Электронная библиотека » Сергей Бабичев » » онлайн чтение - страница 21


  • Текст добавлен: 27 января 2017, 19:30


Автор книги: Сергей Бабичев


Жанр: Биология, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 21 (всего у книги 85 страниц) [доступный отрывок для чтения: 28 страниц]

Шрифт:
- 100% +

Их резистентность, как и резистентность к бензилпенициллину, оказалась связанной с образованием ферментов, разрушающих бета-лактамное кольцо, – бета-лактамаз. Следующим шагом на пути преодоления устойчивости к пенициллиновым антибиотикам стало получение антибиотиков цефалоспоринов, продуцентами которых служат грибы рода Cephalosporium. Цефалоспорины по биологическим свойствам и химическому строению принадлежат к пенициллинам, но несколько отличаются от них. Ядро молекулы цефалоспоринов составляет 7-аминоцефалоспорановая кислота, которая послужила основой для получения новых препаратов цефалоспоринов (рис. 57). Они, в отличие от пенициллинов, обладают значительно меньшей аллергической активностью и более широким спектром действия, подавляют развитие как грамположительных (в том числе устойчивых к пенициллинам), так и грамотрицательных бактерий.

Например, цефтриаксон – цефалоспорин третьего поколения – устойчив к беталактамазам, имеет широкий спектр действия – подавляет грамположительные и грамотрицательные бактерии, аэробные и некоторые анаэробные. Но и к цефалоспоринам появились резистентные штаммы бактерий, обладающие бета-лактамазами, способными разрушать молекулу цефалоспорина. Бета-лактамазы – один из главных факторов устойчивости к бета-лактамным антибиотикам большинства бактерий. Существуют различные классы бета-лактамаз, продуцируемых разными видами бактерий и отличающихся друг от друга по специфичности действия в отношении различных пенициллинов и цефалоспоринов. При этом инактивация последних происходит либо вне клетки, либо внутри ее. Бета-лактамазы гидролизуют пенициллины и цефалоспорины, в результате чего они не успевают проявить свое антимикробное действие. Гены, контролирующие синтез бета-лактамаз, могут быть хромосомными или плазмидными. Бета-лактамазы хромосомного происхождения могут быть конститутивными или индуцибельными.


Рис. 57. 7-Аминоцефалоспорановая кислота (7-АЦК)


Рис. 58. Клавулановая кислота


Для преодоления устойчивости к бета-лактамным антибиотикам использован принципиально новый подход. Он заключается в поиске таких антибиотиков, которые бы разрушали бета-лактамазу. Наиболее мощным ингибитором бета-лактамаз 2 – 5-го классов оказалась клавулановая кислота (рис. 58).

Ее продуцентом является один из видов Streptomyces. Подобно пенициллинам и цефалоспоринам, клавулановая кислота содержит бета-лактамное кольцо, но сама по себе – слабый антибиотик. Зато ее молекула способна проникать в активный центр беталактамазы и вызывать реакции, в результате которых молекула бета-лактамазы ацилируется, и фермент утрачивает свою активность.

На основе амоксициллина – пенициллина широкого спектра действия – и клавулановой кислоты (ингибитора бета-лактамазы) синтезирован комбинированный антибиотик – аугментин. Использование амоксициллина, а не ампициллина, обусловлено тем, что амоксициллин обладает более сильным бактерицидным действием и лучше проникает в ткани и жидкости организма. Резистентные к амоксициллину бактерии также являются чувствительными к аугментину. По своей антибактериальной активности аугментин превосходит большинство антибиотиков широкого спектра. Он активен в отношении грамположительных и грамотрицательных, аэробных и анаэробных бактерий, в том числе и тех, которые вырабатывают беталактамазу. Поэтому он незаменим при инфекциях, где имеется ассоциация разных возбудителей, например при различных гнойно-воспалительных заболеваниях, септицемиях, в случае смешанных аэробно-анаэробных инфекций, а также для эмпирического лечения в тех случаях, когда возбудитель болезни еще не установлен.

Другим примером комбинированного препарата является сулациллин, который состоит из сульбактама – ингибитора бета-лактамаз грамположительных и грамотрицательных бактерий – и ампициллина.

Таким образом, арсенал бета-лактамных антибиотиков по мере появления резистентных к ним форм бактерий пополняется все новыми и новыми препаратами.

Основные группы антибиотиков

По направленности (или объекту) действия все антибиотики можно разделить на следующие основные группы:

1) противобактериальные препараты;

2) противогрибковые препараты;

3) противовирусные препараты;

4) противоопухолевые антибиотики.

