Электронная библиотека » Роберт Хейзен » » онлайн чтение - страница 5


  • Текст добавлен: 27 декабря 2020, 09:11


Автор книги: Роберт Хейзен


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 22 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Первым, что нас поразило, было неравномерное распределение земных минералов – тенденция, наблюдаемая, как правило, в биологических экосистемах. Несколько десятков минералов встречаются в тысячах мест, в то время как большинство других – чрезвычайно редкие. Полдесятка видов минеральной группы полевого шпата, по оценкам, составляют 60 % объема земной коры[55]55
  См.: Roberta L. Rudnick and S. Gao, “Composition of the Continental Crust,” in The Crust: Treatise on Geochemistry, ed. Roberta L. Rudnick (New York: Elsevier, 2005), 1–64.


[Закрыть]
. Несколько десятков других распространенных минералов составляют почти все остальное. А более 1200 минеральных видов, напротив, известны только по уникальным находкам в единичных местонахождениях. Еще более 600 видов найдены всего в двух местах, а почти 400 – описаны лишь из трех. Общий обзор данных по местонахождениям в Mindat.org показывает, что более половины всех зарегистрированных минералов происходят из пяти или менее мест. Поразительный вывод: большинство минералов – очень редкие.

Тогда мы задумались: является ли такое неравномерное частотное распределение с малым количеством очень распространенных видов и намного более многочисленными редкостями характерным для природы в целом?[56]56
  См.: B. J. McGill et al., “Species Abundance Distributions: Moving beyond Single Prediction Theories to Integration within an Ecological Framework,” Ecological Letters 10 (2007): 995–1015. Авторы утверждают, что вогнутая, смещенная вправо кривая частотного распределения видов, похоже, является универсальным законом в биологии и экологии.


[Закрыть]
Может ли литература по социологии, экономике, географии или другим областям знаний показать аналогичное частотное распределение? Существует ли уже признанный математический подход для описания подобной взаимосвязи с преобладанием редкостей, который мы можем использовать, чтобы понять распределение минералов?

Ответ пришел (как это часто бывает) в несвязанном, казалось бы, контексте – во время прогулки в лесу. В июне 2014 г. Мэттью Скотт, недавно назначенный президентом Института Карнеги, пригласил меня к себе домой в Пало-Альто, чтобы поговорить о науке, жизни и будущем института. Мэтт – родственная мне душа, с той же страстью к концептуализации и междисциплинарному мышлению. Он внес весьма революционный вклад в клеточную биологию и биологию развития, да к тому же был главой амбициозной лаборатории Bio-X в Стэнфордском университете, где работают исследователи, занятые в передовых междисциплинарных проектах, которые связывают биологию с медициной, инженерными науками, физикой и химией. Благодаря активности Мэтта лаборатория получила 1 млрд долларов на новейшее оборудование. Теперь же он предвкушал новые приключения, руководя обновленным Институтом Карнеги, в котором проводились связанные между собой исследования Земли, космоса и живой природы.

Вместо того чтобы просто сидеть и разговаривать, мы пошли на прогулку по живописному скалистому побережью Северной Калифорнии и зашли в ближайший лес с древними массивными секвойями. Проходя мимо внушительных хвойных деревьев, я поражался неравномерному распределению растительной и животной жизни. Бóльшая часть биомассы этой экосистемы скопилась на гигантских секвойях, а оставшаяся – на нескольких других крупных доминирующих видах деревьев и кустарников. Но львиная доля биоразнообразия была представлена гораздо более мелкими видами: мхами, папоротниками, насекомыми, певчими птицами и яркоокрашенными калифорнийскими банановыми слизнями, не говоря уже о бесчисленных невидимых микроскопических формах жизни. Шагая, я размышлял: а не может ли распределение биомассы в экосистеме отображать распределение минералов на Земле?

Разгадка появилась из неожиданного источника несколько дней спустя, когда я искал статьи по частотному распределению[57]57
  Математические подходы к лексической статистике описаны в книге: R. H. Baayen, Word Frequency Distributions (New York: Kluwer, 2001).


[Закрыть]
. Ответом послужили слова. Оказалось, что характерное распределение слов в книге необыкновенно похоже на распределение минералов на Земле. Давайте рассмотрим эту мою книгу. Как и все, я часто использую здесь артикли и союз «и» – возможно, сотни раз. Другие часто используемые слова более характерны для данной конкретной истории: первыми приходят на ум «минерал», «алмаз» и «углерод».

Вы, возможно, видели «облака слов», или Wordles, в которых крупным шрифтом выделяются самые распространенные ключевые слова в тексте. Те, которые вы не видите в «облаке», – это более редкие слова, которые использовались всего один или два раза. И в эту категорию попадает намного больше разных слов. Здесь слово Wordle появляется только единожды (упс, полагаю, теперь уже дважды). То же самое можно сказать о «Чосере», «тилапии» и «уиджимулталите». На самом же деле анализ этих редких слов может однозначно указать на тему, жанр и даже авторство документа. Вот если бы вы нашли старую рукопись и захотели узнать, кто ее написал? Такие редкие, характерные слова и фразы могут помочь выявить ранее неизвестные произведения Диккенса, Чосера или Шекспира.

Подобная закономерность – с несколькими распространенными элементами и многочисленными редкими – называется распределением «большого числа редких событий» (или сокращенно БЧРС). Вы, возможно, полагаете, что исследование распределений БЧРС относится к сфере компетенции какого-то захолустья прикладной математики и интересует всего лишь нескольких историков и литературоведов. Однако это не так: глобальная борьба с терроризмом сделала лексическую статистику горячей темой. Агентство национальной безопасности хочет знать, кто что пишет и кому. БЧРС-анализ – даже просто электронного письма, короткого документа или записи телефонного разговора – может дать убедительные подсказки. Как следствие, на БЧРС-исследования потекли деньги. В последние годы вышли толстые учебники, напичканные математическими формулами, а мудреные статистические программы для БЧРС-анализа доступны онлайн и бесплатны.

Погружение в мельчайшие подробности столь сложной математики не для слабонервных, и мало у кого из минералогов есть ноу-хау, чтобы расшифровывать загадочные БЧРС-уравнения, а уж тем более применять их к новой дисциплине. В 2015 г. мне посчастливилось работать с Гретой Хистад, в то время преподавателем прикладной математики в Аризонском университете и одновременно – членом хоккейной команды Боба Даунса. Найти коллегу, подобного Хистад, – мечта любого ученого[58]58
  Биографические сведения о Грете Хистад были получены в ходе бесед и переписки с ней по e-mail в феврале 2017 г.


[Закрыть]
. У нее потрясающие математические способности, она обожает учиться, творчески мыслит и любит работать как никто другой.

Грета – норвежка по происхождению, а ее генеалогия восходит ко временам викингов. Почти все детство она провела на ферме, которая принадлежала ее семье в течение 16 поколений, и может похвастаться тем, что найденный на их землях клад с украшениями железного века является национальным достоянием. Грета – заядлая спортсменка, она выступала за норвежскую футбольную команду Первого дивизиона[59]59
  До 1991 г. так называлась Высшая лига чемпионата Норвегии по футболу. – Прим. ред.


[Закрыть]
и несла олимпийский факел на Зимних играх в Лиллехаммере в 1994 г., перед тем как приехать в Соединенные Штаты, чтобы поступить в аспирантуру. Она получила докторскую степень в Аризонском университете и осталась там преподавать на математическом факультете, затем заняла должность профессора в Северо-Западном университете Пердью[60]60
  Этот университет относится к системе государственных университетов Пердью, он был создан в 2016 г. путем слияния двух региональных кампусов, основанных в 1946 г. Кампусы находятся на северо-западе штата Индиана. – Прим. ред.


[Закрыть]
.

Хистад понравилась идея применить устоявшиеся математические формулы к новой природной системе – распределению минералов на Земле. Она погрузилась в литературу по лексической статистике, выделила и изменила соответствующие процедуры и вскоре продемонстрировала нам, что естественное распределение минералов на Земле прекрасно соответствует двум хорошо известным типам БЧРС-распределения: конечной функции распределения Ципфа – Мандельброта (кЦМ) и общей обратной функции распределения Гаусса – Пуассона (ООГП)[61]61
  Исходное описание экологии минералов, а также математическое представление БЧРС-распределения минералов впервые описано в статье: Robert M. Hazen et al., “Mineral Ecology: Chance and Necessity in the Mineral Diversity of Terrestrial Planets,” Canadian Mineralogist 53 (2015): 295–323.


[Закрыть]
.

Поток открытий, последовавших в этой области, мы окрестили экологией минералов в честь экологических исследований распределения видов[62]62
  Три статьи, опубликованные в 2015 г.: Grethe Hystad, Robert T. Downs, and Robert M. Hazen, “Mineral Frequency Distribution Data Conform to a LNRE Model: Prediction of Earth’s ‘Missing’ Minerals,” Mathematical Geosciences 47 (2015): 647–61; Robert M. Hazen et al., “Earth’s ‘Missing’ Minerals,” American Mineralogist 100 (2015): 2344–47; и Grethe Hystad et al., “Statistical Analysis of Mineral Diversity and Distribution: Earth’s Mineralogy Is Unique,” Earth and Planetary Science Letters 426 (2015): 154–57. См. также историческое описание развития экологии минералов на сайте Института Карнеги в разделе “About Dr. Hazen,” доступном на 19 сентября 2018 г. по ссылке: http://hazen.carnegiescience.edu.


[Закрыть]
. Мы обнаружили, что БЧРС-распределения также применимы к различным подгруппам минералов, особенно тем, которые содержат специфические химические элементы, к примеру бор, кобальт, медь и хром. Дотошные исследования углерода продвинули эту идею на шаг вперед, поскольку были обнаружены БЧРС-распределения для меньших подгрупп минералов, содержащих углерод в сочетании с кислородом, водородом и кальцием.

Вот чем интересны БЧРС-модели распределения минералов – они предлагают эмпирический закон, который точно описывает то, что мы вывели из больших баз данных по минералам: большинство минералов редкие. Но от такого подхода можно получить гораздо больше. Математические модели бесценны не только потому, что систематизируют уже известное нам. Помимо этого, подобные взаимосвязи часто уводят нас от простого описания природы, за пределы того, что мы знаем, позволяя делать прогнозы о том, чего мы не знаем. Грета Хистад обнаружила, что модели не только оценивают распределение известных минералов, но еще и раскрывают распределение пока не найденных и не описанных. С БЧРС-моделью мы в состоянии предсказывать «недостающие» минералы Земли[63]63
  В последующих статьях по экологии минералов рассматривались, в свою очередь, бор: Edward S. Grew et al., “How Many Boron Minerals Occur in Earth’s Upper Crust?” American Mineralogist 102 (2017): 1573–87; хром: Chao Liu et al., “Chromium Mineral Ecology,” American Mineralogist 102 (2017): 612–19; и кобальт: Robert M. Hazen et al., “Cobalt Mineral Ecology,” American Mineralogist 102 (2017): 108–16.


[Закрыть]
.

Теперь – как это работает. Представьте себе, что ваш космический корабль совершил посадку на неизведанную землеподобную планету и вам нужно составить как можно более полный список ее минералов. В первом же куске горной породы, который вы подберете, будет несколько новых для вас видов. Поднимете другой камень, а затем еще один, и еще… Пока вы находите что-то новое, ваш список будет быстро расширяться. Но через несколько недель после того, как вы занесете в реестр тысячи образцов и сотни разных минеральных видов, открытия новых видов станут происходить все реже и в конечном счете сократятся до струйки необычных, более редких находок.

Когда вы будете отмечать на графике растущее количество изученных образцов минералов по горизонтальной оси, а количество описанных видов – по вертикальной, то увидите характерную кривую накопления, которая начинает резко подниматься слева и постепенно выполаживается вправо. Эту кривую можно экстраполировать дальше вправо, чтобы оценить общее число видов, многие из которых пока только предстоит открыть и описать. Несомненно, потребуется много лет поиска, чтобы приблизиться к этому прогнозируемому числу, а тем более достичь его, но вы можете быть уверены, что намного больше минералов лежит в ожидании внимательного минералога.

Алгоритмы БЧРС позволяют обрабатывать кривые накопления, которые Грета Хистад вывела из БЧРС-статистики при помощи нескольких математических приемов. В нашей первой совместной работе, опубликованной в 2015 г., когда было известно порядка 4900 минеральных видов, предсказывалось, что еще остается найти по крайней мере 1500 минералов. Последующие исследования, которые проводила все увеличивающаяся команда выпускников, аспирантов, кандидатов наук и старших научных сотрудников, были сфокусированы на детализации того, чего недостает, не хватает: к примеру, более 100 минералов, содержащих полезный элемент бор, только и ждут, чтобы их нашли и описали. Мы предсказали, что в копилке не хватает 30 минералов хрома и 15 минералов редкого элемента кобальта. Далее последовали исследования по многим другим химическим элементам, причем все они основывались на анализе статистических тенденций в данных по минералам.

Мы объединили результаты наших всесторонних исследований по более чем 400 минералам углерода с почти 83 000 данных Mindat.org по этим разнообразным углеродным минералам и их местонахождениям[64]64
  См. Robert M. Hazen et al., “Carbon Mineral Ecology: Predicting the Undiscovered Minerals of Carbon,” American Mineralogist 101 (2016): 889–906.


[Закрыть]
. БЧРС-распределение работает прекрасно: более 100 минералов углерода известны только из одной местности, еще 40 – всего из двух мест и т. д. Результирующая кривая накопления говорит о существовании привлекательной перспективы – еще нужно найти и описать почти 150 углеродсодержащих минералов, которые должны существовать на поверхности Земли или в приповерхностном слое. Продолжая использовать те же методы, мы обнаружили, что из этих 150 недостающих минералов почти 90 %, вероятно, содержат еще и самый распространенный минералообразующий элемент – кислород и примерно столько же – водород. Мы сделали прогноз, что десятки еще не открытых минералов углерода содержат в качестве главных компонентов также кальций или натрий.

Имея на руках такую информацию, нам было сравнительно легко сделать следующий шаг и предсказать как особенности неизвестных минералов, которые могут быть найдены, так и места, где их следует искать. Некоторые из этих потенциальных видов уже хорошо нам знакомы как синтетические соединения, например карбонаты натрия и калия. Эти химические вещества обычно белого или серого цвета, они слабо раскристаллизованы, не говоря уже о том, что хорошо растворяются в воде, а стало быть, исчезают после первого же дождя. Поэтому неудивительно, что подобные минеральные виды остались незамеченными и любителями, и профессиональными минералогами. У нас есть предложение: идите искать новые виды по покрытым минеральной коркой берегам богатого натрием танзанийского озера Натрон в Восточно-Африканской рифтовой долине. Это будет нелегко, поскольку на берегах озера уже и так полно более распространенных белых корковидных минералов, но будет намного легче найти что-нибудь новое, если вы знаете, что искать.

Мы можем предположить свойства других недостающих минералов, если рассмотрим химических собратьев уже известных минералов углерода. Наш список из 190 возможных вариантов – железных, медных и магниевых аналогов хорошо известных карбонатных минеральных видов – затронул лишь малую часть гипотетических недостающих минералов углерода. С использованием экологии минералов мы расширили рамки основной миссии Обсерватории глубинного углерода по нахождению всех форм углерода на Земле; впервые в истории минералогии мы предсказали множество минеральных видов, которые трепещут в ожидании, чтобы их открыли.

Итак, мы застолбили нашу заявку. Мы предположили, что на Земле есть еще почти 150 неоткрытых – недостающих – минералов углерода, и конкретно предсказали, куда идти и что искать. Пришла пора проверять прогнозы.

Программа Carbon Mineral Challenge

Столетиями минералогия была наукой, основанной на наблюдении, и все новые минералы находили по чистому везению. Редкая натриевая слюда вонезит была обнаружена случайно в ходе стандартного анализа обычного биотита. Волокнистый минерал джимтомпсонит долгое время принимали за один из минералов группы вездесущих амфиболов. И как гласит пословица, золото там, где его найдешь. Конечно, есть некоторые закономерности, но только малая часть из более чем 5000 минеральных видов была предсказана до их обнаружения в природе.

С учетом экологии минералов эта традиция меняется. Мы можем предсказывать то, что пока не найдено. О некоторых таких редкостях мы даже знаем, какими они должны быть и где их найти. Нам стало ясно, что озеро Натрон в Танзании – это место, куда можно поехать, чтобы обнаружить там новые карбонаты натрия и калия. Подобным образом уже найден ряд карбонатов стронция в известном карьере Пудретт в Квебеке, в то время как другие похожие карбонаты стронция известны нам пока только в виде синтетических химических веществ.

Чтобы найти новые минералы карбоната стронция, вам не нужно ехать на канадский карьер (хотя такая экспедиция была бы наслаждением для любого профессионального минералога). Просто подойдите к музейным ящикам, наполненным образцами из Пудретта, и тщательно изучите их в поисках крошечных кристаллических зерен ранее не распознанного вида. Новые минералы углерода должны быть также в угле и горючих сланцах. Исследования уже привели к обнаружению десятка редких кристаллов, образованных из небольших углеродсодержащих органических молекул, сконцентрированных в богатых кристаллами полостях в углях или в слоях горючих сланцев. Конечно, большинство органических минералов еще ждут своего открытия. Чтобы их найти, вы можете разрезать, изучить и проанализировать уголь или горючий сланец из местонахождений, в которых уже были обнаружены необычные минералы.

Для продвижения этого нового минералогического проекта Обсерватория глубинного углерода запустила в 2016 г. программу Carbon Mineral Challenge[65]65
  По смыслу можно перевести как «Минералы углерода бросают нам вызов!». – Прим. ред.


[Закрыть]
[66]66
  См. информацию о проекте Carbon Mineral Challenge на сайте http://mineralchallenge.net, ссылка доступна на 19 сентября 2018 г.


[Закрыть]
. Этот международный поиск недостающих минералов углерода представлялся нам интересной идеей, но нужен был и харизматичный лидер – чтобы вызывать всеобщее чувство восторга и быть замечательным во всех отношениях. Нам нужен был тот, кто умеет общаться как с кураторами минералогических музеев, так и с коллекционерами. Итак, знакомьтесь: Дэн Хаммер[67]67
  Биографические сведения о Дэне Хаммере были получены в ходе бесед и переписки с ним по e-mail в июле, августе и декабре 2017 г.


[Закрыть]
.

Его и впрямь сложно не заметить. И дело не только в его 195 см роста и широких плечах. Улыбка Дэна излучает энтузиазм и искренние доброту и щедрость, очень ему свойственные. Плюс его заразительная фраза: «Ух, черт!», выражающая смесь этого энтузиазма с удивлением, которая, возможно, досталась ему от предков из Айовы (вкупе с неисчерпаемым любопытством). Когда Дэн Хаммер говорит, что минералы углерода только и ждут, чтобы их открыли, окружающие кивают и приступают к работе.

Дэн, мой бывший постдок, недавно назначенный на должность старшего преподавателя в Университете Южного Иллинойса, отдает себе отчет, что для Обсерватории глубинного углерода ставки высоки. Наш успех зависит от понимания сложного углеродного цикла Земли, а мы не сможем понять этот цикл без знания множества прекрасных и разнообразных форм, которые принимает углерод. «Недостача» почти 150 углеродсодержащих минералов – огромный пробел в нашем понимании природных форм шестого элемента, и Дэн намерен его восполнить.

Минералоги со всего мира – что любители, что профессионалы – включились в охоту, и результаты посыпались. В течение первого года программы ММА утвердила девять новых углеродсодержащих минералов в качестве «узаконенных» видов. Первым оказался найденный в испанской Каталонии абеллаит – карбонат натрия и свинца с крошечными вкраплениями бледно-зеленых иголочек. Нам было очень приятно отметить, что зарегистрированный в 2017 г. абеллаит присутствовал в опубликованном нами же в 2016 г. списке прогнозируемых минералов углерода. Тиннункулит – минерал, найденный вторым, – образуется, когда помет пустельги (вида Falco tinnunculus – отсюда и название) взаимодействует с теплыми газами из горящего в терриконе одной из российских шахт угля[68]68
  Речь идет о шахте в районе г. Копейск, Южный Урал. Подробнее см. статью, на которую ссылается автор в Примечаниях. – Прим. ред.


[Закрыть]
[69]69
  Описание минерала изложено в статье: И. В. Пеков, Н. В. Чуканов, В. О. Япаскурт, Д. И. Белаковский, И. С. Лыкова и др. Тиннункулит C5H4N4O3·2H2O: находки на Кольском полуострове, переопределение и установление статуса минерального вида. Записки Российского минералогического общества, 145 (4): 20–35, 2016.


[Закрыть]
. (Окей, признаю – такого мы не предсказывали!) За ними последовали голубой марклит из Германии, зеленый миддлбекит из Австралии и бледно-желтый леосилардит из штата Юта. Симпатичный канареечно-желтый юингит (шестое открытие) стал новым карбонатом урана из Яхимовского рудного района Чешской Республики – местности, уже известной разнообразием редких минералов углерода. И наконец, паризит-(La) – карбонат с редким элементом лантаном – тоже был предсказанной разновидностью[70]70
  В этом фрагменте перечислены восемь минералов, вероятно, девятый не был предсказан DCO. – Прим. ред.


[Закрыть]
.

Программа Carbon Mineral Challenge продолжается. Мы не рассчитываем найти все оставшиеся 145 предсказанных новых видов, но, как обещал Дэн Хаммер, без сомнения, будет интересно попытаться это сделать.


Вполне естественно, что подавляющее большинство углеродсодержащих кристаллов в природе были обнаружены в доступной приповерхностной области земной коры. Но мы знаем, что Земля хранит и более глубокие минералогические секреты – недоступные прямому наблюдению кристаллы, образующиеся при экстремальных температурах и давлениях мантии и ядра нашей планеты. Понимание сих таинственных этапов требует сложного арсенала исследовательских инструментов, которые используют ученые особой специализации. Это физики, изучающие минералы.

Разработка[71]71
  В оригинале Development. В данном контексте означает развитие музыкального материала. – Прим. ред.


[Закрыть]
 – Глубинный углерод Земли

На глубине сотен километров под твердой поверхностью Земли раскинулось скрытое, непостижимое царство тайны. Экстремальные давление и температура – условия, несовместимые с жизнью, – те две силы, что формируют глубокие недра планеты. Атомы сталкиваются друг с другом, приобретая необычные, более плотные кристаллические формы. Наше представление о космосе искажено нашим существованием на практически непроницаемой границе между Землей и Воздухом. Мы ограничены хождением по твердой поверхности Земли – каменистому барьеру, который мешает нам исследовать что-то помимо тончайшего слоя нашего величественного планетарного дома.

Какие поразительные открытия ждут нас на глубине сотни, тысячи километров под нашими ногами?

Минералогия глубинного углерода

Наши знания об углеродсодержащих минеральных видах, какими бы всеобъемлющими они ни казались, довольно поверхностны, т. е. в буквальном смысле поверхностны – обусловлены доступностью лишь верхней пары километров земной коры. Почти все известные нам минералы выросли и обрели свою форму в этой тонкой каменистой оболочке. А многие из них – те, что собраны из выветрелых отвалов шахт или образовались из тлеющих экскрементов пустельги, – являются поверхностными в силу своего происхождения.

В Обсерватории глубинного углерода мы жаждем знать больше. Мы хотим понять скрытую, недоступную, глубинную область земной коры и мантии, где огромные давления и температуры давят и обжигают углерод и сопутствующие ему элементы, преобразуя их в новые, плотные формы, которые только-только становятся нам понемногу известными. Мы должны узнать эти манящие секреты недр, поскольку почти весь углерод Земли заперт внутри планеты. Для нас Земля – огромный сферический пазл, в котором лишь несколько кусочков по краям находятся точно на своих местах. Мы страстно желаем вставить недостающие фрагменты пазла минералов углерода, но есть серьезное препятствие: чем глубже мы идем, тем более сложной становится задача.


Из более чем 400 известных минералов углерода лишь жалкая горсточка представлена разновидностями, образовавшимися при высоком давлении[72]72
  Минералогия углерода высокого давления рассматривается в работе: Artem Oganov et al., “Deep Carbon Mineralogy,” in Carbon in Earth, ed. Robert M. Hazen, Adrian P. Jones, and John Baross (Washington, DC: Mineralogical Society of America, 2013), 44–77.


[Закрыть]
. Алмаз, выкованный при экстремальных температурах и давлениях в глубоких недрах Земли, – самый очевидный пример углеродсодержащего мантийного минерала. Еще один вероятный кандидат – плотный муассанит, представляющий собой карбид, в котором атомы углерода связаны непосредственно с кремнием в кристаллическую структуру, подобную алмазу (примечательно, что в этой структуре отсутствует кислород). Поскольку кристаллы карбида кремния обладают физическими свойствами, удивительно похожими на свойства кристаллов алмаза, ювелирные камни из ограненного и полированного синтетического муассанита нашли свое место на рынке в качестве сравнительно недорогих заменителей бриллиантов. Присутствие редких включений в алмазе указывает на несколько других возможных карбидных минералов родом из мантии, в которых атомы углерода связаны с металлами – железом, хромом или никелем. Но это касается найденных в природе образцов из глубин. Что еще может быть там, внизу?

Стандартный способ выявления возможных мантийных минералов заключается в том, чтобы подвергнуть распространенные минералы земной коры суровым условиям глубин в сотни или более километров под поверхностью Земли. Обычный кальцит – повсеместно распространенный карбонат кальция – стал одним из очевидных минеральных видов, которые стоило протестировать. Я хорошо помню, как читал передовое исследование Уильяма (Билла) Бассета и его аспиранта Лео Меррилла, описавших первую из последовательностей плотных форм кальцита, образующихся при высоком давлении[73]73
  Проведенное Мерриллом и Бассетом исследование кальцита высокого давления можно найти в статье: Leo Merrill and William A. Bassett, “The Crystal Structure of CaCO3 (II), a High-Pressure Metastable Phase of Calcium Carbonate,” Acta Crystallographica B31 (1975): 343–49.


[Закрыть]
. Я был тогда аспирантом, и передо мной стоял вопрос об интересной теме для диссертации. У Билла имелся заманчивый ответ – кристаллография высокого давления.

Для такого ученого, как Билл Бассет, «глубинный углерод» означает «углерод высокого давления». Чем глубже вы погружаетесь в недра Земли, тем выше давление. Мантия Земли подвергает минералы давлению в сотни тысяч атмосфер, а в ядре оно превышает 1 млн атм. Шотландцу Джеймсу Холлу было весьма сложно воссоздать условия глубины 1 км в своих смелых экспериментах с ружейными дулами. Воссоздать же среду мантии Земли – самая трудная экспериментальная задача, которую только можно представить.

Дополнительная сложность для изучающего кристаллы экспериментатора – создать экстремальные давления Земли, не раскрошив кристаллический образец в порошок. Это своего рода компромисс. Вы хотите добиться самого высокого давления, какое только возможно, но при этом требуется подвергнуть крошечные площади действию больших сил. Однако крошечные площади означают крошечные кристаллы, которые легко разрушаются. Как же измерить столь малые кристаллы под давлением, не уничтожив то, что вы хотите исследовать? Проблема сложная, поскольку для того, чтобы выдержать давление, ваш образец должен быть заключен в крепкую защитную камеру. Но как можно сделать какие-либо полезные измерения через такой прочный барьер?

Блестящее решение этой проблемы было найдено в 1950-х гг. в Национальном бюро стандартов США (NBS), когда его ученые получили неожиданную возможность исследовать алмазы. Им дали большую партию изъятых у контрабандистов бриллиантов и сказали, что можно проводить с камнями любые эксперименты. Одну часть ценных камней – сотни карат бриллиантовых сокровищ – исследователи сожгли дотла в тщетных поисках вкраплений (вывод: в бриллиантах их не много). Другие алмазы, включая один прекрасный 8-каратный самоцвет, стоивший целое состояние, исцарапали, просверлили или раскрошили.

Именно во время тех надругательств над алмазами ученый NBS Элвин ван Волкенбург и обнаружил их уникальную способность играть двойную роль в экспериментах высокого давления – служить как резервуаром, в котором можно закреплять и сжимать образец, так и прозрачным окном для наблюдения этого сжатого образца. Ван Волкенбург составил пары бриллиантов, расположив их грани таким образом, чтобы сконцентрировать давление в образовавшейся ячейке с алмазными наковальнями[74]74
  Далее будет иногда использоваться иногда использоваться аббревиатура DAC, от англ. Diamond Anvil Cell. – Прим. ред.


[Закрыть]
[75]75
  История разработки и использования ячеек с алмазными наковальнями рассказывается в уже упоминавшейся работе: Hazen, Diamond Makers.


[Закрыть]
. Его простая, подобная тискам конструкция прижимала алмазы друг к другу для создания огромных давлений, но образец кристалла при этом оказывался защищен.

Попробуем – слой за слоем – собрать DAC-камеру для образца. Нижний слой камеры – это плоская стальная пластина с просверленным в ней маленьким цилиндрическим отверстием. Возьмем первый алмаз и вставим его в отверстие наковальней вверх. Следующий слой – это прокладка, вырезанная из тонкого металлического листа не более 0,05 см толщиной. Маленькое отверстие в прокладке, точно отцентрированное над наковальней нижнего алмаза, служит цилиндрическими стенками ячейки с образцом. Заполним эту ячейку тремя составляющими: сначала наш кристаллический образец (обычно закрепляемый на месте крохотным комочком вазелина), рядом – мельчайшие зерна чувствительного к давлению рубина или какого-то другого материала, который послужит стандартом внутреннего давления, и наконец – чтобы дозаполнить ячейку с образцом – вода или какая-либо другая передающая давление жидкость. После того как на прокладке располагают второй алмаз, ячейка запечатывается. Его наковальня обращена вниз, он накрывается сверху второй стальной пластиной с отверстием. Когда камера для образца собрана, мы повышаем в ней давление, сжимая ее в любом из создающих давление устройств. Если мы были осторожны и аккуратно выровняли все цилиндрические отверстия, то сможем смотреть прямо сквозь алмазы на потрясающий, неожиданный мир высокого давления.

Команда NBS своей новой игрушкой, как они ее назвали, запустила целую эпопею экспериментов высокого давления. Исследователи зачарованно наблюдали, как чистая вода преобразовывалась в новые формы высокобарического льда, а алкоголь кристаллизировался иглами – их ван Волкенбург окрестил джин-сосульками. Экспериментаторы использовали дорогие спектрометры, чтобы измерять значительные изменения во взаимодействии света с материей. А еще они направляли рентгеновские лучи на образцы, пытаясь хоть чуть-чуть ухватить, как при сжатии атомы перераспределяются, образуя более плотные конфигурации.

Я был поистине пленен поразительными отчетами ван Волкенбурга и его коллег по NBS. Когда в начале 1970-х гг. я прочитал статьи об их достижениях и уловил манящий свет этого ранее скрытого глубинного царства, то понял, чем хочу заниматься в жизни.

Рентгеновские исследования кристаллов под давлением

Когда ученые из DCO говорят об обнаружении всех разнообразных «форм» углерода, у нас в мозгу возникает вполне определенное изображение. Мы представляем атомы. Все материалы вокруг нас – твердые тела, жидкости и газы – состоят из атомов. Кристаллы с их изящно повторяющимися симметричными рисунками атомов привлекают особое внимание. Каждый минеральный вид имеет свою атомную топологию, собственную кристаллическую структуру.

Давление добавляет нюансы в копилку кристаллических структур. Подвергайте минерал все более высокому давлению – и его атомы будут все сильнее уплотняться. Если мы хотим понять глубинные формы углерода Земли, то должны обнаружить эти плотные кристаллические структуры высокого давления.

Элегантным способом измерения атомных структур кристаллов является рентгеноструктурный анализ. Рентгеновские лучи – это «сильнодействующая» форма световых волн, схожих по характеру с видимым светом и радиоволнами, но с гораздо более короткими (несколько миллиардных долей сантиметра) длинами волн, близкими к стандартным расстояниям между слоями атомов в кристаллах. Когда поток рентгеновских лучей просвечивает кристалл, волны рассеиваются и усиливаются в сфокусированных потоках дифрагированных лучей. Направления и интенсивности таких лучей позволяют выявить атомную структуру.

Исходная ячейка c алмазными наковальнями NBS была изумительным достижением, но первоначальная конструкция оказалась слишком громоздкой, чтобы поместиться внутри стандартного пучка рентгеновских лучей. Более того, стальная опорная система модели NBS блокировала бóльшую их часть. Отличное решение Меррилла и Бассета, проиллюстрированное многочисленными чертежами устройства в публикации престижного журнала Review of Scientific Instruments в 1974 г., состояло в том, чтобы сконструировать миниатюрную версию ячейки с алмазными наковальнями, используя прозрачный для рентгеновских лучей металл бериллий, которым бы заменили стальные ограничивающие пластины[76]76
  Leo Merrill and William A. Bassett, “Miniature Diamond Anvil Pressure Cell for Single Crystal X-Ray Diffraction Studies,” Review of Scientific Instruments 45 (1974): 290–94.


[Закрыть]
. Сжимающую силу ячейки Меррилла – Бассета обеспечивала треугольная рамка с тремя винтами.

Свои первые эксперименты исследователи проводили на кальците, о котором было известно, что он приобретал немного более плотное расположение атомов, названное «кальцит-II» и «кальцит-III», при давлениях, соответственно, 15 000 и 20 000 атм – такие значения характерны для верхней мантии Земли на глубине нескольких десятков километров. Мерриллу и Бассету не удалось расшифровать все детали этих структур, но они заметили небольшие изменения в порядке атомов, которые указывали на более плотные формы с более низкими симметриями кристаллов.

Стремясь опробовать этот новый подход и применить его к своей диссертации, я связался с Биллом Бассетом и попросил его совета. Некоторые ученые отказали бы. Зачем им стимулировать конкуренцию, имея в руках мощный новый метод и такую кучу требующих решения задач, когда не знаешь, за что и хвататься? Но Билл решил помочь. Специально для меня он заказал в своей механической мастерской новую алмазную ячейку, продал ее мне по себестоимости и приехал из Рочестера, штат Нью-Йорк, в Кембридж, штат Массачусетс, чтобы показать, как ею пользоваться.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации