Текст книги "Симфония № 6. Углерод и эволюция почти всего"
Автор книги: Роберт Хейзен
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 22 страниц) [доступный отрывок для чтения: 7 страниц]
Понять по отдельным фрагментам минералогию углерода в мантии и так достаточно тяжело, но это цветочки по сравнению с получением проб с глубин более 2900 км, где проходит граница между мантией и ядром. Давление там поднимается выше 1 млн атм, а температура превышает 3000 °C. Сколько в ядре углерода и какова его природа там – единственная остающаяся нерешенной величайшая загадка при оценке общего содержания углерода на Земле.
Минералогия расплавленного внешнего ядра проста. Там нет кристаллов, так что нет и минералов углерода. Тем не менее нам все равно нужно узнать, сколько углерода могло раствориться в этой зоне железо-никелевого расплава. По крайней мере две линии доказательств указывают на то, что его может быть много – возможно, гораздо больше, чем во всех остальных оболочках планеты, вместе взятых.
Первые ключи к разгадке тайны глубинного углерода появились в новаторском исследовании спокойного и скромного гарвардского геофизика Фрэнсиса Бёрча[88]88
Биографические сведения о Фрэнсисе Бёрче приводятся в издании: Thomas J. Ahrens, Albert Francis Birch, 1903–1992 (Washington, DC: National Academy of Sciences, 1998).
[Закрыть]. Научные открытия Бёрча, возможно, оказались в тени его центральной роли в создании и вводе в действие атомной бомбы, известной под кодовым названием «Малыш». Будучи капитан-лейтенантом Военно-морского флота США во время Второй мировой войны, он руководил сборкой бомбы на острове Тиниан в западной части Тихого океана и погрузкой оружия в Боинг B-29 «Суперкрепость», носящий собственное имя «Энола Гэй».
Когда я ходил на его курс геофизики осенью 1971 г., 68-летний Бёрч казался мне мягким, увлеченным своим делом преподавателем. Он рассказывал обо всех сферах применения геофизики – от исследования слоистой структуры Земли до изучения ее значительного теплового потока и переменного магнитного поля. Если бы он не был таким известным в этой области, т. е. если бы мы до этого уже не прошли по учебной программе закон Бёрча и уравнение состояния Бёрча – Мурнагана, мы бы даже не осознали, насколько большая часть материала курса базируется на его собственных революционных открытиях.
В самой важной своей работе, опубликованной в 1952 г. и остающейся фундаментом геофизического мышления до сегодняшнего дня, Бёрч объединил данные сейсмологии (исследования звуковых волн, проходящих сквозь Землю) и материаловедения[89]89
Francis Birch, “Elasticity and Constitution of the Earth’s Interior,” Journal of Geophysical Research 57 (1952): 227–86.
[Закрыть]. Исследователь понял, что скорость сейсмической волны напрямую связана с плотностью породы, через которую она проходит. Используя свою модель, он описал недра Земли гораздо детальнее и углубленнее, чем было сделано до него. Под тонкой земной корой находится трехслойная мантия со значительными неоднородностями плотности, отмечаемыми на глубинах примерно 410 и 670 км. Это границы, которые отделяют друг от друга верхнюю мантию, слой Голицына и нижнюю мантию. Бёрч предположил, что плотность обогащенных магнием, кремнием и кислородом силикатных минералов, из которых состоят эти слои, последовательно нарастает с глубиной. Десятилетия дальнейших исследований сотен ученых добавили некоторые детали и нюансы, но общая картина, нарисованная Бёрчем, остается верной и поныне.
Гораздо более отчетливая неоднородность, отражающая сильный контраст плотностей, отмечается в основании мантии (граница мантии и ядра) на глубине около 2900 км от поверхности Земли. Ранее ученые в течение долгого времени описывали ядро как плотную, богатую металлом зону с жидким внешним ядром, простирающимся вниз до глубины 5100 км, и меньшим кристаллическим внутренним ядром с радиусом около 1230 км. Бёрч использовал свежие данные о плотности жидкого металлического железа и сплавов при высоких давлениях и температурах, чтобы развить эту точку зрения. Он заметил, что сейсмические скорости в ядре указывали на плотность значительно меньшую, чем у чистого железо-никелевого сплава. Ученый утверждал, что в этом расплавленном слое должен быть по крайней мере один более легкий компонент: атомы железа и никеля внешнего ядра смешаны с 12 % чего-то еще. Может ли оказаться этим недостающим компонентом огромное количество углерода?
Бёрч быстро обнаружил потенциальные «нестыковки» в своей смелой модели недр Земли. В остроумном примечании, которое прославилось не меньше его геофизических открытий, Бёрч отметил[90]90
Из Birch, “Elasticity and Constitution,” 234.
[Закрыть]:
Излишне доверчивым читателям следует обратить внимание на то, что обычные слова, когда их применяешь по отношению к недрам Земли, подвергаются изменению и переходят в формы высокого давления. Вот несколько примеров подобных эквивалентов:
Несмотря на это предупреждение, предсказание Бёрча о наличии легкого элемента в жидком внешнем ядре выдержало все испытания. Но что это может быть за элемент? Экспериментаторы и теоретики, посвятившие себя данной сфере, продолжают биться над этим интригующим вопросом, но он до сих пор остается открытым.
В поисках ответа мы должны следовать трем простым правилам. Во-первых, элемент должен быть значительно легче железа и никеля, так что уран, свинец или золото не подходят. Во-вторых, элемент должен встречаться в изобилии в космосе; это требование исключает из списка подозреваемых легкие литий, бериллий или бор, к примеру. И наконец, в-третьих, элемент должен обладать способностью растворяться в расплавленном металле в экстремальных условиях температуры и давления внешнего ядра. На самом деле только жалкая горстка кандидатов удовлетворяет этим трем основным требованиям: водород, углерод, кислород, кремний и сера – вот единственные реальные претенденты. У каждого свои преимущества и недостатки, у каждого свои сторонники и очернители. Конечно, это не обязательно «или/или». Расплавленный металл способен легко растворить более одного примесного легкого элемента, возможно, даже все пять сразу. (Я лично отдаю предпочтение именно этому всеобщему раствору, поскольку природа, похоже, продвигает сложность.) В любом случае есть убедительное доказательство присутствия углерода в этой смеси.
Очевидными подсказками обеспечивают нас изотопы углерода[91]91
Изотопные свидетельства фракционирования Земли по массе и наличию углерода в ядре рассматриваются в статье: Bernard J. Wood, Jei Li, and Anat Shahar, “Carbon in the Core: Its Influence on the Properties of Core and Mantle,” Reviews in Mineralogy and Geochemistry 75 (2013): 231–50. См. также работу: Anat Shahar et al., “High-Temperature Si Isotope Fractionation between Iron Metal and Silicate,” Geochimica et Cosmochemica Acta 75 (2011): 7688–97.
[Закрыть]. Атомы углерода распространены в двух вариантах – у него два стабильных изотопа. Каждый атом углерода имеет шесть протонов в своем ядре, это определяющая характеристика углерода. Однако количество нейтронов – других кирпичиков атомных ядер – может варьировать. Почти 99 % атомов углерода обладают шестью нейтронами (изотоп углерод-12), а оставшийся 1 % – это углерод-13 с семью нейтронами. У наших каменистых соседей – в частности, у красной планеты Марс и большого астероида Веста – именно такое, научно доказанное соотношение этих изотопов; судя по всему, оно характеризует и большинство других объектов нашей внутренней части Солнечной системы. Но углерод Земли, по крайней мере доступный, находящийся рядом с поверхностью, похоже, слишком «тяжелый», с бóльшим процентным содержанием углерода-13, чем у соседей нашей планеты. Это загадка, которая требует решения.
Самое простое объяснение этой кажущейся аномалии заключается в том, что изотопный состав Земли такой же, как и у других миров, но «недостающий» легкий углерод спрятан от нас, заперт в ядре Земли. Если жидкое внешнее ядро содержит хоть крошечную долю углерода, то во всем ядре легко могло бы поместиться в 100 раз больше шестого элемента, чем известно для земной коры. А сколько всего содержится в Земле углерода? Поразительно, но мы абсолютно несведущи в таком важном вопросе.
Глубочайшие тайныНет почтового назначения на Земле более тайного, более недоступного, чем твердое внутреннее ядро. Находясь на глубине более 5100 км, элементы внутреннего ядра подвержены давлениям выше 3 млн атм и температурам, доходящим до 5000 °C. Десятилетиями общепринятая точка зрения гласила, что внутреннее ядро сложено твердым металлическим железом с небольшой долей никеля. Как и в расплавленном внешнем ядре, один или несколько легких элементов тоже могут играть свои роли – второстепенные, но ведущая партия у железа.
Однако существует проблема, связанная с природой звуковых волн. Сейсмические волны бывают двух разных типов. Более сильные и быстрые, первичные (или «P») волны возникают, когда атомы и молекулы ударяются друг о друга последовательно, подобно костяшкам падающего домино. Движение атомов происходит в том же направлении, что и движение P-волны. Железо и его никельсодержащие сплавы вполне соответствуют регистрируемой скорости P-волн во внутреннем ядре.
Вторичные же (или «S») волны возникают, когда атомы двигаются из стороны в сторону, вызывая аналогичные движения у своих соседей. (Вспомните волну болельщиков на футбольном стадионе, когда люди встают и садятся, т. е. движутся вверх-вниз, а волна идет вдоль трибун.) Движения атомов при этом перпендикулярны движению волны. Удивительно, но S-волны проходят сквозь внутреннее ядро в два раза медленнее, чем должны бы в кристаллическом железе.
Что же происходит? Простое объяснение заключается в том, что внутреннее ядро частично расплавлено – состояние, которое неизменно замедляет S-волны, но железо-никелевый сплав не мог бы плавиться в предполагаемых условиях внутреннего ядра. Джи (Джеки) Ли, профессор геологии в Мичиганском университете, предложила оригинальное экспериментальное объяснение этого расхождения[92]92
Биографические сведения о Джи Ли были получены в ходе бесед и переписки с ней по e-mail в июне 2017 г.
[Закрыть].
Блестящая, увлеченная исследовательница, способная оперативно поддержать вызывающие интерес новые идеи или подметить слабое место в аргументах коллеги плюс всегда готовая улыбнуться тонкой шутке или остроумному высказыванию, Ли – мастер ячейки с алмазными наковальнями. Подобно многим своим ровесникам из материкового Китая, она попала в науку, так как была отличницей.
Ли отучилась на бакалавра в престижном китайском Научно-техническом университете, затем поступила в Гарвард, чтобы получить докторскую степень, специализируясь на физике и химии глубоких недр Земли.
Одно из самых творческих исследований Джи Ли было посвящено углероду во внутреннем ядре Земли[93]93
Bin Chen et al., “Hidden Carbon in Earth’s Inner Core Revealed by Shear Softening in Dense Fe7C3,” Proceedings of the National Academy of Sciences USA 111 (2014): 17755–58.
[Закрыть]. Работая со своим выпускником Бин Ченом (ныне преподавателем Гавайского университета) и группой коллег по Обсерватории глубинного углерода, Ли изучила суперплотное соединение атомов железа и углерода в соотношении 7:3. Ранее исследователи утверждали, что этот необычный карбид железа потенциально может представлять собой минерал самых глубинных зон Земли, поэтому мичиганская команда проверила эту идею, сжав черный порошкообразный образец между алмазами до почти 2 млн атм, чтобы измерить его различные физические свойства. Экстраполируя полученные результаты на условия внутреннего ядра, экспериментаторы обнаружили почти полное соответствие сейсмологическим наблюдениям – прохождение P-волн было таким же, как в чистом железе, а скорость S-волн оказалась гораздо меньше. Это открытие никоим образом не доказывает, что углерод существует во внутреннем ядре Земли в форме карбида железа, но на текущий момент такая гипотеза кажется вполне вероятной.
В дополнительном исследовании, результаты которого были опубликованы несколько месяцев спустя, группа ученых в Германии во главе с аспирантом Клеменсом Прешером в Баварском геологическом институте при Байройтском университете подвергла то же соединение одновременно высокому давлению и высокой температуре и обнаружила необычные эластичные свойства, описанные авторами как «резиновые»[94]94
Clemens Prescher et al., “High Poisson’s Ratio of Earth’s Inner Core Explained by Carbon Alloying,” Nature Geoscience 8 (2015): 220–23.
[Закрыть]. Это нетипичная характеристика для минерала, но она подчеркивает, сколько еще нам придется узнать об углероде, находящемся глубоко внутри нашей планеты.
Наши попытки разгадать тайны земного ядра открывают фундаментальную правду о науке. Мы можем занести в каталог все кристаллические формы углерода Земли – сотни известных минералов коры и множество недостающих видов, плотные карбонаты мантии и манящие намеки на карбиды в ядре. Но такой каталог, каким бы полным он ни был, не самоцель. Все разрастающиеся знания о формах земного углерода ведут к созданию все более живой картины нашего изменчивого планетарного дома: как он появился, как функционирует, какова его дальнейшая судьба и почему он уникален в космосе.
Реприза – Миры углерода
Минералогия Земли уникальна[95]95
Prescher et al., “High Poisson’s Ratio.”
[Закрыть].
Что может углеродная минералогия рассказать нам о нашем земном доме? Особенные ли мы? В нашей собственной Солнечной системе Земля определенно отличается от других планет земной группы и каменистых спутников. На Марсе, некогда теплом и влажном, есть только небольшие и рассредоточенные слои предполагаемых карбонатов. Метеориты тоже бедны углеродсодержащими минералами, да и на Луне, сколь бы тщательно ее ни изучали, обнаружены только микроскопические зерна графита и карбида железа, но ни единого карбонатного минерала. А что насчет более удаленных планет, вращающихся вокруг других звезд?
Одним из множества полезных результатов математических исследований минеральных редкостей, проведенных Гретой Хистад, стало ранжирование всех минеральных видов в соответствии с их вероятностью нахождения на Земле. Поэтому мы задались таким вопросом: если бы мы могли взять другую планету, идентичную Земле во всем (того же размера и массы, того же состава и структуры, с океанами, атмосферой и движением плит), и «воспроизвести» 4,5 млрд лет ее истории и если бы в случае редкостного везения мы бы обнаружили на той далекой планете 5000 минералов, какова вероятность того, что они оказались бы теми же 5000 минеральных видов, которые мы видим сегодня на Земле?
Я подозреваю, что большинство минералогов, если бы им задали этот вопрос, подобно мне ответили бы, что минералогия планеты оказалась бы в основном такой же. Безусловно, присутствовали бы в изобилии все породообразующие минералы – кварц, полевой шпат, пироксен, слюда… Сотни других, менее распространенных минералов, к примеру алмаз, золото, топаз и бирюза, также неизбежно имели бы место. Продолжая рассуждение, я бы предположил, что и почти все редкие минералы тоже встречались бы в любом мире, подобном Земле. Они, конечно, точно так же были бы редкими, но в конечном счете и их бы нашли.
А вот и нет. По расчетам Хистад, это не так. Если заново «проиграть ту же пленку», то на всех планетах, химические и физические характеристики которых подобны земным, вероятно, порядка половины видов – более 2500 минералов – окажутся точно такими же, как на нашей. Еще у 1500 чуть менее распространенных минералов также есть хороший шанс – от 25 до 50 % – совпасть с земными. Но более 1000 самых редких минеральных видов, скорее всего, будут отличаться, причем для многих минералов вероятность появиться в других землеподобных мирах не превышает 10 %.
Вычислить по этим оценкам вероятность того, что две планеты будут иметь идентичную минералогию, было несложно: требовалось просто перемножить индивидуальные вероятности всех 5000 минеральных видов. Результат нас ошарашил. Вероятность несовпадения оказалась буквально астрономической – более 10320 (т. е. единица с 320 нулями)!
Сравните это непостижимое число с оценкой количества планет в космосе. Во Вселенной сотня триллионов галактик, в каждой в среднем 100 млрд звезд, поэтому – с учетом невероятного допущения, что у каждой звезды есть планета, подобная Земле, – при самом благоприятном сценарии получится, что в лучшем случае существует лишь 1025 таких же планет, как наша. Доведем рассуждения до абсурда: вам нужно будет изучить каждую планету в почти 10300 таких вселенных, как наша, чтобы найти ту одну-единственную, которая бы точно повторяла минеральный состав Земли.
Поразительное заключение Хистад было опубликовано в 2015 г. в одном из выпусков журнала Earth and Planetary Science Letters. Оно гласит: «Несмотря на жестко определенные физические, химические и биологические факторы, которые обусловливают бóльшую часть минерального разнообразия нашей планеты, минералогия Земли уникальна для космоса»[96]96
Hystad, “Statistical Analysis of Mineral Diversity.”
[Закрыть].
В основе открытия Хистад лежит глубокий философский аспект – вывод, связанный с вековым спором об относительных ролях случая и неизбежности. Сложные системы, будь то минералы или живые организмы, эволюционируют и по детерминистскому, и по вероятностному пути. С одной стороны, многие проявления природы неизбежны, продиктованы законами физики и химии. Уроните камень – и он упадет, зажгите лист бумаги в насыщенной кислородом атмосфере Земли – и он сгорит. С другой стороны, все сложные системы переживают одиночные события – «замороженные случаи», которыми также определяются эволюционные пути. Противостояние между случаем и неизбежностью усиливается, поскольку в большинстве природных систем не всегда легко различить, что есть что. Почему один редкий минерал образуется, а другой нет? Почему у Земли такой большой спутник? Почему на Земле появилась разумная жизнь? Было это случайностью или неизбежностью?
В минералогии мы теперь можем до поразительно высокой степени снять это противостояние количественным путем. Мы пришли к выводу, что, хотя многие аспекты минералогии Земли детерминированы, случай также играет существенную роль. Наши редкие минералы образуются в результате практически невероятной последовательности химических, физических и биологических процессов. Следовательно, Земля абсолютно и однозначно уникальна в космическом пространстве. Возможно, это и хорошо.
Землеподобные планеты[97]97Этот раздел является адаптацией материала: Robert M. Hazen, “Mineral Fodder,” Aeon, June 24, 2014, https://aeon.co/essays/how-life-made-the-earth-into-a-cosmic-marve.
[Закрыть]
В науке не много тем, привлекающих столько же внимания, сколько открытие и описание планет за пределами Солнечной системы – невидимых миров, расположенных на расстоянии нескольких световых лет от нашего Солнца. В стремлении человечества узнать, одиноки ли мы во Вселенной, астрономы отслеживают едва заметные колебания и периодические уменьшения силы света той или иной далекой звезды, т. е. признаки того, что на ее орбите находится планета, пусть и слишком слабая, чтобы ее можно было увидеть непосредственно в телескоп.
Первыми были открыты далекие гиганты массивнее Юпитера, которые с бешеными скоростями проносятся по орбитам вокруг своих ближайших звезд в течение несколько дней, таким образом вызывая максимально возможные звездные возмущения. Но, когда мы отмечали 20-ю годовщину обнаружения первой планеты вне нашей Солнечной системы, фокус внимания сместился с громадин на миры, более похожие на Землю.
Термин «землеподобные» имеет различный смысл для разных людей. Астрономы фокусируются на трех характеристиках, которые они могут уверенно измерить: это радиус, масса и орбита. Радиусы землеподобия вычисляются на основании максимального уменьшения силы света звезды, когда планета затемняет крошечную ее часть, а массы – исходя из степени звездного колебания, вызываемого гравитационными эффектами. Но этого недостаточно: чтобы планета получила звание землеподобной, ее орбитальные параметры должны соответствовать нахождению в обитаемой зоне – сплющенном в форме пончика пространстве, где жидкая вода может удерживаться на поверхности планеты или рядом с ней. Все больше открытых планет – Kepler-186 f, Kepler-438 b, Kepler-452 b (их определили по данным космического телескопа «Кеплер») – укладывается в рамки этих астрономических ограничений. Как и минимум три из семи планет, вращающихся вокруг небольшой звезды TRAPPIST-1, что всего в 40 световых годах от Солнца. Почти каждый месяц заголовки в СМИ возвещают об обнаружении «самой землеподобной планеты».
Но обычно в этих легкомысленных статьях даже не упоминается, что одни только радиус, масса и орбита довольно плохие индикаторы потенциальных планетарных близнецов Земли. Чего здесь не хватает, так это химии. Видимые световые спектры далеких звезд – сведения, которые легко получить посредством современных телескопов, – показывают, что звезды сильно различаются по своему химическому составу. В некоторых звездах намного больше или намного меньше магния, или железа, или углерода, чем в нашем Солнце. И вероятно, эти важные различия в составе звезд в значительной степени отражаются и на составе их компаньонов-планет, потому что они формируются из тех же протопланетных дисков.
Химический состав планет имеет значение. Недавние исследования минералогов и геохимиков указывают на то, что даже небольшие отклонения в нем могут сделать планету непригодной для жизни. Если будет слишком много магния, не запустится движение плит – главный локомотив круговорота необходимых для жизни питательных веществ. Если не хватит железа – не сформируется магнитное поле, защищающее жизнь от смертоносных космических лучей. При недостаточном количестве воды, или углерода, или азота, или фосфора не зародится жизнь в той форме, которую мы знаем.
Так что – каковы наши шансы найти другую Землю? Поскольку ключевых химических элементов набирается более десятка да плюс еще множество менее значимых, вероятность воспроизвести все основные параметры химического состава мала: разве что одна из 100 или, может быть, даже из 1000 землеподобных планет будет похожа по составу на Землю. Тем не менее при осторожной оценке количества подобных Земле по радиусу, массе и орбите планет в 1020, должно существовать бесчисленное множество таких миров, как наш.
Это осознание может привести нас в замешательство. Найти планетарных соседей, похожих на нас, землян, – это вполне человеческое желание, аналогичное тому, как мы ищем друзей и любимых, которые разделяют наши вкусы, политические взгляды и религиозные убеждения. Но наткнуться на кого-то, кто подобен нам во всех отношениях – одевается так же, имеет ту же профессию и хобби, использует точно такие же характерные фразы и язык жестов, – было бы немного жутковато. Ровно так же, мне кажется, нас несколько выведет из равновесия обнаружение планеты-клона, неотличимой от Земли.
Но не нужно волноваться, этого не произойдет. Поэтому, находясь в смелом поиске все более подобных нашему дому планет, мы можем быть абсолютно уверены, что есть только одна планета, поистине идентичная Земле.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?