Некоторые авторы относят к антибиотикам не только те химические вещества, которые синтезируются микроорганизмами, но и неприродные соединения, синтезируемые химическими способами, полагая, что дело не столько в происхождении препарата, сколько в его антимикробной активности и полезности для человека.

Противобактериальные антибиотики

Наиболее обширную группу составляют антибактериальные препараты. К ним относятся:

1. Бета-лактамные антибиотики, включающие природные пенициллины, несколько поколений полусинтетических пенициллинов (метициллин, оксациллин, ампициллин, аугментин, карбенициллин, амоксициллин, сулациллин и др.), несколько поколений цефалоспоринов (цефалоридин, цефаметин, цефиксим, цефетамин, цефтриаксон, цефоперазон и др.), нетрадиционные бета-лактамы (карба– и оксапенемы; карба– и оксацефемы и др.). Всего группа бета-лактамных антибиотиков включает в себя около 100 препаратов, активных против многих грамположительных и грамотрицательных, аэробных и анаэробных бактерий.

2. Стрептомицины и стрептомициноподобные антибиотики, активные против возбудителей туберкулеза, особо опасных инфекций и ряда грамотрицательных бактерий.

3. Макролиды – антибиотики, содержащие в своем составе макроциклическое лактонное кольцо, связанное с углеводными остатками. К этой группе относятся эритромицин, олеандомицин, карбомицин. Макролиды активны в отношении грамположительных бактерий (стафилококки, стрептококки и др.), а также в отношении некоторых грамотрицательных бактерий (бруцеллы, холерный вибрион, риккетсии и др.).

4. Аминогликозиды – антибиотики олигосахаридной или псевдоолигосахаридной природы: гентамицин, неомицин, канамицин, мономицин, а также тобрамицин, амикацин, сизомицин, нетилмицин. Гентамицин обладает широким спектром действия, подавляет рост многих грамположительных и грамотрицательных бактерий, высокоактивен против псевдомонад, протея. Антимикробные спектры мономицина, неомицина и канамицина близки к спектру гентамицина, но они уступают ему по активности.

5. Тетрациклины. Основой молекулы этих антибиотиков является полифункциональное соединение – тетрациклин. К этой группе относятся антибиотики с широким спектром действия, активные против многих грамположительных и грамотрицательных бактерий: хлортетрациклин, окситетрациклин, тетрациклин и их производные.

6. Гликопептиды – высокомолекулярные соединения, содержащие углеводы и аминокислоты: ванкомицин, ристомицин, линкомицин, клиндамицин, эремомицин и др. Действуют на многие грамположительные кокки и палочки, неактивны в отношении грамотрицательных бактерий. Ванкомицин применяют для лечения псевдомембранозного колита, вызванного Clostridium difficile. Этот колит часто возникает на фоне применения антибиотиков – антибиотикоассоциированный колит. Для его лечения хорош также эремомицин.

7. Хлорамфеникол (левомицетин) также является антибиотиком широкого спектра действия, активен в отношении многих видов грамотрицательных, включая риккетсии и спирохеты, и грамположительных бактерий. Большинство штаммов бактерий, устойчивых к пенициллинам, стрептомицинам и другим антибиотикам, сохраняет чувствительность к левомицетину.

8. Противотуберкулезные антибиотики. Как уже отмечалось, противотуберкулезной активностью обладают производные парааминосалициловой кислоты (препараты ПАСК), изоникотиновой кислоты (изониазиды), а также стрептомицин и его производные. Они составляют препараты первого ряда. К противотуберкулезным препаратам второго ряда относятся флоримицин, циклосерин и рифампицины. К рифампицинам высоко чувствительны также стафилококки, стрептококки, грамотрицательные кокки, многие не образующие спор анаэробы, сальмонеллы, возбудители особо опасных инфекций и другие бактерии – внутриклеточные паразиты.

9. Фосфомицины – антибиотики из группы фосфоновой кислоты. Фосфомицин обладает сильным бактерицидным действием на грамотрицательные бактерии (Escherichia, Proteus, Pseudomonas, Serratia, Salmonella, Shigella и другие роды).

10. Неприродные соединения – фторхинолоны. В клинике уже применяют около десяти фторхинолоновых препаратов (ципрофлоксацин, нефлоксацин, офлоксацин, ципробан и др.). Они обладают бактерицидным действием на многие грамотрицательные бактерии, в том числе на возбудителей самых тяжелых заболеваний. По своей эффективности фторхинолоны не уступают цефалоспоринам 3-го и 4-го поколений.

Пять групп антибиотиков обладают наиболее широким спектром антимикробного действия: бета-лактамы, фторхинолоны, аминогликозиды, тетрациклины и хлорамфеникол.

К препаратам, обладающим противогрибковым действием, относятся леворин, нистатин, амфотерицин В и некоторые другие полиеновые (содержащие сопряженные двойные связи) антибиотики, а также гризеофульвин, низорал, 5-фторцитозин (флуцитозин) – препараты группы имидазолов.

Противовирусные препараты

К этой группе относятся прежде всего интерфероны. Они активны против ДНКи РНК-содержащих вирусов. Других препаратов, которые бы обладали широким противовирусным действием, пока не найдено. В связи с этим все бo^льшая роль придается синтетическим индукторам эндогенных интерферонов. Наиболее активны два из них – амиксин и арбидол. Синтезированы также препараты, обладающие прямым антивирусным действием, – альгирем (римантадин), ацикловир, азидотимидин и др. Жизненный цикл вирусов настолько тесно связан с жизнью клетки, что найти или синтезировать такое химическое вещество, которое бы избирательно действовало только на вирус и не влияло на жизнь клетки-хозяина, оказалось значительно труднее. Однако поиски таких препаратов интенсивно ведутся.

Противоопухолевые антибиотики

Исследованы тысячи образцов антибиотиков для выявления таких, которые бы обладали высокой противоопухолевой эффективностью. Однако для клинического использования пока допущено всего лишь несколько антибиотиков: из группы антрациклинов – доксорубицин (адриамицин), акларубицин и рубомицин (даунорубицин); из группы актиномицинов – актиномицины С и Д; из группы ауреоловой кислоты – оливомицин; из группы стрептонигрина – брунеомицин.

Механизм действия антибиотиков

Всем антибиотикам свойственна избирательность действия. Их относительная безвредность для человека определяется прежде всего тем, что они специфически подавляют такие метаболические процессы в микробной клетке или у вируса, которые отсутствуют в эукариотной клетке или не доступны для них. В этом отношении уникален механизм действия бета-лактамных антибиотиков. Мишенями для них являются транспептидазы, которые завершают синтез пептидогликана клеточной стенки. Поскольку клеточная стенка есть только у прокариот, в эукариотной клетке нет мишеней для бета-лактамных антибиотиков. Транспептидазы представляют собой набор белков-ферментов, локализованных в цитоплазматической мембране бактериальной клетки. Отдельные бета-лактамы различаются по степени сродства к тому или иному ферменту, которые получили название пенициллинсвязывающих белков. Поэтому биологический эффект бета-лактамных антибиотиков различен – от бактериостатического до бактерицидного, литического.

Кроме бета-лактамных антибиотиков, синтез клеточной стенки нарушают такие антибиотики, как бацитрацин, фосфомицин, циклосерин, ванкомицин, ристомицин, однако иным путем, чем пенициллин. Все они, кроме циклосерина, вызывают бактерицидный эффект.

Механизм действия таких антибиотиков, как хлорамфеникол, тетрациклины, стрептомицин, аминогликозиды, эритромицин, олеандомицин, спирамицин и другие макролиды, линкозамиды, фузидиевая кислота, пуромицин, связан с угнетением синтеза белка на уровне рибосом 70S. Хотя бактериальные рибосомы 70S имеют такую же в принципе структуру, как рибосомы 80S эукариотных клеток, их белки и белковые факторы, участвующие в работе белоксинтезирующей системы, отличаются от таковых рибосом 80S. Этим и объясняется избирательность действия указанных антибиотиков на белковый синтез бактерий.

Антибиотики по-разному блокируют синтез белка. Тетрациклины блокируют связывание аа-тРНК на А-участке рибосомы 70S. Хлорамфеникол подавляет пептидилтрансферазную реакцию. Стрептомицины препятствуют превращению инициаторного комплекса в функционально активную рибосому. Эритромицин блокирует реакцию транслокации. Пуромицин, присоединяясь к растущему концу синтезируемой полипептидной цепи, вызывает преждевременное отделение ее от рибосомы. Механизм действия фторхинолонов связан с избирательным подавлением ими бактериальных ферментов ДНК-гираз, участвующих в репликации ДНК. Фторхинолоны связываются со специфическими участками ДНК, которые создаются под воздействием ДНК-гиразы, и подавляют ее активность.

Рифампицины угнетают активность ДНК-зависимых РНК-полимераз, вследствие чего у бактерий подавляются процессы транскрипции.

Активность противоопухолевых антибиотиков связана с тем, что они либо подавляют синтез ДНК (брунеомицин), либо подавляют активность ДНК в системе ДНК-зависимой РНК-полимеразы, т. е. блокируют транскрипцию (антрациклины, актиномицины, оливомицин).

Лекарственная устойчивость бактерий

Существуют два типа лекарственной устойчивости бактерий: естественная, или природная, и приобретенная.

Естественная лекарственная устойчивость является видовым признаком. Она присуща всем представителям данного вида и не зависит от первичного контакта (контактов) с данным антибиотиком, в ее основе нет никаких специфических механизмов. Чаще всего эта резистентность связана с недоступностью мишеней для данного антибиотика, обусловленной очень слабой проницаемостью клеточной стенки и цитоплазматической мембраны, или какими-либо другими причинами. Если низкая проницаемость свойственна нескольким антибиотикам, то она будет обусловливать полирезистентность таких бактерий.

Приобретенная лекарственная устойчивость возникает у отдельных представителей данного вида бактерий только в результате изменения их генома. Возможны два варианта генетических изменений. Один из них связан с мутациями в тех или иных генах бактериальной хромосомы, вследствие которых продукт атакуемого гена перестает быть мишенью для данного антибиотика. Это происходит либо вследствие изменения структуры белка, либо потому, что он становится недоступным для антибиотика.

В другом случае бактерии становятся устойчивыми к антибиотику или даже сразу к нескольким антибиотикам благодаря приобретению дополнительных генов, носителями которых являются R-плазмиды. Никаких других механизмов приобретенной лекарственной устойчивости не существует. Однако, приобретая устойчивость к антибиотику, а тем более сразу к нескольким антибиотикам, такие бактерии получают наивыгоднейшие преимущества: благодаря селективному давлению антибиотиков происходит вытеснение чувствительных к ним штаммов данного вида, а антибиотикоустойчивые варианты выживают и начинают играть главную роль в эпидемиологии данного заболевания. Именно они и становятся источниками формирования тех клонов бактерий, которые обеспечивают эпидемическое распространение возбудителя. Решающую роль в распространении лекарственной устойчивости, в том числе множественной, играют R-плазмиды благодаря способности их к самопереносу.

Биохимические основы антибиотикорезистентности

Можно выделить следующие пять биохимических механизмов формирования резистентности:

1. Разрушение молекулы антибиотика. Такой механизм лежит главным образом в основе формирования устойчивости к бета-лактамным антибиотикам. Бета-лактамазы, разрушая структуру пенициллинов и цефалоспоринов, обеспечивают устойчивость к ним бактерий.

2. Модификация структуры молекулы антибиотика, в результате которой утрачивается ее биологическая активность. Гены, содержащиеся в R-плазмидах, кодируют белки, которые вызывают различные модификации молекул антибиотика путем их ацетилирования, фосфорилирования или аденилирования. Именно таким путем инактивируются аминогликозиды, макролиды, хлорамфеникол, клиндамицин и другие антибиотики. Существуют целые семейства генов, определяющих инактивацию того или иного антибиотика даже по одному из указанных выше механизмов. Например, среди клинических штаммов грамположительных и грамотрицательных бактерий обнаружены различные изоферменты аминогликозидфосфо-, – ацетил– и – аденилтрансфераз, обеспечивающие устойчивость бактерий к различным спектрам аминогликозидных антибиотиков.

3. Изменение структуры чувствительных к действию антибиотиков мишеней. Изменение структуры белков рибосом 70S лежит в основе устойчивости к стрептомицину, аминогликозидам, макролидам, тетрациклинам и другим антибиотикам. Изменение структуры бактериальных гираз в результате мутации приводит к формированию устойчивости к хинолонам; РНК-полимераз – к рифампицину; пенициллинсвязывающих белков (транспептидаз) – к бета-лактамам и т. п.

4. Образование бактериями «обходного» пути метаболизма для биосинтеза белка-мишени, который оказывается нечувствительным к данному химиопрепарату, – механизм, который лежит в основе резистентности к сульфаниламидным препаратам. 5. Формирование механизма активного выведения из клетки антибиотика, в результате чего он не успевает достичь своей мишени (один из вариантов устойчивости к тетрациклинам).

Необычный механизм устойчивости к изониазиду обнаружен у Mycobacterium tuberculosis. Действие изониазида на туберкулезную палочку зависит от наличия у последней плазмиды, в составе которой имеется особый ген. Продукт этого гена превращает неактивный изониазид в активную форму, которая разрушает бактериальную клетку. Утрата этого гена обусловливает устойчивость M. tuberculosis к изониазиду.

В некоторых случаях инактивацию антибиотиков, которая лежит в основе резистентности к ним, бактерии могут осуществлять разными механизмами. Так, например, существует три механизма, ответственных за формирование устойчивости к бета-лактамным антибиотикам: слабая проницаемость наружной мембраны клеточной стенки грамотрицательных бактерий, обеспечивающая природную устойчивость; изменение структуры пенициллинсвязывающих белков в результате мутаций, которое приводит к утрате их сродства к антибиотику; продукция бета-лактамаз, разрушающих антибиотик. Существует три типа устойчивости и к тетрациклинам: 1) устойчивость, определяемая выносом тетрациклина из клетки белком цитоплазматической мембраны; 2) устойчивость, определяемая изменением структуры белка-мишени рибосом; 3) устойчивость, определяемая модификацией тетрациклина в неактивную форму.

Возможно, у бактерий существуют и другие механизмы формирования устойчивости к лекарственным препаратам.

Таким образом, в ответ на мощный натиск, который предпринял человек на бактерии с помощью антибиотиков, они ответили уникальными биологическими реакциями, сила которых не уступает силе атаки. На каждый новый антибиотик бактерии давали адекватный ответ: появлялись резистентные к нему штаммы, которые и сводили на нет биологическую активность этого препарата. Так было и так будет всегда. С этим нельзя не считаться и этого нельзя не учитывать. Поэтому следует постоянно искать пути преодоления этого препятствия, ибо пока существуют инфекционные болезни, их надо уметь эффективно лечить. Пути преодоления устойчивости к лекарственным препаратам будут рассмотрены ниже.

Возникает вопрос: каковы возможности и пути образования лекарственной устойчивости у бактерий? Поскольку они формируются только на генетическом уровне, то возникает и другой вопрос: откуда появляются новые гены лекарственной устойчивости? Устойчивость, возникающая как следствие мутации, объяснима и понятна, но не она играет основную роль. Основная роль принадлежит генам, которые содержатся в R-плазмидах, а они ведь не могут возникать сразу, de novo. Следовательно, в природе должен существовать своеобразный фонд генов лекарственной устойчивости, откуда бактерии могут постоянно «захватывать» те гены, которые необходимы для них в данной ситуации. Наиболее вероятно, что такой фонд образуется за счет генов, имеющихся у продуцентов антибиотиков. Каждый из них защищен от синтезируемого им антибиотика. Эта самозащита контролируется соответствующим геном. Следовательно, сколько бы ни было в природе антибиотиков, против каждого из них должен быть и ген самозащиты, ген устойчивости к этому антибиотику. В природе, особенно в почве, а также в кишечнике человека и животных, микроорганизмы сосуществуют в столь тесных взаимоотношениях, что это обеспечивает им постоянную возможность обмена генетическим материалом с помощью различных механизмов, в том числе с помощью конъюгации. Поскольку многие гены лекарственной устойчивости несут в себе транспонируемые элементы, это обеспечивает им высокую мобильность. Они могут перемещаться внутри хромосомы, переходить из хромосом в плазмиды, формировать новые варианты плазмид и подвергаться другим превращениям. Таким образом, обмен генами лекарственной устойчивости между микроорганизмами в естественных условиях, очевидно, вполне возможен. Решающую роль в их распространении среди возбудителей инфекционных заболеваний человека и животных начинает играть уже сам антибиотик. Опыт показывает, что раньше всего гены лекарственной устойчивости к каждому новому антибиотику появляются у клинических штаммов, а затем начинается их дальнейшая циркуляция в природе. Обладая определенной мобильностью, эти гены сами подвергаются модификации, мутациям, а в результате образуют группы, семейства генов, определяющих устойчивость к различным вариантам модифицированного антибиотика. Хотя многое еще придется изучить в этом плане, но общая тенденция и масштабы развития у бактерий лекарственной устойчивости уже вполне объяснимы.

Каковы же возможные перспективы поиска новых антибиотиков, иначе говоря, какими новыми свойствами должны обладать новые антибиотики, чтобы преодолеть известные у бактерий механизмы защиты от них?

Желателен поиск таких антибиотиков, которые бы:

1) имели иную молекулярную структуру и иные мишени в бактериальной клетке, отсутствующие (или, по крайней мере, хорошо защищенные от данного антибиотика) в эукариотной клетке;

2) обладали новым механизмом транспорта в бактериальную клетку;

3) были бы нечувствительны к защитным ферментам и не индуцировали бы их синтез;

4) отвечали бы всем остальным требованиям, предъявляемым к антибиотикам.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | Следующая
  • 1 Оценок: 1

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации