Электронная библиотека » Сергей Бабичев » » онлайн чтение - страница 24


  • Текст добавлен: 27 января 2017, 19:30


Автор книги: Сергей Бабичев


Жанр: Биология, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 24 (всего у книги 85 страниц) [доступный отрывок для чтения: 28 страниц]

Шрифт:
- 100% +
Глава 25
Система макрофагов и формирование видового иммунитета

Одним из мощных факторов резистентности является фагоцитоз. И. И. Мечников установил, что фагоцитарными свойствами обладают зернистые лейкоциты крови и лимфы, главным образом полиморфно-ядерные нейтрофилы (микрофаги), а также моноциты и различные клетки ретикулоэндотелиальной системы, которые он назвал макрофагами. В настоящее время под макрофагами понимают клетки, которые обладают высокой фагоцитарной активностью. Они различаются по форме и размерам, в зависимости от тканей, где они обнаруживаются. По классификации ВОЗ (1972), все макрофаги объединены в систему мононуклеарных фагоцитов (табл. 8).

К этой системе относятся клетки, которые имеют костно-мозговое происхождение, обладают активной подвижностью, способны осуществлять фагоцитоз и прилипают к стеклу. Образование макрофагов происходит через следующие этапы: стволовая клетка → монобласт → промоноцит → моноцит костного мозга → моноцит периферической крови → тканевой макрофаг. В кровь из костного мозга клетки поступают на стадии промоноцитов и моноцитов и циркулируют в ней около 36 ч.


Таблица 8

Система мононуклеарных фагоцитов (СМФ)


Процесс фагоцитоза складывается из следующих этапов: продвижение фагоцита к объекту фагоцитоза, например к бактериальной клетке; прилипание бактерии к фагоциту; поглощение бактериальной клетки; исход фагоцитоза. Энергия, необходимая для поглощения макрофагами чужеродных частиц, обеспечивается благодаря гликолизу. Агенты, угнетающие гликолиз, резко подавляют фагоцитоз. Возможны три исхода фагоцитоза: 1) полное внутриклеточное переваривание микробных клеток – завершенный фагоцитоз; 2) приживление и активное размножение бактерий внутри фагоцита – незавершенный фагоцитоз (рис. 60); 3) выталкивание микробов из фагоцитов обратно в окружающую среду. Незавершенный фагоцитоз часто наблюдается при вяло и длительно протекающих инфекционных болезнях и служит одной из причин хрониосепсиса. Еще И. И. Мечниковым было установлено, что во время фагоцитоза происходит резкий сдвиг рН внутри фагоцита в кислую сторону, вероятно, вследствие гликолиза. Предполагалось, что ацидоз и является непосредственной причиной гибели фагоцитированных микробов, а их переваривание осуществляется под влиянием ферментов цитоплазмы. Однако в последующем было выяснено, что механизм уничтожения фагоцитированных бактерий (бактерицидного действия фагоцитов) заключается в следующем.

В процессе фагоцитоза происходит «дыхательный», или «окислительный», взрыв, который приводит к образованию активных форм кислорода: супероксидного аниона (O2-), перекиси водорода (H2O2) и радикала гидроксила (OH-), которые и обусловливают бактерицидный эффект. Убитые клетки далее подвергаются действию ферментов лизосом.


Рис. 60. Незавершенный фагоцитоз.

Neisseria gonorrhoeae


Макрофагам принадлежит исключительно важная роль в обеспечении защитных реакций. Основные функции, посредством которых они выполняют эту роль, могут быть разделены на четыре типа:

1. Хемотаксис.

2. Фагоцитоз.

3. Секреция биологически активных соединений.

4. Переработка антигена (процессинг) и представление его с участием белков MHC класса II иммунокомпетентным клеткам, принимающим участие в формировании иммунного ответа (кратко – процессинг и представление, или презентация антигена).

Таким образом, фагоцитоз – это не просто уничтожение чужеродного объекта, но и представление антигена для запуска цепи иммунных реакций, приводящих к формированию иммунитета. Функция фагоцитоза является центральной, поскольку она запускает секрецию обширного круга биологически активных веществ широкого спектра действия, в том числе медиаторов иммунного ответа, реакции воспаления, а также обеспечивает процессинг и представление антигена. Для осуществления своих функций макрофаги подвергаются активации. Она представляет собой серию взаимосвязанных структурных и биохимических изменений, результатом которых является повышение активности макрофагов, в частности готовность их к осуществлению «окислительного взрыва» и мобилизации других функций. «Окислительный взрыв» осуществляется при участии мембраносвязанных комплексов НАДФН-оксидаз, которые накапливаются во время прайминга (промежуточная стадия активации) и находятся в потенциально активном состоянии. При следующей за праймингом стимуляции эта система активируется и вызывает «окислительный взрыв». Активированные макрофаги синтезируют и секретируют целый комплекс биологически активных соединений (более 50), не имея себе равных среди других типов клеток организма. Среди секретируемых макрофагами веществ особенно важную роль играют простагландины (англ. prostate gland – предстательная железа, из ткани которой они были впервые выделены) – продукты превращения С20-три-, С20-тетра– и С20-пентаеновых жирных кислот, входящих в состав внутриклеточных фосфоацилглицеролов. Фагоцитоз стимулирует синтез и секрецию различных простагландинов: ПГ-Е1, ПГ-Е2, ПГ-Ф2α, в меньшем количестве ПГ-Д2 и пр. Наиболее активным является ПГ-Е2. Секретируемые макрофагами продукты, особенно простагландины, с одной стороны, выступают в роли медиаторов воспаления и иммунного ответа, а с другой – контролируют активность самих макрофагов по типу положительной и отрицательной обратной связи, благодаря чему осуществляется тонкая саморегуляция системы макрофагов. Макрофаги синтезируют также некоторые компоненты системы комплемента: C1q, C2, C3, C4, C5, факторы B, D, F, ингибиторы – факторы I, H; CI-инактиватор. Следовательно, между макрофагами и системой комплемента существуют взаимосвязь и взаимодействие.

Принято различать следующие формы макрофагов:

1) резидентные макрофаги – популяция макрофагов в определенных анатомических областях без какой-либо индукции (еще не активированные);

2) макрофаги воспалительного экссудата – клетки из пула моноцитов крови, мобилизованные (рекрутированные) к очагу воспаления;

3) индуцированные макрофаги – клетки, мобилизованные под влиянием экспериментального воздействия с целью изучения фагоцитарных свойств;

4) активированные макрофаги – клетки, готовые в полной мере осуществлять свои функции в иммунном процессе.

Условно различают два пути стимуляции макрофагов: первый опосредуется факторами иммунного ответа – антителами, различными цитокинами, комплементом и иными; второй – микробными и другими чужеродными агентами, а также продуктами распада клеток, ткани и т. п. Макрофаги активируются с помощью имеющегося на их мембране большого количества рецепторов для разных стимуляторов. Активированные макрофаги увеличиваются в размерах, обогащаются лизосомами, у них усиливаются адгезивные свойства. Одним из характерных признаков активированных макрофагов является их способность синтезировать фактор некроза опухолей (ФНО). К числу функций макрофагов следует отнести также их способность регулировать рост и пролиферацию нормальных и трансформируемых клеток. Проявление этой функции зависит от степени активации макрофагов, спектров секретируемых ими продуктов и ряда других обстоятельств.

Помимо клеток СМФ способностью к фагоцитозу (а также к процессингу и представлению антигена) обладают нейтрофилы. Сегментированную структуру их ядра и краткость жизни объясняют тем, что у них включена одна из программ апоптоза. Нейтрофилы в своих гранулах синтезируют, а затем секретируют широкий набор биологически активных веществ, с помощью которых взаимодействуют с клетками иммунной системы, в том числе с макрофагами, а они, с помощью цитокинов, – с нейтрофилами. Одним из самых важных для них является ИЛ-8. Он вызывает у нейтрофилов дегрануляцию, «окислительный взрыв» при фагоцитозе и другие реакции. Функции нейтрофилов тесно связаны с регуляцией тканевого метаболизма и с каскадом воспалительных реакций.

Система макрофагов – один из главных защитных механизмов не только естественной резистентности (видового иммунитета), но и приобретенного иммунитета. Подвергая процессингу антиген и представляя его другим иммунокомпетентным клеткам, макрофаги индуцируют синтез специфических антител и клеток иммунной памяти. Синтезированные антитела, взаимодействуя с данным антигеном, делают его более доступным и для системы комплемента, и для самих макрофагов. Их фагоцитоз становится более эффективным, антигенспецифичным; активность макрофагов стимулируется антителами против определенного возбудителя, и видовой иммунитет дополняется приобретенным.

Глава 26
Система комплемента и формирование видового иммунитета

Свежая сыворотка крови, как это было установлено Г. Наталлом в 1888 г., обладает отчетливой бактерицидной активностью в отношении многих видов бактерий. Бактерицидный эффект зависит от наличия в ней ряда веществ, но главным образом от присутствия антител и особенно фактора, содержание которого, в отличие от антител, не связано со специфическим иммунным ответом, а его количество в крови не увеличивается при иммунизации. Ж. Борде назвал этот фактор алексином (лат. alexo – защищаю), а П. Эрлих – комплементом (лат. complementum – дополнение). Последнее название сейчас стало общепринятым. Комплемент является нормальной составной частью сыворотки крови. Он обладает относительно слабой видовой специфичностью, его активность у различных животных варьирует и является функцией количественного содержания различных компонентов системы комплемента в данной сыворотке.

Изучение природы и механизма действия комплемента показало, что он состоит из различных белковых компонентов, отличающихся друг от друга по ряду признаков. В связи с этим, термином «комплемент» обозначают целый комплекс иммунной системы. Комплемент – большая группа взаимодействующих между собой белков и гликопротеидов сыворотки крови, имеющихся у всех позвоночных. На их долю приходится около 10 % общего количества белков сыворотки. Компоненты системы комплемента опосредуют процессы воспаления, опсонизируют чужеродные материалы для их последующего фагоцитоза и участвуют наряду с макрофагами в непосредственном уничтожении микроорганизмов и различных других клеток. Системы макрофагов и комплемента тесно взаимодействуют между собой и с другими компонентами иммунной системы. Комплемент представляет собой особую многокомпонентную систему, которая активируется с помощью механизмов ограниченного протеолиза. К настоящему времени обнаружены и изучены следующие факторы этой системы.

1. Девять белков, составляющих собственно комплемент и обозначаемых поэтому буквой С: С1…С9, причем С1-компонент состоит из трех белковых субъединиц (C1q, C1r, C1s), все остальные представляют собой единичные белковые молекулы. В составе молекулы C1q имеется рецептор для связывания с Fc-фрагментом молекулы антитела. Антитела, относящиеся к иммуноглобулинам различных классов, взаимодействуют с комплементами с различной степенью активности. Белки С5, С6, С7, С8 и С9 участвуют в организации мембрано-атакующего комплекса.

2. Регуляторные белки: С1Е1, C4bp, фактор Н (глобулин β1Н), фактор I (инактиватор C3b/C4b), белок S.

3. Факторы, участвующие в альтернативном пути активации системы комплемента: фактор В (протеиназа), фактор D (гликопротеин), фактор Р (пропердин) – γ-глобулин, его обнаружил в 1954 г. Л. Пиллемер. Этот белок, образуя комплекс с эндотоксином, в присутствии ионов Mg2+ разрушает С3, поэтому был назван пропердином (лат. pro и perdere – подготовлять разрушение). Пропердин стабилизирует С3-конвертазу альтернативного пути. Характеристика основных компонентов системы комплемента дана в табл. 9.

Ни одна другая система крови, пожалуй, не имеет такого разнообразия специфических рецепторов, активаторов и ингибиторов, как система комплемента. Наличие такого рецепторного аппарата, а также мембранных и внемембранных активаторов и регуляторов активности позволяет этой системе осуществлять гибкое взаимодействие клеточных и гуморальных факторов, от которых зависит проявление активности всей системы комплемента. Известны три пути активации системы комплемента: классический, альтернативный и с использованием механизма С1-шунта.

Классический путь активации реализуется при наличии в организме антител к данному антигену. Однако связывать С1 и инициировать классический путь могут не все классы антител. Такой способностью обладают антитела классов IgG и IgM, а антитела классов IgE, IgD и IgA – нет. Более того, при некоторых обстоятельствах антитела класса IgA могут подавлять активацию комплемента антителами IgG. С образовавшимся комплексом антиген + антитело взаимодействует компонент C1q. Присоединение антигена к активному центру молекулы антитела меняет конформацию иммуноглобулина, и его рецептор на Fc-фрагменте становится доступным для связывания с C1q. Таким образом, в присутствии ионов Ca2+ возникает комплекс антиген + антитело + С1. Он взаимодействует вначале с компонентом C4, а затем в присутствии ионов Mg2+ к нему присоединяется компонент С2, и образуется сложный комплекс антиген + антитело + С1С4С2.


Таблица 9

Характеристика основных компонентов системы комплемента


Одним из центральных событий активации системы комплемента является присоединение компонента С3, после которого весь этот комплекс приобретает способность прилипать к различным частицам и клеткам, в том числе к эритроцитам и фагоцитам (эффект иммунного прилипания). Чужеродное вещество под влиянием этого комплекса опсонизируется, т. е. подвергается более активному фагоцитозу и цитотоксическому действию. Однако для их проявления требуется присоединение остальных компонентов комплемента.

Участие комплемента в защите от микроорганизмов вовлекает по крайней мере три различных механизма: лизис бактерий, активацию всего аппарата макрофагов и воспаление. Лизис бактерий происходит после присоединения к комплексу антиген + + антитело + С1С4С2С3 остальных компонентов (C5, C6, C7, C8 и C9): компонент С5 расщепляется особым белком на компоненты С5a и С5b. Компонент C5a участвует в формировании воспалительного процесса, а компонент C5b инициирует образование мембрано-атакующего комплекса (МАК): C5bC6C7C8C9. Согласно общепринятому мнению, этот комплекс погружается в двойной липидный слой мембраны и формирует канал, по которому в клетку проникает вода, макромолекулярные компоненты клетки выходить по нему не могут, клетка набухает и лопается.

В инициации воспаления и активации фагоцитоза участвуют другие компоненты системы комплемента. Особый белок С3-конвертаза расщепляет С3 на два биологически активных фрагмента – C3a и С3b. Фиксация C3b на бактериальной клетке обусловливает эффект иммунного прилипания. Фагоциты прикрепляются к клетке в области, покрытой C3b, и, выделяя гидролитические ферменты, убивают и фагоцитируют бактериальную клетку, если она не подвергается лизису. В свою очередь С3а и фрагменты других компонентов, освобождающиеся в процессе активации комплемента, вызывают хемотаксис фагоцитов. Воздействуя на мастоциты, эффекторы комплемента вызывают освобождение гистамина, серотонина и других биологически активных веществ, что приводит к развитию очага воспаления.

Альтернативный путь активации системы комплемента реализуется, когда еще нет антител к данному антигену, т. е. при первичном контакте с возбудителем. Cчитается, что в инициации и контроле активации по альтернативному пути участвуют не менее 6 белков: фактор В, фактор D, пропердин, а также регуляторные белки – фактор Н и фактор I и компонент С3, который играет центральную роль в обоих путях активации.

Альтернативный путь индуцируется ЛПС и любыми другими микробными антигенами (вирусными, бактериальными, антигенами грибов, простейших и т. п.). В этом случае не участвуют компоненты С1, С4, С2, и другая конвертаза расщепляет С3 на его субкомпоненты C3a и C3b. На этом уровне и происходит смыкание альтернативного пути активации комплемента с классическим (рис. 61).

Существует и третий механизм активации комплемента. Он обнаружен при исследовании сыворотки свиней, дефицитных по С4-компоненту. Этот путь не связан с образованием С3-конвертазы, но для инициации каскада последовательных реакций необходима активация С1. Поэтому механизм этот, пока еще мало изученный, был назван механизмом С1-шунта. Таким образом, система комплемента выполняет следующие функции:


Рис. 61. Схема классического и альтернативного путей активации комплемента


1. Лизис чужеродных клеток, включая бактерии.

2. Опсонизация чужеродных клеток, включая бактерии, которые становятся более доступными для макрофагов благодаря феномену иммунного прилипания (он обусловлен фиксацией на клетках С3b, в меньшей степени – C4b, C5b, C3bi (один из продуктов расщепления фактора С3), C2-компонентов и фрагментов комплемента).

3. Стимуляция хемотаксиса (она обусловлена действием C5a, в меньшей степени – С3b, фрагмента Ва (продукта расщепления фактора В), комплекса С5b, С6, С7).

4. Стимуляция фагоцитоза – обусловлена присоединением к иммунному комплексу C1q или C3b.

5. Повышение сосудистой проницаемости (C5a, C3а).

6. Стимуляция анафилотоксинами (С5а, С3a) внутриклеточных процессов, в результате которых из мастоцитов выбрасываются биологически активные соединения (гистамин, брадикинин, серотонин, лейкотриены и т. п.), которые обусловливают развитие воспаления.

Лизоцим усиливает антибактериальную активность комплекса антитело – комплемент. При взаимодействии антител и комплемента образуется сферопласт, а затем лизоцим его лизирует (разрушает оставшуюся часть пептидогликана).

Взаимосвязь системы комплемента и макрофагов проявляется и в том, что многие компоненты и регуляторы системы комплемента синтезируются макрофагами: С1q, C2, C4, C5, факторы B, D, P, ингибиторные факторы I, H, C1-инактиватор (гены С2, С4 и фактора В связаны с седьмым локусом главной системы гистосовместимости).

Глава 27
Иные механизмы видового иммунитета
Система интерферонов

Давно было подмечено, что если ввести в организм два вируса одновременно или с интервалом не более 24 ч, между ними наблюдается какое-то взаимодействие, проявляющееся во взаимном угнетении (интерференция). В 1957 г. Л. Айзекс и Дж. Линдеман обнаружили, что явление интерференции связано с образованием в клетках, которые были заражены вирусом, особого белка – интерферона. Установлено, что существует не один интерферон, а целая система их, в которой выделены три основных типа. Интерфероны, синтезируемые в клетках человека, различаются по своим физико-химическим свойствам; рецепторам, с помощью которых они взаимодействуют с клетками; кислоточувствительности; антигенной специфичности. Современная номенклатура интерферонов такова.

Номенклатура интерферонов
(разработана специальной комиссией ВОЗ в 1980 г.):

• Новое обозначение:

1) IFN-α; 2) IFN-β; 3) IFN-γ.

• Старое обозначение:

1) тип I (лейкоцитарный), pH 2,0 – стабильный, индуцируемый чужеродными клетками;

2) тип II (фибробластный), pH 2,0 – стабильный;

3) тип III (иммунный), pH 2,0 – лабильный, индуцируемый антигенами и митогенами.

По своей химической природе интерфероны являются гликопротеидами. Каждый из трех типов интерферонов (α, β, γ) разделяют на подтипы. Например, тип (семейство) α-интерферона включает около 20 подтипов, различающихся по биологическим свойствам и структуре. Среди них обнаружены и такие подтипы, которые утрачивают свою активность при рН 2,0, т. е. кислотолабильные. Множественность и структурная гетерогенность интерферонов, очевидно, отражают их функциональную гетерогенность, а также способность синтезироваться под влиянием различных индукторов. Молекулярная масса интерферонов варьирует от 17 до 45 кД у α– и β-интерферонов и от 20 до 80 кД у γ-интерферона; γ-интерферон продуцируют Т-лимфоциты, натуральные, или природные, киллеры, активированные макрофаги. В свою очередь он стимулирует образование молекул МНС класса II, является кофактором дифференцировки и активации В-лимфоцитов и антагонистом действия на них интерлейкина-4. Гены, контролирующие синтез интерферонов у человека, локализованы на 2, 5 и 9-й хромосомах.

В соответствии с гипотезой об индукции интерферона предполагается, что в клетках его синтез блокирован репрессором. При контакте клетки с индуктором, например вирусом, репрессор связывается, что приводит к активации оперона, контролирующего образование интерферона. Затем происходит транскрипция мРНК для интерферона и ее трансляция. Оперон для α-интерферона содержит до 12 структурных генов. Противовирусное действие интерферонов проявляется в их способности подавлять внутриклеточное размножение широкого круга ДНК– и РНК-вирусов. Интерферон не взаимодействует непосредственно с вирусом, он не препятствует адсорбции вируса на клетке и его проникновению в клетку. Антивирусное действие интерферонов не связано с синтезом какого-то нового белка, а проявляется в повышении активности ряда ключевых ферментов клеточного обмена веществ (рис. 62). Один из возможных механизмов антивирусной активности интерферона заключается в том, что он увеличивает продукцию протеинкиназы, которая фосфорилирует один из факторов инициации трансляции и ингибирует синтез белка. Другой механизм сводится к тому, что под влиянием интерферона накапливается олигоаденилатсинтетаза, приводящая к образованию 2,5-олигоадениловой кислоты. Последняя активирует клеточную эндонуклеазу, которая разрушает молекулы РНК, в том числе и мРНК. Так или иначе, под влиянием интерферона блокируется синтез вирусных макромолекул. Повидимому, в зависимости от типа рецепторов клетки, особенностей самих клеток и типов интерферонов, последние реализуют свое воздействие через активацию синтеза разных ферментных систем. Индукция синтеза интерферона происходит под воздействием самых различных факторов: ДНК– и РНК-содержащих вирусов, бактерий, риккетсий, простейших, различных микробных антигенов, а также различных синтетических соединений. Наиболее характерные черты биологического действия интерферона следующие:


Рис. 62. Механизм действия интерферона (по А. Г. Букринской, 1986):

1 – интерферон; 2 – клеточный рецептор


1) универсальность – интерферон активен против широкого круга вирусов;

2) выраженная тканевая специфичность – он активен в гомологичных системах и практически не активен в гетерогенных тканях (поэтому для лечения человека можно использовать только интерферон человеческого происхождения), биологическая активность интерферона определяется его полипептидом, а тканеспецифичность – углеводным компонентом;

3) наличие эффекта последействия – даже после отмывания интерферона в клетках длительное время сохраняется способность подавлять размножение вирусов;

4) отсутствие какого-либо токсического эффекта – обработка интерфероном клеток не нарушает их нормальной жизнедеятельности;

5) высокая эффективность действия – даже небольшое количество интерферона (несколько десятков молекул) обладает противовирусной активностью.

Интерфероны обладают не только противовирусным, но и противобактериальным (более сильным против грамположительных бактерий и хламидий и менее сильным против других грамотрицательных бактерий) и противоопухолевым действием. Такое их действие связано прежде всего с тем, что интерфероны – мощные иммуномодуляторы. Они стимулируют гуморальный иммунитет, усиливая антителообразование, восстанавливают соотношение T-хелперы/T-супрессоры, уменьшают степень иммунодепрессии, стимулируют фагоцитоз, активность цитокинов, всех киллерных клеток и T-цитотоксических лимфоцитов и т. д. В основе такой широкой активности интерферонов лежит их способность включаться в различные метаболические процессы и регулировать их, поэтому систему интерферонов следует рассматривать как неотъемлемую составную часть общей иммунной системы. Синтез молекул интерферонов – первый ответ на получение клетками неспецифического сигнала о появлении чужеродных антигенов. Включаясь в регуляцию метаболических процессов в клетках, тканях и органах, интерфероны обеспечивают поддержание гомеостаза на всех уровнях организации от клетки до целостного организма. В связи с этим для стимуляции синтеза эндогенных интерферонов и усиления их иммуномодулирующего действия в практику лечения и профилактики вирусных и других инфекционных заболеваний, особенно таких, при которых возбудитель оказывает негативное действие на систему интерферонов, помимо собственно интерферонов все шире внедряются различные синтетические стимуляторы интерферонообразования.

Два таких препарата успешно используются: амиксин и арбидол. Амиксин – первый пероральный синтетический низкомолекулярный индуктор эндогенного интерферона. Его применяют по специальным схемам для профилактики и лечения гриппа и других острых респираторных вирусных инфекций (ОРВИ), герпетических, цитомегаловирусных и нейровирусных заболеваний, энтеральных (A, E) и парентеральных вирусных гепатитов (B, C, D, E, G, TTV) и хламидиозов. Амиксин нетоксичен и хорошо совместим с антибиотиками и средствами традиционного лечения вирусных и бактериальных болезней. Арбидол помимо интерферониндуцирующего и иммуномодулирующего обладает и прямым антивирусным действием. Он применяется для профилактики и лечения гриппа и ОРВИ у взрослых и детей по специальным схемам.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации