой исследователь вернулся в Эдинбург и занялся насущными тамошними делами. Ранее Геттон разработал новый химический процесс извлечения хлорида аммония, широко используемого как удобрение, из сажи и золы, которую «производили» многочисленные печи и фабрики города. Он поставил свой новый метод на промышленную основу, управляя прибыльной химической фабрикой в Эдинбурге.
Обезопасив себя финансово на будущее, Геттон посвятил время новому увлечению – сельскохозяйственной химии. Он унаследовал две семейные фермы и проводил там эксперименты по повышению урожайности. В ходе работы с разными горными породами и почвами Геттон начал задумываться о геологии.
Горные породы Шотландии по своим характеристикам весьма разнообразны. Это осадочные и вулканические породы, некоторые – крепкие и залегают горизонтально, как будто бы они здесь и образовались, другие – разрушенные и деформированные. К тому же всего на расстоянии дня пути от того места, где жил Джеймс Геттон, находились участки метаморфических пород, ледниковые отложения и выходы изверженных пород. Особый интерес представляли морские утесы Сиккар-Пойнт рядом с Джедборо, где Геттон изучал поразительное наложение пластов. Там в обнаженных под действием эрозии ветра и волн скалах он наблюдал, как слегка наклоненные пласты более молодого красного песчаника и галечника перекрывали залегающие ниже круто наклоненные слои более древнего темного песчаника. Граница между этими двумя толщами была настолько четкая, будто нижний ряд почти вертикальных слоев срезали до того, как на них наложились горизонтальные. Как могло возникнуть такое различие в геометрии?
Геттон понимал, что каждый аспект строения утесов Сиккар-Пойнт, как и каждый аспект всей шотландской геологии, можно объяснить просто результатом медленных естественных процессов, происходящих везде и всегда. С одной стороны, постоянно образуются новые осадки, они медленно накапливаются в виде пластов, которые постепенно погружаются, нагреваются, сжимаются и превращаются в камень: эти процессы добавляют новые страницы в каменную летопись. С другой стороны, более древние породы постепенно деформируются, поднимаются вверх и разрушаются, что приводит к удалению пластов. Сиккар-Пойнт показывает все эти процессы одной картинкой: более старые отложения сначала лежали плоскими слоями, но затем были захоронены и превратились в камень. Глубинные силы спрессовали эти слои, смяв их в узкие вертикальные складки. Подъем разрушил верхнюю часть древней толщи. Другой цикл погружения и осадконакопления сформировал более молодые, горизонтально залегающие красные песчаники, после чего следующий эпизод подъема обнажил уже красные слои для эрозии.
В объяснении Геттона не было ничего особенно экзотического или нового, кроме одного – «глубокого времени». Остальные ученые рассматривали историю Земли в рамках нескольких тысячелетий. Геттон же говорил о сотнях миллионов, даже миллиардах лет единообразного постепенного изменения. Он не видел в скалах Шотландии «ни следа начала, ни перспективы конца»[36]36
James Hutton, Theory of the Earth, with Proofs and Illustrations, in Four Parts, 2 vols. (Edinburgh: Creech, 1795).
[Закрыть]. Двухтомник Геттона 1795 г. «Теория Земли», хотя и написанный в напыщенном стиле, что, возможно, ослабило его первоначальное воздействие, провозвестил смену научной парадигмы.
В своих поисках Геттон находился под сильным влиянием духа эмпиризма, характерного для кипучего шотландского Просвещения. Он постоянно общался с десятками интеллектуалов – как в Эдинбургском королевском обществе, так и в местных клубах, которые посещали, в частности, поэт Роберт Бёрнс, экономист Адам Смит и философ Дэвид Юм. Но настоящим героем этой истории стал шотландский геолог и геофизик Джеймс Холл, подтвердивший гипотезу Геттона экспериментально[37]37
Исследования Холла описаны в книге: Simon Mitton, From Crust to Core: A Chronicle of Deep Carbon Science (New York: Cambridge University Press, в печати).
[Закрыть].
Джеймс Холл и великое известняковое противоречие
Подобно многим современным ему ученым, Джеймс Холл родился в богатой аристократической семье. Состояние и иные сословные преимущества обеспечили ему прекрасное образование в знаменитых Кембриджском и Эдинбургском университетах, где он изучал геологию, химию и естественную историю. Холл много путешествовал по Европе, приобретая научные книги для своей библиотеки и общаясь с французским исследователем Антуаном Лавуазье, одним из основателей современной химии. Биографы редко упускают возможность привести полный титул Холла – сэр Джеймс Холл из Дангласса, 4-й баронет, хотя он знаменит скорее своими научными открытиями, нежели аристократическим происхождением или титулом.
Вернувшись по окончании путешествий в Эдинбург, Холл узнал о революционных идеях своего друга Джеймса Геттона из первых рук. «Теория Земли» основывалась на разнообразных геологических явлениях, среди которых было взаимодействие расплавленной лавы со слоями осадочных отложений – сценарий, требующий совмещения как процессов, отстаиваемых нептунистами, так и процессов, защищаемых плутонистами. Геттон понял, что при извержении вулканов расплавленная порода просачивается вверх сквозь более древние отложения, в то время как языки магмы проникают между глубоко залегающими пластами. Такие интрузивные события прекрасно видны кое-где в Шотландии, особенно в Троне Артура в эдинбургском парке Холируд. Это подвергшийся ледниковой эрозии холм, описанный в учебниках в качестве примера подобных взаимодействий (я не говорю уже о прекрасном виде, который в западном направлении открывается на город с этого холма).
Испытанием для теории Геттона стало обнаружение тех участков, где похожие расплавленные породы проникли в известняк. Как же он мог выдержать температуру расплавленной лавы – спрашивали исследователя оппоненты-нептунисты? Все знают, что сильно нагретый известняк должен превратиться в известь, ведь так происходит в печи для обжига. Следовательно, базальт, гранит и другие предположительно изверженные породы не могут быть горячими; вероятно, они образовались путем осаждения из воды примерно в то же самое время, что и известняк. Некоторым колеблющимся ученым эта нестыковка казалась неопровергаемым, фатальным ударом по теории Геттона. Однако сам он возражал, что известняк, который подвергается при погружении высокому локализованному давлению, должен оставаться неизмененным даже при высокой температуре. Но как можно было проверить эти предположения лабораторным путем?
Несмотря на свое скептическое отношение к плутонизму, Холл нашел впечатляющее экспериментальное разрешение этого конфликта. Проверив гипотезу своего друга с помощью ряда необыкновенно оригинальных экспериментов, Холл стал пионером исследований глубинного углерода. Он откровенно признавался в одной из публикаций: «После трех лет почти ежедневной войны с доктором Геттоном по поводу его теории идеи доктора начали мне казаться все менее и менее противоречивыми»[38]38
James Hall, “Account of a Series of Experiments, Shewing the Effects of Compression in Modifying the Action of Heat,” Transactions of the Royal Society of Edinburgh 6 (1812): 75.
[Закрыть]. В серии экспериментов Холл нагревал до высоких температур базальт и гранит, чтобы посмотреть, как они себя поведут. Рассыпятся ли, подобно известняку, и тогда будет опровергнуто их вулканическое происхождение? Как и прогнозировал Геттон, породы сначала расплавились в раскаленную докрасна лаву, а затем остыли до исходного состояния, что является основным свойством любой породы предположительно вулканического происхождения.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?